-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
130 lines (105 loc) · 4.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Import required libraries
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout, Bidirectional
from sklearn.metrics import accuracy_score, classification_report
# Load the dataset files
train_data = pd.read_csv('atis_intents_train.csv')
test_data = pd.read_csv('atis_intents_test.csv')
full_data = pd.read_csv('atis_intents.csv')
# Display the first few rows of each dataset to check the structure
print("Training Data:")
print(train_data.head())
print("\nTesting Data:")
print(test_data.head())
# Display column names in the training and testing datasets
print("Training Data Columns:", train_data.columns)
print("Testing Data Columns:", test_data.columns)
# Extract columns explicitly
X_train = train_data.iloc[:, 1] # Queries (2nd column, index 1)
y_train = train_data.iloc[:, 0] # Intents (1st column, index 0)
X_test = test_data.iloc[:, 1] # Queries (2nd column, index 1)
y_test = test_data.iloc[:, 0] # Intents (1st column, index 0)
# Label encoding for intents
label_encoder = LabelEncoder()
y_train = label_encoder.fit_transform(y_train)
y_test = label_encoder.transform(y_test)
# Tokenize and convert text to sequences
tokenizer = Tokenizer()
tokenizer.fit_on_texts(X_train) # Fit tokenizer on training data only
X_train_seq = tokenizer.texts_to_sequences(X_train)
X_test_seq = tokenizer.texts_to_sequences(X_test)
# Pad sequences for uniform input size
X_train_pad = pad_sequences(X_train_seq, padding='post')
X_test_pad = pad_sequences(X_test_seq, padding='post')
# Display shapes
print(f"Training data shape: {X_train_pad.shape}")
print(f"Test data shape: {X_test_pad.shape}")
print(f"Number of unique intents: {len(label_encoder.classes_)}")
# Define model parameters
vocab_size = len(tokenizer.word_index) + 1 # Total vocabulary size (+1 for padding token)
max_len = X_train_pad.shape[1] # Sequence length from padded data
num_classes = len(label_encoder.classes_) # Number of unique intents
# Verify parameters
print(f"Vocab Size: {vocab_size}, Max Sequence Length: {max_len}, Number of Classes: {num_classes}")
# Build the model
model = Sequential([
Embedding(input_dim=vocab_size, output_dim=128, input_length=max_len),
Bidirectional(LSTM(64, return_sequences=True)),
Dropout(0.5),
Bidirectional(LSTM(32)),
Dense(32, activation='relu'),
Dropout(0.5),
Dense(num_classes, activation='softmax')
])
# Compile the model
model.build(input_shape=(None, max_len)) # Explicitly define the input shape
model.compile(
loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
# Display the model summary
model.summary()
# Train the model
history = model.fit(
X_train_pad,
y_train,
validation_split=0.2, # 20% of training data for validation
epochs=10,
batch_size=32,
verbose=1
)
# Save the model for future use
model.save('intent_classification_model.keras')
# Predict on test data
y_pred = model.predict(X_test_pad)
y_pred_classes = y_pred.argmax(axis=1) # Get predicted class indices
# Calculate test accuracy
accuracy = accuracy_score(y_test, y_pred_classes)
print(f"Test Accuracy: {accuracy:.2f}")
# Generate classification report
report = classification_report(
y_test,
y_pred_classes,
target_names=label_encoder.classes_
)
print(report)
# Function to predict intent from a user query
def predict_intent(query):
# Preprocess the query
seq = tokenizer.texts_to_sequences([query])
pad_seq = pad_sequences(seq, maxlen=max_len, padding='post')
# Predict intent
prediction = model.predict(pad_seq)
predicted_class = prediction.argmax(axis=1)[0]
intent = label_encoder.inverse_transform([predicted_class])[0]
return intent
# Example usage
user_query = "show me flights from New York to Los Angeles"
predicted_intent = predict_intent(user_query)
print(f"Predicted Intent: {predicted_intent}")