forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_gl2tf_maxpool2d.py
139 lines (111 loc) · 3.36 KB
/
convert_gl2tf_maxpool2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import math
import numpy as np
import mxnet as mx
import tensorflow as tf
class GluonModel(mx.gluon.HybridBlock):
def __init__(self,
**kwargs):
super(GluonModel, self).__init__(**kwargs)
with self.name_scope():
self.pool = mx.gluon.nn.MaxPool2D(
pool_size=2,
strides=2,
padding=0)
def hybrid_forward(self, F, x):
x = self.pool(x)
return x
def maxpool2d(x,
pool_size,
strides,
padding=0,
ceil_mode=False,
name=None):
"""
Max pooling operation for two dimensional (spatial) data.
Parameters:
----------
x : Tensor
Input tensor.
pool_size : int or tuple/list of 2 int
Size of the max pooling windows.
strides : int or tuple/list of 2 int
Strides of the pooling.
padding : int or tuple/list of 2 int, default 0
Padding value for convolution layer.
ceil_mode : bool, default False
When `True`, will use ceil instead of floor to compute the output shape.
name : str, default 'conv2d'
Layer name.
Returns
-------
Tensor
Resulted tensor.
"""
if isinstance(padding, int):
padding = (padding, padding)
if ceil_mode:
height = x.shape[2]
out_height = float(height + 2 * padding[0] - pool_size[0]) / strides[0] + 1.0
if math.ceil(out_height) > math.floor(out_height):
padding[0] += 1
width = x.shape[3]
out_width = float(width + 2 * padding[1] - pool_size[1]) / strides[1] + 1.0
if math.ceil(out_width) > math.floor(out_width):
padding[1] += 1
if (padding[0] > 0) or (padding[1] > 0):
x = tf.pad(x, [[0, 0], [0, 0], list(padding), list(padding)], mode="REFLECT")
x = tf.layers.max_pooling2d(
inputs=x,
pool_size=pool_size,
strides=strides,
padding='valid',
data_format='channels_first',
name=name)
# if isinstance(pool_size, int):
# pool_size = (pool_size, pool_size)
# if isinstance(strides, int):
# strides = (strides, strides)
# x = tf.nn.max_pool(
# value=x,
# ksize=(1, 1) + pool_size,
# strides=(1, 1) + strides,
# padding='VALID',
# data_format='NCHW',
# name=name)
return x
def tensorflow_model(x):
x = maxpool2d(
x=x,
pool_size=2,
strides=2,
padding=0,
ceil_mode=False,
name="pool")
return x
def main():
success = True
for i in range(10):
x = np.random.randn(10, 10, 224, 224).astype(np.float32)
gl_model = GluonModel()
# ctx = mx.cpu()
ctx = mx.gpu(0)
gl_x = mx.nd.array(x, ctx)
gl_y = gl_model(gl_x).asnumpy()
xx = tf.placeholder(
dtype=tf.float32,
shape=(None, 10, 224, 224),
name='xx')
tf_model = tensorflow_model(xx)
with tf.Session() as sess:
tf_y = sess.run(tf_model, feed_dict={xx: x})
tf.reset_default_graph()
dist = np.sum(np.abs(gl_y - tf_y))
if dist > 1e-5:
success = False
print("i={}, dist={}".format(i, dist))
# print(gl_y)
# print(tf_y)
if success:
print("All ok.")
if __name__ == '__main__':
main()