diff --git a/README.md b/README.md
index 85a873f..f7e6aeb 100644
--- a/README.md
+++ b/README.md
@@ -44,6 +44,7 @@ pip install 'git+https://github.com/isaaccorley/torchrs.git#egg=torch-rs[train]'
* [HRSCD - High Resolution Semantic Change Detection](https://github.com/isaaccorley/torchrs#high-resolution-semantic-change-detection-hrscd)
* [S2MTCP - Sentinel-2 Multitemporal Cities Pairs](https://github.com/isaaccorley/torchrs#sentinel-2-multitemporal-cities-pairs-s2mtcp)
* [RSVQA LR - Remote Sensing Visual Question Answering Low Resolution](https://github.com/isaaccorley/torchrs#remote-sensing-visual-question-answering-rsvqa-low-resolution-lr)
+* [RSVQA HR - Remote Sensing Visual Question Answering High Resolution](https://github.com/isaaccorley/torchrs#remote-sensing-visual-question-answering-rsvqa-high-resolution-hr)
* [RSVQAxBEN - Remote Sensing Visual Question Answering BigEarthNet](https://github.com/isaaccorley/torchrs#remote-sensing-visual-question-answering-bigearthnet-rsvqaxben)
* [RSICD - Remote Sensing Image Captioning Dataset](https://github.com/isaaccorley/torchrs#remote-sensing-image-captioning-dataset-rsicd)
* [Sydney Captions](https://github.com/isaaccorley/torchrs#sydney-captions)
@@ -406,7 +407,7 @@ x = dataset[0] # (2, 14, h, w)
-The [RSVQA LR](https://rsvqa.sylvainlobry.com/) dataset, proposed in ["RSVQA: Visual Question Answering for Remote Sensing Data", Lobry et al.](https://arxiv.org/abs/2003.07333) is a visual question answering (VQA) dataset of 772 256x256 RGB images taken by the [ESA Sentinel-2 satellite](https://sentinel.esa.int/web/sentinel/missions/sentinel-2). Each image is annotated with a set of questions and their corresponding answers. Among other applications, this dataset can be used to train VQA models to perform detailed scene understanding of medium resolution remote sensing imagery.
+The [RSVQA LR](https://rsvqa.sylvainlobry.com/) dataset, proposed in ["RSVQA: Visual Question Answering for Remote Sensing Data", Lobry et al.](https://arxiv.org/abs/2003.07333) is a visual question answering (VQA) dataset of 772 256x256 low resolution (10m) RGB images taken by the [ESA Sentinel-2 satellite](https://sentinel.esa.int/web/sentinel/missions/sentinel-2). Each image is annotated with a set of questions and their corresponding answers. Among other applications, this dataset can be used to train VQA models to perform detailed scene understanding of medium resolution remote sensing imagery.
The dataset can be downloaded (0.2GB) using `scripts/download_rsvqa_lr.sh` and instantiated below:
@@ -433,6 +434,37 @@ x: dict(
"""
```
+### Remote Sensing Visual Question Answering (RSVQA) High Resolution (HR)
+
+
+
+The [RSVQA HR](https://rsvqa.sylvainlobry.com/) dataset, proposed in ["RSVQA: Visual Question Answering for Remote Sensing Data", Lobry et al.](https://arxiv.org/abs/2003.07333) is a visual question answering (VQA) dataset of 772 512x512 high resolution (15cm) aerial RGB images extracted from the [USGS High Resolution Orthoimagery (HRO) collection](https://www.usgs.gov/centers/eros/science/usgs-eros-archive-aerial-photography-high-resolution-orthoimagery-hro?qt-science_center_objects=0#qt-science_center_objects). Each image is annotated with a set of questions and their corresponding answers. Among other applications, this dataset can be used to train VQA models to perform detailed scene understanding of high resolution remote sensing imagery.
+
+The dataset can be downloaded (15GB) using `scripts/download_rsvqa_hr.sh` and instantiated below:
+
+```python
+import torchvision.transforms as T
+from torchrs.datasets import RSVQALR
+
+transform = T.Compose([T.ToTensor()])
+
+dataset = RSVQALR(
+ root="path/to/dataset/",
+ split="train", # or 'val', 'test'
+ transform=transform
+)
+
+x = dataset[0]
+"""
+x: dict(
+ x: (3, 256, 256)
+ questions: List[str]
+ answers: List[str]
+ types: List[str]
+)
+"""
+```
+
### Remote Sensing Visual Question Answering BigEarthNet (RSVQAxBEN)
diff --git a/assets/rsvqahr.png b/assets/rsvqa_hr.png
similarity index 100%
rename from assets/rsvqahr.png
rename to assets/rsvqa_hr.png
diff --git a/torchrs/datasets/rsvqa.py b/torchrs/datasets/rsvqa.py
index a890eb1..b605df3 100644
--- a/torchrs/datasets/rsvqa.py
+++ b/torchrs/datasets/rsvqa.py
@@ -106,7 +106,7 @@ class RSVQAHR(RSVQA):
USA, along with a few areas of interest (e.g. national parks). For most areas covered by the dataset,
only one tile is available with acquisition dates ranging from year 2000 to 2016, with various sensors.
The tiles are openly accessible through USGS' EarthExplorer tool.
-
+
From this collection, we extracted 161 tiles belonging to the North-East coast of the USA
that were split into 100659 images of size 512x512 (each covering 5898m^2).We constructed 100,660,316
questions and answers following the methodology presented in subsection II-A. We split the data in
diff --git a/torchrs/train/datamodules/__init__.py b/torchrs/train/datamodules/__init__.py
index 6fb0a6a..4826246 100644
--- a/torchrs/train/datamodules/__init__.py
+++ b/torchrs/train/datamodules/__init__.py
@@ -34,5 +34,5 @@
"ADVANCEDataModule", "SAT4DataModule", "SAT6DataModule", "HRSCDDataModule", "InriaAILDataModule",
"TiselacDataModule", "GID15DataModule", "ZueriCropDataModule", "AIDDataModule",
"DubaiSegmentationDataModule", "HKHGlacierMappingDataModule", "UCMDataModule", "PatternNetDataModule",
- "RSVQALRDataModule"
+ "RSVQAHRDataModule"
]