forked from jacobgil/pytorch-grad-cam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathguided_backprop.py
98 lines (75 loc) · 3.14 KB
/
guided_backprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import torch
from torch.autograd import Function
from pytorch_grad_cam.utils.find_layers import replace_all_layer_type_recursive
class GuidedBackpropReLU(Function):
@staticmethod
def forward(self, input_img):
positive_mask = (input_img > 0).type_as(input_img)
output = torch.addcmul(
torch.zeros(
input_img.size()).type_as(input_img),
input_img,
positive_mask)
self.save_for_backward(input_img, output)
return output
@staticmethod
def backward(self, grad_output):
input_img, output = self.saved_tensors
grad_input = None
positive_mask_1 = (input_img > 0).type_as(grad_output)
positive_mask_2 = (grad_output > 0).type_as(grad_output)
grad_input = torch.addcmul(
torch.zeros(
input_img.size()).type_as(input_img),
torch.addcmul(
torch.zeros(
input_img.size()).type_as(input_img),
grad_output,
positive_mask_1),
positive_mask_2)
return grad_input
class GuidedBackpropReLUasModule(torch.nn.Module):
def __init__(self):
super(GuidedBackpropReLUasModule, self).__init__()
def forward(self, input_img):
return GuidedBackpropReLU.apply(input_img)
class GuidedBackpropReLUModel:
def __init__(self, model, device):
self.model = model
self.model.eval()
self.device = next(self.model.parameters()).device
def forward(self, input_img):
return self.model(input_img)
def recursive_replace_relu_with_guidedrelu(self, module_top):
for idx, module in module_top._modules.items():
self.recursive_replace_relu_with_guidedrelu(module)
if module.__class__.__name__ == 'ReLU':
module_top._modules[idx] = GuidedBackpropReLU.apply
print("b")
def recursive_replace_guidedrelu_with_relu(self, module_top):
try:
for idx, module in module_top._modules.items():
self.recursive_replace_guidedrelu_with_relu(module)
if module == GuidedBackpropReLU.apply:
module_top._modules[idx] = torch.nn.ReLU()
except BaseException:
pass
def __call__(self, input_img, target_category=None):
replace_all_layer_type_recursive(self.model,
torch.nn.ReLU,
GuidedBackpropReLUasModule())
input_img = input_img.to(self.device)
input_img = input_img.requires_grad_(True)
output = self.forward(input_img)
if target_category is None:
target_category = np.argmax(output.cpu().data.numpy())
loss = output[0, target_category]
loss.backward(retain_graph=True)
output = input_img.grad.cpu().data.numpy()
output = output[0, :, :, :]
output = output.transpose((1, 2, 0))
replace_all_layer_type_recursive(self.model,
GuidedBackpropReLUasModule,
torch.nn.ReLU())
return output