forked from ftyuejian/11785-final-project-Group-8
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DCPH_Res18.py
245 lines (196 loc) · 8.26 KB
/
DCPH_Res18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import warnings
import torchvision
import numpy as np
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as pylt
import matplotlib.pylab as plt
import matplotlib.gridspec as gridspec
from auton_survival.models.cph.dcph_utilities import train_dcph,predict_survival
from auton_survival.metrics import survival_regression_metric
# from estimators_demo_utils import plot_performance_metrics
import pandas as pd
# from .unet_parts import *
import torchvision.models as models
device = 'cuda' if torch.cuda.is_available() else 'cpu'
Args = {'load_history': True,
'epoch':0,
'learning rate':1e-3,
'batch_size':64,
'return_loss':True,
'save_path':'experiment/CNN/'}
def plot_performance_metrics(results, times):
"""Plot Brier Score, ROC-AUC, and time-dependent concordance index
for survival model evaluation.
Parameters
-----------
results : dict
Python dict with key as the evaulation metric
times : float or list
A float or list of the times at which to compute
the survival probability.
Returns
-----------
matplotlib subplots
"""
colors = ['blue', 'purple', 'orange', 'green']
gs = gridspec.GridSpec(1, len(results), wspace=0.3)
for fi, result in enumerate(results.keys()):
val = results[result]
x = [str(round(t, 1)) for t in times]
ax = plt.subplot(gs[0, fi]) # row 0, col 0
ax.set_xlabel('Time')
ax.set_ylabel(result)
ax.set_ylim(0, 1)
ax.bar(x, val, color=colors[fi])
plt.xticks(rotation=30)
plt.savefig(Args['save_path'] + "eval_metric_CNN_model.png")
def increase_censoring(e, t, p, random_seed=0):
np.random.seed(random_seed)
uncens = np.where(e == 1)[0]
mask = np.random.choice([False, True], len(uncens), p=[1-p, p])
toswitch = uncens[mask]
e[toswitch] = 0
t_ = t[toswitch]
newt = []
for t__ in t_:
newt.append(np.random.uniform(1, t__))
t[toswitch] = newt
return e, t
def _load_mnist():
"""Helper function to load and preprocess the MNIST dataset.
The MNIST database of handwritten digits, available from this page, has a
training set of 60,000 examples, and a test set of 10,000 examples.
It is a good database for people who want to try learning techniques and
pattern recognition methods on real-world data while spending minimal
efforts on preprocessing and formatting [1].
Please refer to http://yann.lecun.com/exdb/mnist/.
for the original datasource.
References
----------
[1]: LeCun, Y. (1998). The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.
"""
train = torchvision.datasets.MNIST(root='datasets/',
train=True, download=True)
# print("tar", train.targets[5])
x = train.data.numpy()
x = np.expand_dims(x, 1).astype(float)
t = train.targets.numpy().astype(float) + 1
e, t = increase_censoring(np.ones(t.shape), t, p=.5)
return x, t, e
def preprocess_training_data(x, t, e, vsize, val_data, random_seed):
idx = list(range(x.shape[0]))
np.random.seed(random_seed)
np.random.shuffle(idx)
x_train, t_train, e_train = x[idx], t[idx], e[idx]
x_train = torch.from_numpy(x_train).float()
t_train = torch.from_numpy(t_train).float()
e_train = torch.from_numpy(e_train).float()
if val_data is None:
vsize = int(vsize*x_train.shape[0])
x_val, t_val, e_val = x_train[-vsize:], t_train[-vsize:], e_train[-vsize:]
x_train = x_train[:-vsize]
t_train = t_train[:-vsize]
e_train = e_train[:-vsize]
else:
x_val, t_val, e_val = val_data
x_val = torch.from_numpy(x_val).float()
t_val = torch.from_numpy(t_val).float()
e_val = torch.from_numpy(e_val).float()
return (x_train, t_train, e_train, x_val, t_val, e_val)
class DeepCoxPHTorch(nn.Module):
def _init_coxph_layers(self, lastdim):
# have to put it to device since this layer is not init when the model is set
self.expert = nn.Linear(lastdim, 1, bias=False).to(device)
def __init__(self, inputdim = None, layers=None, optimizer='Adam'):
super(DeepCoxPHTorch, self).__init__()
self.optimizer = optimizer
if layers is None: layers = []
self.layers = layers
if len(layers) == 0: lastdim = inputdim
else: lastdim = layers[-1]
# self.expert = None
self._init_coxph_layers(1000)
# CNN insert here
self.embedding = models.resnet18(pretrained=True)
self.flatten = nn.Flatten()
def forward(self, x):
# print("check input",x.shape)
# print("in model",x.device)
x = self.embedding(x)
x = self.flatten(x)
# print(x.shape)
# print("in model2", x.device)
# if self.expert is not None:
# return self.expert(x)
# else:
# t = self.expert(x)
# self.expert = nn.Linear(lastdim, 1, bias=False)
# print("in model3", t.device)
return self.expert(x)
# return x
def to_dframe(t,e):
d = {'event': e, 'time': t}
df = pd.DataFrame(data=d)
return df
def average_re(results):
return np.array(results['Brier Score']).mean(),np.array(results['Concordance Index']).mean()
if __name__ == '__main__':
# dowmloading dataset
x = np.load('data/x.npy',allow_pickle=True)
t = np.load('data/t.npy', allow_pickle=True)
e = np.load('data/e.npy', allow_pickle=True)
x = np.repeat(x,3,axis=1)
# preprocessing data
x_tr, x_te, t_tr, t_te, e_tr, e_te = train_test_split(x, t, e, test_size=0.2, random_state=1)
x_train, t_train, e_train, x_val, t_val, e_val = preprocess_training_data(x, t, e, vsize=0.15, val_data=None,
random_seed=0)
print("Check data type",
type(x_train),
type(t_train),
type(e_train)
)
x_train = x_train.to(device)
t_train = t_train
e_train = e_train
x_val = x_val.to(device)
t_val = t_val
e_val = e_val
x_te = torch.from_numpy(x_te).to(torch.float).to(device)
e_te = torch.from_numpy(e_te).float()
t_te = torch.from_numpy(t_te).float()
# device
print("working on",device)
# print("check",x_train.device)
# define the model
model = DeepCoxPHTorch().to(device)
print("model summarize",model)
# train
(model, breslow_spline), loss = train_dcph(model,
(x_train, t_train, e_train),
(x_val, t_val, e_val),
epochs=Args['epoch'],
lr=Args['learning rate'],
bs=Args['batch_size'],
return_losses=Args['return_loss'],
args=Args)
# transform the result to data frame in pandas
d_tr = to_dframe(t_tr, e_tr)
d_te = to_dframe(t_te, e_te)
# Define the times for tuning the model hyperparameters and for evaluating the model
times = np.linspace(2, 9, 8)
# Obtain survival probabilities for test set
predictions_te = predict_survival((model, breslow_spline), x_te, t=times)
# Compute the Brier Score and time-dependent concordance index for the test set to assess model performance
results = dict()
results['Brier Score'] = survival_regression_metric('brs', outcomes_train=d_tr, outcomes_test=d_te,
predictions=predictions_te, times=times)
results['Concordance Index'] = survival_regression_metric('ctd', outcomes_train=d_tr, outcomes_test=d_te,
predictions=predictions_te, times=times)
plot_performance_metrics(results, times)
br,con = average_re(results)
print('brier score',br,'con index',con)