-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
opt_lns.h
80 lines (62 loc) · 2.43 KB
/
opt_lns.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
opt_lns.h
Abstract:
"large" neighborhood search for maxsat problem instances.
Start with a model that we assume satisfies at least one of the soft constraint assumptions.
Attempt to improve the model locally by invoking the SAT solver with a phase
fixed to be the assignment that solved the previous instance.
Local improvement is performed by hardening each soft constraint in turn.
The soft constraints are assumed sorted by weight, such that the highest
weight soft constraint is first, followed by soft constraints of lower weight.
Author:
Nikolaj Bjorner (nbjorner) 2021-02-01
--*/
#pragma once
namespace opt {
class lns_context {
public:
virtual ~lns_context() = default;
virtual void update_model(model_ref& mdl) = 0;
virtual void relax_cores(vector<expr_ref_vector> const& cores) = 0;
virtual rational cost(model& mdl) = 0;
virtual rational weight(expr* e) = 0;
virtual expr_ref_vector const& soft() = 0;
};
class lns {
ast_manager& m;
solver& s;
lns_context& ctx;
random_gen m_rand;
expr_ref_vector m_hardened;
expr_ref_vector m_unprocessed;
unsigned m_max_conflicts { 10000 };
unsigned m_num_improves { 0 };
bool m_cores_are_valid { true };
bool m_enable_scoped_bounding { false };
unsigned m_best_bound { 0 };
rational m_best_cost;
model_ref m_best_model;
scoped_ptr<solver::phase> m_best_phase;
vector<expr_ref_vector> m_cores;
expr_mark m_in_core;
expr_mark m_is_assumption;
struct scoped_bounding;
void update_best_model(model_ref& mdl);
void improve_bs();
void improve_bs1();
void apply_best_model();
expr* unprocessed(unsigned i) const { return m_unprocessed[i]; }
void set_lns_params();
void save_defaults(params_ref& p);
unsigned improve_step(model_ref& mdl);
lbool improve_step(model_ref& mdl, expr* e);
void relax_cores();
unsigned improve_linear(model_ref& mdl);
public:
lns(solver& s, lns_context& ctx);
void set_conflicts(unsigned c) { m_max_conflicts = c; }
unsigned climb(model_ref& mdl);
};
};