-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprune_heads_full_dataset.py
517 lines (420 loc) · 24 KB
/
prune_heads_full_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import os
import time
import argparse
import json
import pickle
from evaluation.importance_utils import *
import torchvision
import models.hide_seek.tcow as tcow
from decord import VideoReader, cpu
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
def main(args):
'''
Script to prune heads from models while using the full dataset to rank heads, prune them, and evaluate.
'''
if not os.path.exists('results/{}'.format(args.exp_name)):
os.makedirs('results/{}'.format(args.exp_name))
results_path = 'results/{}/{}_{}Epoch_{}Masks_{}.pkl'.format(args.exp_name, args.model, args.epochs, args.num_masks, '_'.join([str(x) for x in sorted(args.target_class_idxs)]))
print('Results will be saved to {}'.format(results_path))
if args.use_saved_results and not args.recompute_performance_curves:
if os.path.exists(results_path):
print('Loading results from {}'.format(results_path))
with open(results_path, 'rb') as f:
all_results = pickle.load(f)
readable_ranking = [('layer {}'.format(x%12),'head {}'.format(x//12)) for x in all_results['head_importance_list']]
# plot results
results = {
'most_to_least': all_results['most_to_least'],
'least_to_most': all_results['least_to_most'],
'random': all_results['random'],
}
plot_results(args, results)
exit()
else:
print('No results found at {}'.format(results_path))
# loading model
model = load_model(args)
# load vcd with pickle
print('Loading dataloader...')
if args.dataset == 'ssv2':
train_dataset = SSV2(args, model, 'train')
validation_dataset = SSV2(args, model, 'validation')
else:
raise NotImplementedError
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
validation_loader = DataLoader(validation_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
if not args.recompute_performance_curves:
head_importances = []
for epoch in range(args.epochs):
print('Epoch {}/{}'.format(epoch+1, args.epochs))
# iterate through all videos in dataset (either for all classes or a subset) while masking heads
for batch_idx, data in enumerate(tqdm(train_loader)):
if args.debug:
if batch_idx > 5:
break
video = data[0].cuda()
target = torch.tensor([int(x) for x in data[1]])
# forward pass with all heads masked
rish_heads_removed = []
performance_list = []
for i in range(args.num_masks):
global_idx_heads_to_remove = random.sample(range(144), int(144 / 2))
head_layers = [x % 12 for x in global_idx_heads_to_remove]
head_heads = [x // 12 for x in global_idx_heads_to_remove]
# set up hook_dict with all layers and all heads to remove
all_layer_hook_dict = {}
# calculate which head to remove (12 heads, 12 layers)
for layer in range(12):
heads_to_remove = torch.tensor(head_heads)[torch.where(torch.tensor(head_layers) == layer)]
all_layer_hook_dict[layer] = {
'heads_to_remove': heads_to_remove,
}
model = load_model(args, hook=remove_heads, hook_layer=list(range(12)), model=model,
hook_dict=all_layer_hook_dict)
if 'vidmae' in args.model:
pred, _ = model(video)
pred = pred.argmax(dim=1).cpu().detach()
performance = (pred == target).sum().item() / len(pred)
else:
raise NotImplementedError
bool_heads_to_remove = torch.zeros(144)
bool_heads_to_remove[global_idx_heads_to_remove] = 1
bool_heads_kept = 1 - bool_heads_to_remove
rish_heads_removed.append(bool_heads_kept)
performance_list.append(performance)
rish_heads_removed = torch.stack(rish_heads_removed)
performance_list = torch.tensor(performance_list)
head_importance = performance_list @ rish_heads_removed
head_importances.append(head_importance)
# average over all videos
head_importance = torch.stack(head_importances).mean(0)
MostLeastHeadImportance = head_importance.argsort(descending=True)
LeastMostHeadImportance = head_importance.argsort()
else:
print('Loading results from {}'.format(results_path))
with open(results_path, 'rb') as f:
all_results = pickle.load(f)
MostLeastHeadImportance = torch.tensor(all_results['head_importance_list']).argsort()
LeastMostHeadImportance = torch.tensor(all_results['head_importance_list']).argsort(descending=True)
baseline_performance = all_results['most_to_least'][0]
model = load_model(args)
# compute attribution when removing heads in order from head_importance
# load model to get rid of hooks
model = load_model(args)
# baseline performance
print('0/3: baseline performance')
baseline_performance = single_validation_epoch(args, model, validation_loader)
print('1/3: most to least important')
# most_to_least
MostLeastResults = head_removal_performance_curve(args, model, validation_loader, MostLeastHeadImportance)
print('2/3: least to most important')
# least_to_most
LeastMostResults = head_removal_performance_curve(args, model, validation_loader, LeastMostHeadImportance)
print('3/3: random')
# random
RandomHeadImportance = torch.randperm(144)
RandomResults = head_removal_performance_curve(args, model, validation_loader, RandomHeadImportance)
# add baseline performance to results
MostLeastResults = np.concatenate([np.expand_dims(baseline_performance, axis=0), MostLeastResults])
LeastMostResults = np.concatenate([np.expand_dims(baseline_performance, axis=0), LeastMostResults])
RandomResults = np.concatenate([np.expand_dims(baseline_performance, axis=0), RandomResults])
# convert head_importance to dict where the keys are the layer and the values are the head importances
head_importance_dict = {}
for i in range(12):
head_importance_dict[i] = head_importance[i*12:(i+1)*12]
head_importance_list = list(x.item() for x in MostLeastHeadImportance)
results = {
'head_importance': head_importance,
'head_importance_dict': head_importance_dict,
'head_importance_list': head_importance_list,
'most_to_least': MostLeastResults,
'least_to_most': LeastMostResults,
'random': RandomResults,
}
# save results
with open(results_path, 'wb') as f:
print('Saving results to {}'.format(results_path))
pickle.dump(results, f)
results = {
'most_to_least': MostLeastResults,
'least_to_most': LeastMostResults,
'random': RandomResults,
}
plot_results(args, results)
class SSV2(Dataset):
def __init__(self, args, model, split='train', multiclass=False, frame_width = 224, frame_height = 224):
self.args = args
self.frame_width = frame_width
self.frame_height = frame_height
self.sampling_rate = model.sampling_rate
self.num_frames = model.num_frames
# get class names
label_path = os.path.join(args.ssv2_path, 'something-something-v2-labels.json')
with open(label_path, 'r') as f:
label_dict = json.load(f)
idx_to_label = {v: k for k, v in label_dict.items()}
if not len(args.target_class_idxs) == 0:
self.cls_idx = [x for i, x in enumerate(label_dict) if i in args.target_class_idxs]
# open data file
data_path = os.path.join(args.ssv2_path, 'something-something-v2-{}.json'.format(split))
with open(data_path, 'r') as f:
data_dict = json.load(f)
# get videos for target class
video_ids = []
video_labels = []
if len(args.target_class_idxs) == 0:
video_ids = [x['id'] for x in data_dict]
video_labels += [label_dict[x['template'].replace('[', '').replace(']', '')] for x in data_dict]
else:
for idx in args.target_class_idxs:
target_class = idx_to_label[str(idx)]
video_ids += [x['id'] for x in data_dict if x['template'].replace('[', '').replace(']', '') == target_class]
video_labels += [idx for x in data_dict if x['template'].replace('[', '').replace(']', '') == target_class]
self.videos = [('{}/20bn-something-something-v2/{}.webm'.format(args.ssv2_path, video_ids[x]), video_labels[x]) for
x in range(len(video_ids))]
self.transform = torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
def __len__(self):
return len(self.videos)
def __getitem__(self, idx):
video = self.videos[idx][0]
label = torch.tensor(int(self.videos[idx][1]))
vr = VideoReader(video, num_threads=1, ctx=cpu(0), width=self.frame_width, height=self.frame_height)
# a file like object works as well, for in-memory decoding
# 1. the simplest way is to directly access frames
frames = []
for i in range(len(vr)):
# the video reader will handle seeking and skipping in the most efficient manner
frame = vr[i]
frame = torch.tensor(frame.asnumpy())
frame = frame.permute(2, 0, 1)/255.0
frame = self.transform(frame)
frames.append(frame)
# sample frames every model.args.sampling_rate frames
frames = frames[::self.sampling_rate]
frames = frames[:self.num_frames]
# if the video is too short, repeat the last frame
if len(frames) < self.num_frames:
frames += [frames[-1]] * (self.num_frames - len(frames))
rgb_video = torch.stack(frames).permute(1, 0, 2, 3)
return rgb_video, torch.tensor(int(label))
def plot_results(args, results):
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('dark_background')
colors = sns.color_palette("husl", 3)
for i, (key, result) in enumerate(results.items()):
frac_heads_removed = [i / len(result) for i in range(len(result))]
auc = np.trapz(result, frac_heads_removed)
plt.plot(frac_heads_removed, result, color=colors[i], label=key + ' (AUC: {:.2f})'.format(auc))
plt.xlabel('Heads removed')
plt.ylabel('Snitch mIoU' if 'timesformer' in args.model else 'Acc')
plt.legend()
plt.title('Head removal performance curve ({} Masks)'.format(args.num_masks))
plt.savefig('results/{}/HeadsFullDataset_AttributionCurve_{}Masks.png'.format(args.exp_name, args.num_masks))
plt.show()
def single_validation_epoch(args, model, validation_loader):
model.eval()
results = []
with torch.no_grad():
for batch_idx, data in enumerate(tqdm(validation_loader)):
if args.debug:
if batch_idx > 5:
break
video = data[0].cuda()
target = torch.tensor([int(x) for x in data[1]])
if 'timesformer' in args.model:
output_mask, output_flags, target_mask, features, model_retval = tcow_timesformer_forward(dataset,
model,
video_idx,
keep_all=False)
model_retval = {
'output_mask': output_mask.unsqueeze(0),
'target_mask': target_mask.unsqueeze(0)}
metrics_retval = calculate_metrics_mask_track(data_retval=None, model_retval=model_retval,
source_name='kubric')
# put results from cuda to cpu
metrics_retval = {k: v.cpu() for k, v in metrics_retval.items()}
new_performance = metrics_retval['mean_snitch_iou'].item()
elif 'vidmae' in args.model or 'mme' in args.model:
pred, _ = model(video)
pred = pred.argmax(dim=1).cpu().detach()
performance = (pred == target).sum().item() / len(pred)
else:
raise NotImplementedError
results.append(performance)
# average over all videos
final_average_acc = np.mean(results)
return final_average_acc
def head_removal_performance_curve(args, model, validation_loader, head_importance):
HeadsRemovedEachStep = args.heads_removed_each_step
NumRemovedStep = (144 // HeadsRemovedEachStep) + 1
PerVideoResults = []
with torch.no_grad():
for batch_idx, data in enumerate(tqdm(validation_loader)):
if args.debug:
if batch_idx > 5:
break
video = data[0].cuda()
target = torch.tensor([int(x) for x in data[1]])
all_layer_hook_dict = {}
PerStepResults = []
for i in range(NumRemovedStep):
IdxHeadRemove = head_importance[i * HeadsRemovedEachStep: (i + 1) * HeadsRemovedEachStep]
HeadLayers = [x % 12 for x in IdxHeadRemove]
HeadHeads = [x // 12 for x in IdxHeadRemove]
for layer in range(12):
heads_to_remove = torch.tensor(HeadHeads)[torch.where(torch.tensor(HeadLayers) == layer)]
if i == 0:
all_layer_hook_dict[layer] = {'heads_to_remove': heads_to_remove}
else:
all_layer_hook_dict[layer] = {'heads_to_remove': torch.cat([all_layer_hook_dict[layer]['heads_to_remove'],heads_to_remove])}
model = load_model(args, hook=remove_heads, hook_layer=list(range(12)), model=model,
hook_dict=all_layer_hook_dict)
if 'vidmae' in args.model:
pred, _ = model(video)
pred = pred.argmax(dim=1).cpu().detach()
performance = (pred == target).sum().item() / len(pred)
else:
raise NotImplementedError
PerStepResults.append(performance)
PerVideoResults.append(np.array(PerStepResults))
# average over all videos
PerVideoResults = np.stack(PerVideoResults).mean(0)
return PerVideoResults
def remove_heads(module, input, output):
'''
Perturb the output of a given layer by adding noise.
Args:
module: the layer to perturb
input: input to the layer
output: output of the layer to perturb
eps: noise level
direction: 'reverse' or 'forward' or 'random'
Returns:
perturbed output at that layer
'''
heads_to_remove = module.hook_dict['heads_to_remove']
# temporal shape = 300,12,30,64
# spatial shape = 30,12,301,64
B, N, C = input[0].shape
# rearrange to get head dimension
qkv = output.reshape(B, N, 3, 12, C // 12).permute(2, 0, 3, 1, 4)
# remove heads
qkv[:,:,heads_to_remove,:,:] = 0
# rearrange back to original shape
output = qkv.permute(1, 3, 0, 2, 4).reshape(B, N, -1)
return output
def tcow_timesformer_forward(dataset, model, vid_idx, keep_all=False):
# hard coded stuff
qt_idx = 0
b = 0
B = 1
Qs = 1
seeker_input = dataset['pv_rgb_tf'][vid_idx].unsqueeze(0).cuda()
all_segm = dataset['pv_segm_tf'][vid_idx].unsqueeze(0).cuda()
all_div_segm = dataset['pv_div_segm_tf'][vid_idx].unsqueeze(0).cuda()
inst_count = dataset['pv_inst_count'][vid_idx].unsqueeze(0)
target_desirability = torch.tensor(dataset['traject_retval_tf'][vid_idx]['desirability_tf']).unsqueeze(0)
occl_fracs = torch.tensor(dataset['traject_retval_tf'][vid_idx]['occl_fracs_tf']).unsqueeze(0)
occl_cont_dag = torch.tensor(dataset['traject_retval_tf'][vid_idx]['occl_cont_dag_tf']).unsqueeze(0)
scene_dp = dataset['full_scene_dp'][vid_idx]
# Sample either random or biased queries.
sel_query_inds = tcow.utils.my_utils.sample_query_inds(
B, Qs, inst_count, target_desirability, model.train_args, 'cuda', 'test')
query_idx = sel_query_inds[:, 0]
seeker_query_mask = torch.zeros_like(all_segm, dtype=torch.uint8) # (B, 1, T, Hf, Wf).
seeker_query_mask[b, 0, qt_idx] = (all_segm[b, 0, qt_idx] == query_idx[b] + 1)
# Prepare query mask and ground truths.
(seeker_query_mask, snitch_occl_by_ptr, full_occl_cont_id, target_mask,
target_flags) = tcow.data.data_utils.fill_kubric_query_target_mask_flags(
all_segm, all_div_segm, query_idx, qt_idx, occl_fracs, occl_cont_dag, scene_dp,
None, model.train_args, 'cuda', 'test')
del full_occl_cont_id, all_segm, all_div_segm, occl_cont_dag, scene_dp
# add things to dataset for logging if they were missed, this works with cacheing and non-cached datasets
if keep_all:
try:
dataset['seeker_query_mask'].append(seeker_query_mask.cpu())
dataset['target_mask'].append(target_mask.cpu())
except:
dataset['seeker_query_mask'] = [seeker_query_mask.cpu()]
dataset['target_mask'] = [target_mask.cpu()]
# forward pass:
(output_mask, output_flags, features) = model(seeker_input, seeker_query_mask)
# debug - visualize the output of the model
# t = 13
# plt.imshow(seeker_input[0][:, t].permute(1, 2, 0).cpu());plt.show()
# plt.imshow(output_mask[0].sigmoid()[0][t].cpu());plt.show()
model_retval = {}
# all_target_flags.append(target_flags) # (B, T, 3).
# target_flags = torch.stack([target_flags], dim=1) # (B, Qs, T, 3).
model_retval['target_flags'] = torch.stack([target_flags], dim=1).cuda() # (B, Qs, T, 3).
# snitch_occl_by_ptr = torch.stack([snitch_occl_by_ptr], dim=1) # (B, Qs, 1, T, Hf, Wf).
model_retval['snitch_occl_by_ptr'] = torch.stack([snitch_occl_by_ptr], dim=1).cuda()
cur_occl_fracs = occl_fracs[:, query_idx, :, :].diagonal(0, 0, 1)
cur_occl_fracs = rearrange(cur_occl_fracs, 'T V B -> B T V') # (B, T, 3).
sel_occl_fracs = torch.stack([cur_occl_fracs], dim=1) # (B, Qs, T, 3).
model_retval['sel_occl_fracs'] = sel_occl_fracs.cuda() # (B, Qs, T, 3).
return output_mask, output_flags, target_mask, features, model_retval
def vcd_args():
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name' ,default='VideoMAE_SSv2_Spilling', type=str, help='experiment name (used for saving)')
# general
parser.add_argument('--dataset', default='ssv2', type=str,help='dataset to use')
parser.add_argument('--ssv2_path', default='/data/ssv2', type=str,help='SSV2 path')
parser.add_argument('--custom_path', default='data/sample', type=str,help='path to custom dataset')
parser.add_argument('--force_reload_videos', action='store_true',help='Maximum number of videos to use during clustering.')
parser.add_argument('--cache_name', default='v1', type=str,help='experiment name (used for saving)')
parser.add_argument('--fig_save_name', default='attribution_plot',help='figure name (used for saving)')
parser.add_argument('--compare_multiclass', action='store_true', help='if true, average over multiple classes and then compare ')
parser.add_argument('--overwrite_importance', action='store_true', help='Overwrite importance results')
parser.add_argument('--overwrite_attribution', action='store_true', help='Overwrite addtribution results')
parser.add_argument('--results_name', default='', type=str,help='figure name (used for saving)')
parser.add_argument('--use_saved_results', action='store_true', help='Use saved results.')
# model
parser.add_argument('--model', default='vidmae_ssv2_ft', type=str,help='Model to run.')
parser.add_argument('--checkpoint_path', default='', type=str,help='Override checkpoint path.')
parser.add_argument('--concept_clustering', action='store_true', help='Flag to perform concept clustering.')
parser.add_argument('--cluster_layer', nargs='+', default=[], type=int,help='Layers to perform clustering at (timseformer: 0-11 / aot: 0-3).')
parser.add_argument('--cluster_subject', default='tokens', type=str,help='Subject to cluster)', choices=['block_token', 'keys', 'values', 'queries', 'tokens', 'attn', 'attn_caus', 'attn_sft'])
parser.add_argument('--cluster_memory', default='curr', type=str,help='Subject to cluster)', choices=['tokens', 'curr', 'long', 'short'])
parser.add_argument('--use_temporal_attn', action='store_true', help='Flag to use temporal feature maps for timesformer.')
parser.add_argument('--attn_head', nargs='+', default=[], type=int, help='Which heads to use to cluster attention maps (-1 is mean | use 0 if using entire feature).')
parser.add_argument('--target_class_idxs', nargs='+', default=[60,136,137,138,159,163], type=int,help='target class idx for multiple target class setting')
# concept importance
parser.add_argument('--removal_type', default='cris', help='type of attribution removal to do. [perlay | alllay | alllayhead || rish | gradient]')
parser.add_argument('--num_masks', default=25, type=int, help='Number of masks to forward pass during random head removal for RISH.')
parser.add_argument('--heads_removed_each_step', default=10, type=int, help='Number of passes during random head removal for RISH.')
parser.add_argument('--random_importance', action='store_true', help='Use random concept importance.')
parser.add_argument('--baseline_compare', action='store_true', help='Compare with random and inverse baselines.')
parser.add_argument('--importance_loss', default='track', type=str,help='Loss to use for importance [track | occl_pct].')
parser.add_argument('--recompute_performance_curves', action='store_true', help='Load results but recompute performance curves.')
parser.add_argument('--full_validation', action='store_true', help='Use full validation set during AUC curve removal.')
# attribution settings
parser.add_argument('--attribution_evaluation_metric', nargs='+', default=['mean_snitch_iou'], type=str, help='Metrics to use during attribution calculation.')
parser.add_argument('--zero_features', action='store_true', help='Zero out all other features during attribution.')
# computation
parser.add_argument('--epochs', default=1, type=int,help='')
parser.add_argument('--num_workers', default=0, type=int,help='')
parser.add_argument('--batch_size', default=2, type=int,help='')
# reproducibility
parser.add_argument('--seed', default=0, type=int,help='seed')
parser.add_argument('--debug', action='store_true', help='Debug using only 2 videos for all functions.')
args = parser.parse_args(sys.argv[1:])
# random seeds
np.random.seed(args.seed)
torch.manual_seed(args.seed)
random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
return args
if __name__ == '__main__':
start_time = time.time()
vcd_args = vcd_args()
main(vcd_args)
print('Total time in minutes: {:.2f}'.format((time.time()-start_time)/60))
'''
CUDA_VISIBLE_DEVICES=2 python evaluation/prune_heads_full_dataset.py --dataset ssv2 --model vidmae_ssv2_ft --num_masks 10 --epochs 10 --num_workers 16 --batch_size 4
CUDA_VISIBLE_DEVICES=2 python evaluation/prune_heads_full_dataset.py --dataset ssv2 --model vidmae_ssv2_ft --target_class_idxs 60 136 137 138 159 163 --num_masks 10 --epochs 10 --batch_size 4
'''