From 34c4ac1937d4e97617dbf812e89b6ce1842a8f41 Mon Sep 17 00:00:00 2001 From: Oleksii Trekhleb Date: Mon, 24 Dec 2018 23:31:59 +0200 Subject: [PATCH] Add Fashion MNIST neural-network demo. --- .../multilayer_perceptron_demo.ipynb | 6 +- .../multilayer_perceptron_fashion_demo.ipynb | 733 ++++++++++++++++++ 2 files changed, 736 insertions(+), 3 deletions(-) create mode 100644 notebooks/neural_network/multilayer_perceptron_fashion_demo.ipynb diff --git a/notebooks/neural_network/multilayer_perceptron_demo.ipynb b/notebooks/neural_network/multilayer_perceptron_demo.ipynb index 4e42709..6dd32ca 100644 --- a/notebooks/neural_network/multilayer_perceptron_demo.ipynb +++ b/notebooks/neural_network/multilayer_perceptron_demo.ipynb @@ -449,7 +449,7 @@ "\n", "# Go through the first numbers in a training set and plot them.\n", "for plot_index in range(numbers_to_display):\n", - " # Extrace digit data.\n", + " # Extract digit data.\n", " digit = data[plot_index:plot_index + 1].values\n", " digit_label = digit[0][0]\n", " digit_pixels = digit[0][1:]\n", @@ -609,7 +609,7 @@ "source": [ "### Plot Test Dataset Predictions\n", "\n", - "In order to illustrate how our model classifies unknown examples let's plot first 64 predictions for testing dataset. All green digits on the plot below have been recognized corrctly but all the red digits have not been recognized correctly by our classifier. On top of each digit image you may see the class (the number) that has been recognized on the image." + "In order to illustrate how our model classifies unknown examples let's plot first 64 predictions for testing dataset. All green digits on the plot below have been recognized correctly but all the red digits have not been recognized correctly by our classifier. On top of each digit image you may see the class (the number) that has been recognized on the image." ] }, { @@ -640,7 +640,7 @@ "\n", "# Go through the first numbers in a test set and plot them.\n", "for plot_index in range(numbers_to_display):\n", - " # Extrace digit data.\n", + " # Extract digit data.\n", " digit_label = y_test[plot_index, 0]\n", " digit_pixels = x_test[plot_index, :]\n", " \n", diff --git a/notebooks/neural_network/multilayer_perceptron_fashion_demo.ipynb b/notebooks/neural_network/multilayer_perceptron_fashion_demo.ipynb new file mode 100644 index 0000000..57e7512 --- /dev/null +++ b/notebooks/neural_network/multilayer_perceptron_fashion_demo.ipynb @@ -0,0 +1,733 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Neural Network (Multilayer Perceptron) Demo\n", + "\n", + "_Source: 🤖[Homemade Machine Learning](https://github.com/trekhleb/homemade-machine-learning) repository_\n", + "\n", + "> ☝Before moving on with this demo you might want to take a look at:\n", + "> - 📗[Math behind the Neural Networks](https://github.com/trekhleb/homemade-machine-learning/tree/master/homemade/neural_network)\n", + "> - ⚙️[Neural Network Source Code](https://github.com/trekhleb/homemade-machine-learning/blob/master/homemade/neural_network/multilayer_perceptron.py)\n", + "\n", + "**Artificial neural networks (ANN)** or connectionist systems are computing systems vaguely inspired by the biological neural networks that constitute animal brains. The neural network itself isn't an algorithm, but rather a framework for many different machine learning algorithms to work together and process complex data inputs. Such systems \"learn\" to perform tasks by considering examples, generally without being programmed with any task-specific rules.\n", + "\n", + "A **multilayer perceptron (MLP)** is a class of feedforward artificial neural network. An MLP consists of, at least, three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learning technique called backpropagation for training. Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish data that is not linearly separable.\n", + "\n", + "> **Demo Project:** In this example we will train clothes classifier (10 categories) using simple multilayer perceptron." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# To make debugging of multilayer_perceptron module easier we enable imported modules autoreloading feature.\n", + "# By doing this you may change the code of multilayer_perceptron library and all these changes will be available here.\n", + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "# Add project root folder to module loading paths.\n", + "import sys\n", + "sys.path.append('../..')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import Dependencies\n", + "\n", + "- [pandas](https://pandas.pydata.org/) - library that we will use for loading and displaying the data in a table\n", + "- [numpy](http://www.numpy.org/) - library that we will use for linear algebra operations\n", + "- [matplotlib](https://matplotlib.org/) - library that we will use for plotting the data\n", + "- [math](https://docs.python.org/3/library/math.html) - math library that we will use to calculate sqaure roots etc.\n", + "- [neural_network](https://github.com/trekhleb/homemade-machine-learning/blob/master/homemade/neural_network/multilayer_perceptron.py) - custom implementation of multilayer perceptron" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Import 3rd party dependencies.\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.image as mpimg\n", + "import math\n", + "\n", + "# Import custom multilayer perceptron implementation.\n", + "from homemade.neural_network import MultilayerPerceptron" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load the Data\n", + "\n", + "In this demo we will use a sample of [Fashion MNIST dataset in a CSV format](https://www.kaggle.com/zalando-research/fashionmnist).\n", + "\n", + "Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.\n", + "\n", + "Instead of using full dataset with 60000 training examples we will use cut dataset of just 5000 examples that we will also split into training and testing sets.\n", + "\n", + "Each row in the dataset consists of 785 values: the first value is the label (a category from 0 to 9) and the remaining 784 values (28x28 pixels image) are the pixel values (a number from 0 to 255).\n", + "\n", + "Each training and test example is assigned to one of the following labels:\n", + "\n", + "- 0 T-shirt/top\n", + "- 1 Trouser\n", + "- 2 Pullover\n", + "- 3 Dress\n", + "- 4 Coat\n", + "- 5 Sandal\n", + "- 6 Shirt\n", + "- 7 Sneaker\n", + "- 8 Bag\n", + "- 9 Ankle boot" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
labelpixel1pixel2pixel3pixel4pixel5pixel6pixel7pixel8pixel9...pixel775pixel776pixel777pixel778pixel779pixel780pixel781pixel782pixel783pixel784
02000000000...0000000000
19000000000...0000000000
26000000050...000304300000
30000120000...3000010000
43000000000...0000000000
54000545535...7874375000
64000000000...14000000000
75000000000...0000000000
84000000320...1000000000
98000000000...2032141660000000
\n", + "

10 rows × 785 columns

\n", + "
" + ], + "text/plain": [ + " label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n", + "0 2 0 0 0 0 0 0 0 0 \n", + "1 9 0 0 0 0 0 0 0 0 \n", + "2 6 0 0 0 0 0 0 0 5 \n", + "3 0 0 0 0 1 2 0 0 0 \n", + "4 3 0 0 0 0 0 0 0 0 \n", + "5 4 0 0 0 5 4 5 5 3 \n", + "6 4 0 0 0 0 0 0 0 0 \n", + "7 5 0 0 0 0 0 0 0 0 \n", + "8 4 0 0 0 0 0 0 3 2 \n", + "9 8 0 0 0 0 0 0 0 0 \n", + "\n", + " pixel9 ... pixel775 pixel776 pixel777 pixel778 pixel779 \\\n", + "0 0 ... 0 0 0 0 0 \n", + "1 0 ... 0 0 0 0 0 \n", + "2 0 ... 0 0 0 30 43 \n", + "3 0 ... 3 0 0 0 0 \n", + "4 0 ... 0 0 0 0 0 \n", + "5 5 ... 7 8 7 4 3 \n", + "6 0 ... 14 0 0 0 0 \n", + "7 0 ... 0 0 0 0 0 \n", + "8 0 ... 1 0 0 0 0 \n", + "9 0 ... 203 214 166 0 0 \n", + "\n", + " pixel780 pixel781 pixel782 pixel783 pixel784 \n", + "0 0 0 0 0 0 \n", + "1 0 0 0 0 0 \n", + "2 0 0 0 0 0 \n", + "3 1 0 0 0 0 \n", + "4 0 0 0 0 0 \n", + "5 7 5 0 0 0 \n", + "6 0 0 0 0 0 \n", + "7 0 0 0 0 0 \n", + "8 0 0 0 0 0 \n", + "9 0 0 0 0 0 \n", + "\n", + "[10 rows x 785 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the data.\n", + "data = pd.read_csv('../../data/fashion-mnist-demo.csv')\n", + "\n", + "# Laets create the mapping between numeric category and category name.\n", + "label_map = {\n", + " 0: 'T-shirt/top',\n", + " 1: 'Trouser',\n", + " 2: 'Pullover',\n", + " 3: 'Dress',\n", + " 4: 'Coat',\n", + " 5: 'Sandal',\n", + " 6: 'Shirt',\n", + " 7: 'Sneaker',\n", + " 8: 'Bag',\n", + " 9: 'Ankle boot',\n", + "}\n", + "\n", + "# Print the data table.\n", + "data.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the Data\n", + "\n", + "Let's peek first 25 rows of the dataset and display them as an images to have an example of clothes we will be working with." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAJBCAYAAABBBGGtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzsnXeYFtXZxu8noqJiR1G6igVsqGDvURNr1FiDhS8mJiZq1MSSaGKvMdbEWGLsYou9xYqKYgHsATsoTYqCIHbP98fMc957dmf23V22z/27rr14OFPfOWXOPO1YCAFCCCGEEGXjB619A0IIIYQQrYEmQUIIIYQoJZoECSGEEKKUaBIkhBBCiFKiSZAQQgghSokmQUIIIYQoJW1+EmRmfc0smFmn9P/DzewXrX1fomGkddivoduqnHOomY2Y/7sTzU21ujKzh8zs4Ja8J9FwzGyEmQ0t2Laymc1t4VsSYr5o0UmQmY03sy/MbK6ZfWxm15pZl5a8BzF/pJPQT81s4da+l+bCzLY2s4mtfR/tETPb3MyeM7PZZvaJmT1rZoOrHRdC2DGEcF0d59WEt5Gk463/fU9j8FwzG9JU1wkhvB9CqHM8L5pEmdkWZva0mXVKP4r6NtV9iWLonTzHzGalfffXZtbmFSRNRWv80F3TjrI+gEEATmqFe2gQZrZAa99DWyAdmLYAEADs1qo3I9ocZrYEgPsBXApgGQA9AJwK4Kv5PG+n+b+78hJC6OJ/AD5EOganfze1xD2Y2Q+qvFh3BvBgS9yLqMWuIYTFAfQBcA6A4wFcnbdjR3wXttpsL4QwCcBDANZKZ6Pb+TYzO8XMbqx2jrRjnWRmE8xsmpldb2ZLptseMrPDa+z/qpntmcprmNmj6dfqW2a2D+13rZn908weNLPPAWzTRD+7vXMQgOcBXAsgY7pIn9k/zOyB9KviBTNbJe8kqbbgIzPbOmfbwmZ2vpl9mGoLLzezReq4JzOzv6eah3Fm9kPa0N3M7k3r+F0z+2WN61xkZpPTv4vSssWQtMvu9LXcvSEPqcSsBgAhhGEhhO9CCF+EEB4JIbzmO6R1+6mZfWBmO1J5NHOnWp9nzexCM5sJ4FYAlwPYJK2PWS38u0qFmS1qZjeb2cxUO/CimXWlXVZKNQZzzOxhM1smPa6fmQU6zwgzO93MRgL4HMAwAJsAuDytx4vonDshmQQ9nf7/zXSfn6bn+nXah2ea2d1mtmJa7pqjI9I2NcPMzimTJqOpCCHMDiHcC2BfAAeb2Vp578K6xmgz62pm96ft5hMze8brwsyON7NJabt5i8fq1qTVGoqZ9ULS8F+ej9MMTf+2AbAygC4A/p5uGwZgf7reACQz3QfSF92jAG4GsDyA/QBclu7j/AzAmQAWByA1fMJBAG5K/35kZt1qbN8PyZf/0gDeRfL8MpjZj5HUzU9DCMNzrnEOkpfpQAD9kGgT/lLHPW0E4D0AXQGcDOBOH5QB3AJgIoDuAPYCcJaZbZtuOxHAxul11gWwIYCTQgifA9gRwGT6Wp5cx/VFhbcBfGdm15nZjma2dI3tGwF4C0ldnQfgajOzgnNtBOB9AN0AHADg1wBGpvWxVPPcvkj5PwCLAugJYFkAvwHwJW3/GZKPoG4AFgNwTB3nOhDAzwEsAWAIgJEAfp3W41FAfBcslU6Wt0yPWzPd5z9mtgOA05D04R4AJiMZg5ifILEubJDud1AjfrcAEEJ4Ecm4uUVaVPNdWNcY/fv02OWQtI8/AQhmtjqAwwEMTrVOPwIwvgV+TlVaYxJ0d/olNwLAUwDOmo9zDQFwQWqLngvgjwD2s0R9fheAgWbWh/a9M4TwFYBdAIwPIVwTQvg2hPAygP8A2JvOfU8I4dkQwvchBB4ASomZbY5kEnlbCGE0konHz2rsdlcI4cUQwrdIBqmBNbbvDeAKADumHa3mNQzAoQCODiF8EkKYg6R97FfHrU0DcFEI4ZsQwq1IXrI7pwPrZgCODyF8GUJ4BcC/UBkchwA4LYQwLYQwHcnk7cD6PQ2RRwjhMwCbIzGXXgVgeqqJ88nyhBDCVSGE7wBcB2BFJANlHpNDCJem/fOLZr95wXyDZKLaL9XojUrHV+fqEMI7IYR5AG5H7X7O/DuEMDbtn98W7LMTEu1rEUMA/CuE8Eo6Fp8AYCsz60n7nBNC+DSEMAHAJaAPYNEoJiMxaQP0LkRi2q5rjP4GSb/uk9b5MyFZoPQ7AAsDGGBmC4YQxocQ3mvRX1RAa0yCdg8hLBVC6BNC+M18DnDdAUyg/08A0AlAt7RyHkClcvZH5euhD4CNUpXdrHRSNgTACnSuj+bjvjoiBwN4JIQwI/3/zahhEgMwleR5SDRzzFFIJlFvFFxjOSRfoKOpXh5Oy4uYFLKrAE9A0i66A/BOytt6pHJe25HZaz5JX3hDQwg9AayF5Jm62WMq7TcvFYscadX/WgAzW8CyjtPdkZi7HwNwW2q+OMeyflnV+jlTn3p0U1gRmb6aTrY/RaUv17yO+vL80wPAJ6nMz7baGP1XJFaAR8zsfTM7AQBCCO8iGf9PATDNzG5pK24GbcVu+jmSB+usULRjDSYjmdA4vQF8C+Dj9P/DAOxvZpsA6AzgybT8IwBPpZMx/+sSQjiMzsUv1lKT2nv3QfL1NdXMpgI4GsC6ZrZuA061N4Ddzex3BdtnAPgCiSrc62XJKhEnPWqYVHojaReTASxjZovX2DYplfPajpu9VPdNQAhhHJIX6lqNObzK/0UTkGp6utDf5BDC1yGEU0II/ZFo9vZA8pHYqEvU9X8zWyi9xmMF+wM1+mrap5dGpS8DQC+SuS+LBmJJNGcPVNxAuE7qHKNDCHNCCL8PIayMJHjmGPf9CSHcHEJwi0IAcG4L/aQ6aSuToFeQmLEWNLNBSGy69WEYgKPNbCVLQu3PAnArqV0fRPLAT0vLv0/L7wewmpkdmF5zQTMbbGb9m+4ndSh2R6LOHIBE9T0QQH8Az6BhtvfJAH4I4HdmdljNjWn9XAXgQjNbHgDMrIeZ/aiOcy4P4Mi0DvdO7+vBEMJHAJ4DcLaZdTazdQAcAsAd7ocBOMnMlrPE6fMvtO1jAMta6mQv6oclwQa/dzNFapLcH4kz/fzyMYCe6UtTNCNmtm3qFPsDAJ8hMXF8X+Ww+vIxEv9NZysAo1NfPKSm0pk19hkG4BAzW8eS1BxnA3gmhMBpLI4zs6XMrDeAI5E404sGYGZLmNkuSHwpbwwhvF5zn2pjtJntYomDvAGYjeS98b2ZrZ62q4WR+Jd9gaZrU/NFW5kE/RnAKkhUnKciMbXUh38DuAFJRMEHSB7uEb4x9f+5E8B2fM7URLIDElPZZCTq3XOR2CxFbQ4GcE0I4cMQwlT/Q+KEPsQaEMIcQvgQyUToBMtPenk8EnXq82b2GZIvxNXrOOULAFZF8oVyJoC9Qggz0237A+iLpI7vAnByCMG/OM8AMArAawBeBzAmLXMNxjAA76cq3zahtm0HzEHi0PyCJZEkzwN4A4mz5PzyBIA3AUw1sxnVdhbzRXck4+ZnSJ75Y6j/mFyNi5Bo52eZ2QXID40/GcDN6T57hhAeRvIhexeAKUg0PTU1U/ch+Zh+Od3v2ia63zJwn5nNQWIhORHABUic44uoa4xeNf3/XCRO8JeFEJ5E8m49B8k4PRXJx+sfm/6nNBzLulMIIYQQLYOZvQ1glxDC2408vhMSTdVKIYTxTXlvohy0FU2QEEKIEmFmnZFEmjVqAiREUyBNkBBCiHaJNEFiftEkSAghhBClROYwIYQQQpQSTYKEEEIIUUoatDpz165dQ9++fZvpVjom48ePx4wZM4rWR2ozqG4bx+jRo2eEEOrKaN0maM36nTUrWe90gQUqC1B//30lRQib5H/wg8p32ZdfJqvVLL/88s19i4W0h/pt6br95JNPojx79mwAwFJLVZZzW2yxxaLcqVPlFfPVV19F+euvvwYAfPbZZ7GMc56uuOKKUeZ205S0h7oF2sbY/M0330R5wQUXjDL3Y69TAOjcuXPL3Fgd1Ld+GzQJ6tu3L0aNGtX4uyohgwYNau1bqBeq28ZhZhOq79X6NGX9fvfdd1Guzwvq3nvvBQAsuWQl9+S8efOizC9HHjzffjsJGjryyCNzz8uTJ5d5EsXbi9dprZv2UL/V6rbI77Oxz2TYsGFRvv/++wEAu+22WyzbaKONorzccpV30HvvVZaKmjgxyXP48MMPxzJ+uZ588slRXmKJJeq8n8bWc3uoW6BtjM2TJ1cScHfvXkmbxv14/PjxUR4wgNcibx3qW78NmgQJIUR9Jj5/+ctfonzDDTcAyGp0Bg6srLk5Y0Yl9+GIESOivMgiiwAA3nijstTclVdeGWV+4TX2hV4G+NlUC4SZO7eyTurPf/7zKPOLb/fdd4/y+uuvDwB47bXXYtnTTz8d5SuuuCLKQ4cOjXL//v1r3c9KK60U5dtuuy3KX3yRLC+5/fbbx7I11lgjykW/T22ibriuDznkkCizduf2228HADz66KOxjPvonXfeGeXLLrssyj4J2nvvyprkXH+HHnrofN17UyKfICGEEEKUEk2ChBBCCFFKZA4TQjSISZMqi3ezCvyJJ56IMpslNtxwQwAVJ1og8XNw2FeIfQ9WW201AMCHH34Yy9gsc/TRR0f5wAMPBACssMIKsUzmkIQiExE7u5544okAgEceeSSWsdMyOyp369YtynvssQcAYMyYMbHsrbfeijLXlzvIA8CTTz4JIOtfxr5hTz31VJTPPTdZbJzb2gsvvJArq87rhp8x+25x+bLLLhtlr4dtttkmlp1yyilRXnrppaPMDvN+nJsygUobA4A5c+ZE+fe/b4qlBRuPNEFCCCGEKCXNpgli5yqO2GgI77zzTq2yHj16RPnbb7+NMjtr8ozUHew4emHVVVdt1P0IUWauvfZaAMDf/va3WMYh0Bwavfjii0fZNQrvv/9+LPvoo4+ivPDCC0eZtUXe11kLwRFE7JT54IPJQuQ77rhjLDvuuOOiXGaH2aLfy1Fejz32GIBsNCvXy7bbbhtldnbu2rUrgOL6HD58eJR5vP74448BZLU47CzP9ezvAW4H7GR//PHHR9m1RiIfjsbzOgCAddddN8pcT+4wzf2H+zaXX3TRRVH2cPmVV145lrkzPFAZSwBpgoQQQgghWgVNgoQQQghRSprNHFbNBMa5Bk499dQoswmMTVyuSr/pppti2eDBg6N8zz33RPnYY4+NsjvxcX4RT8IGZFX7xxxzTJ33LESZueqqqwBkzRJFGYHZJOLmMDZheLI8AJgwoZLTbOutt46yJ2L79NNPYxmr4tk07g7RrO4/7LDDco8rM5wbZsqUKVG+/vrrAWQdWXv16hXl6dOnR5nNTz5Gs/M6t4/DDz88yptttlmU11xzTQDAFltsEcvYjYHbgTvRs7M0vxv4XdLQRJ5lw82eQNaUNXPmzCjzu3vttdcGAHTp0iWWcV3zvtxefCyYOnVqLOO6YbO3t0NuNy2JNEFCCCGEKCWaBAkhhBCilLRIniDO/dG7d28A2TVlOF8FL8THKmyPHPjjH/8Yyy688MIoc9p2Vru6Sp1zXrAanc/3hz/8AUA2D0prqejKSFOscfTiiy9Gea211oryoosuWusaSrdfnWeeeSbKntuDo8BYjc7Pm/ubq8FZpc59m/s85x1xVTsvzOiLqgLA559/HmU3pbAZzlP+A9klIMrMu+++G+XnnnsuyquvvjqA7DjK0Xxs6mQzk7sQ8HnvvvvuKHNb4fN98MEHACprjwHFC+X+6le/qnVvbGbh++HfxKY2kfD4449HmSPwpk2bFmXO7eT9is2ovJ3HSq4T77tscuWIcTaNvfLKKwBkDhNCCCGEaFE0CRJCCCFEKWkSc5ibEorMCLvsskuUV1llFQBZtTcnZ+LU6qxSd7Uqq1f32muvKHO6fD63q+DcHAJkPdo5mZMnj2JzGavwGJlPmo5q7acarKo/6aSTovzvf/87yl7/RddQHebD5gXvp2y+5sgtVpmzWcpl3s7PmyPMODrUy7mPssrcTSoM98vXX389/0eVGHYhYLP/JZdcAgDo06dPLONEh+utt16U+RnfcMMNALKmUDZ1sisEm8zcLWKHHXaIZR4xBgALLbRQlEePHg0gG1HEyf14PGc3C1EbjoxmM/QSSywRZY7Sc5Mz9/nOnTtHmd/d48ePj7KPybw8DvfzN998M8q+3A4nOm1JpAkSQgghRClpsCYo76s97yuaF7vjlOrugMdOVAxrdPjL0Wf7rNHZZJNNoswzUtYgLbPMMgCyGqaiWa8vp8EOfH/5y1+ifNppp0VZmoP6UeTs3JDjqj3rE044Icqexh8AzjvvvCifc845ALLtp+je8sqrtfeOCufzcQdU/v3en4HsFzn3N18g1RdEBbJf9ZwnyDXFfB3+CuV+ztoCd/JkLQQ7e4oEfpas8XbnVM4TxEtlsIMra/bPP/98ANm6P/TQQ6PMmqC99947yi+99BIAoF+/frGMZdZIuSZo7NixsYw1DDxe8z3ztcuO13vPnj1jGfdBHkP/9Kc/RdmDGdj5nN/d3B95XPD2wm2F8wh5/QNZrVBrIE2QEEIIIUqJJkFCCCGEKCUNNoe5yquaueLkk0+OspukgIqjFZu9WKXGTq7sSOVmjDwTGZB1YGbnac9HwKpz3pfVg34NvrfTTz89yieeeGKU2fFzfh17OzL1eSb+/Bqaw8dXImazB6vRn3322Sh7rhk2hxU5vSvdfgV2Pvb+yPl5uO9yDh/uH4sssgiAbD1x6n3um56LCKgEOOStPg5k8wd5nfG+fK4yM2PGjCjzmMrjsjsUc//g7RtssEGU2ay55ZZbAsiap9hNYcyYMVF2J2oAuPHGGwFk8wSxUzNf252n33rrrVj26KOPRpn7KzvRiwpuwmJzKL9r2VR57rnnRjlvyRt2N+GxmduO1wmb3DzXH5DNE8R9tjWQJkgIIYQQpUSTICGEEEKUkkbnCcozUYwcOTKWsUmK8/a4Kp1VZ6wyY9U4q9Q9HwmXFZla+N5c1cbn5eM4iiXvuhxB8Zvf/CbKV199ddX7EA2DnyObqtjs+fLLL0f51FNPBQAccMABsYyjgzbaaKMoc04Mpz5mr3HjxgHIRjZw2+7osPnJVdi8VMayyy4bZVaTs2nDI444TT8/Qzavsbrej3NzGpDtm6xS9/FB5rDasOmIxzOOkvXnzv2LTVycl4fHUncX4DHXI80A4LDDDosym+WuuOIKAMB9990Xy9i8ecstt0TZxwU2rQ0YMCDK3JZ4rPA8SPyby4r3Te4fHAnI72h+N3MeMKfIDYXLvT2xe8LGG2+ce9z06dPr+SuaB2mChBBCCFFKNAkSQgghRClptDmMVV+Or/YLZKMQ2Avd1W5cxuo3VrVzkkVWiTus7vbV4oGsutbVcqyK53vjSDBXD7Kanbc/9thjUWYTnieDK1INlpnGrtrOz4/TsXMUw+677w4gm8adkyU+9NBDUe7WrRsA4IgjjohlvgI2kE0nz2YdX06A1fNlgp+F91NWqbMpgts/mxo9opP7OZvL3nvvvdxy748cmcLJTbndeGQa933ux/w72AxUBryfAFnzv0doARXTEUd28artnDSWV4l/8MEHAWQjvziSjNsHm+W8rXBEIUeEXXnllVEeMWIEgEokGgBsuummUealVLj+WS473ge5H+S9U4GsCYzfm3nwOM193sf39ddfP5atvfbaUea+6+9xNs8V3VtzoDe1EEIIIUqJJkFCCCGEKCVNsnaYm6I4yoNVm5kL5iRc46gBVpmxytNVbbyy8aBBg2rdA5CNWPG1T3h1ak66xSsbu9qd741V+GwGOOqoo6J8zTXXAJAJLI+GmMAYjkraeuuto/zTn/40yh4JxiYUjkzhVbJ9XaKbbroplp199tlR5lWwuQ32798fQNaEWiZ4/SV/hmzC4D7B5ieO8vLjeI0njtjhBHcc/eV9j+uR+6abobmc64nNITw+lM0cxqYFjtZi2c0k/GwGDx4cZS4fNmxYlH08ZpPlAw88EOUi14I11lgDQNbkdvHFF0eZTeCvvvoqAODJJ5+s/eNEvchLlrj99tvn7stJTb3OeOyuz3vOx/eiNULZ9OUyjzW8hmBzo7e2EEIIIUpJo5fNYG6++WYA2dkif9Hl5f5gZ1b+WvCV3IFsXgH/UuHVZ1lLwzlheEbpztX8hcg5EfhL1u+f740dw1jj4Es2AMDll18OIH8pjY4C/56ir4I8LWG1PBJA5RnzVz5/he66665R5i9Sz2PCuU047wjn9vE6ZSdKrs/u3btHmZcFcKdd/jrir96ODuddcg0Q99fevXtHmZfC4MAH74/cLjiwgI/jvulth/s59zHOK+PaJNYqc9vj5XZEbfK0Yx5MAGQ1sPvuu2+UvZ7/97//xTJeOZz7/B577BHlUaNGAcjW17333hvloUOHRtm1sUVwPedpnqWhz2phHR5jGX4nulWF+1oRPKb7GOmBJQDw29/+NspcJ35uaYKEEEIIIVoQTYKEEEIIUUqaxNvzrLPOAlCc3p7NJ3lLFfCSBuwEyQ52fj52ymQV38SJE6PM6jxPyc3qN841wvec51zJKj7+TWxWcQfbU045JZZ1tKU0+PcU/bZqv5nV1mxm9DrdbrvtYtlmm20WZU69zs6VnnfE84jU3M5tzc2peWn1gazplU1AnrfqqaeeimWcq6gjwn2M83a5WYrNU2zC5LxdnB/G+2PRMiXcLtjU5ufm+ijqm25WYbU950RhR3t31C471QIVOMeLm68AYPPNN4+yL13D7gG8L7s38Hjt1+a8RbfeemuU2end21uRab1obOpoY/D8MGHCBADZOmcXAHdpAbLPzYMLOLCA+zHvy/3Rz82uCn4PQHZ892AWHmO32GKL6j+qiZAmSAghhBClRJMgIYQQQpSSRpvDpkyZEmVXsXHUTFHqbVdRs9qaVZts2mBVm6tEWc3+xhtvRJnVdRzd5XJRxBKr8Fzm44tU/6xKPO200wBkzWHtEa/HamryakthcH0WRWaMHTs2ykOGDAGQVZ2vt956UV5ppZWizMtXuNqdIwk4KonbmC+nwctjcHr/bbfdNsqstnfTCbeZjg6bjnglca9ffsZsWuZyjrzzfF6s7mbYHM6mODeDcp8fN25clDmiyVXtPXv2jGV5kYuiQjVzEedT4+gvj4YFgOOOOw5A1lWA2wEvicL5hTwSyPO4AVkzG5uqvY0V3W9D8o+VFTdL8TjG7/Drrrsuyvwe96jKxkbY8fvzggsuiDJHgrmJ+4UXXmjUNeYXaYKEEEIIUUo0CRJCCCFEKWm0OezCCy+Msqsg88xXQNbk5OpPVnuzWpuP42gTV3nydk6slhdtBFSiTVhFyxEmvG+eyYNNKqzyZdmTivHqyrxyc3shrx7r2q8+5azW/tvf/hZlXlHal0dhEyMvq3DnnXdG+dlnn42yL2/BifA42o/V5G7iYjMNm8DYzMJRDN4m+B44WVxHhE3ZeWYkjuDi5831zxGar7/+OoBsVAlvz+uvQMUsx0vwsGnMTZwM91eO4GQTn6gfXJ+8ujw/YzdVcT9n09nRRx8d5QEDBkTZ3wM8bvPyOP/973+j7C4UjY1KFcBjjz0GIPu82YXkjDPOiLIvaQJUxr+GmsPcdYQTbt51111R5gSprY00QUIIIYQoJZoECSGEEKKUNNocdv3110fZIzJYdc4msDx1JavG2TzF+7LqzpNqsYmMV4nm4/jcvg+r2YtMdW4yK7ofNoGx6czNeUceeWQsa4/mMIfV3f47+ZmyzGZGj7zi6JExY8ZEmZMe7rPPPlF20wi3H159mM/B5ixfh45VtWzK4bbiq8SzWp/XA+PjuF2tueaaALLJ4DiBYEeETVW8mrf38yLTMh/HbSQvuodXkea+ySYuV9ez2p7rmhNjenI9Nq198MEHUS5TdF9T8etf/zrKbJLkNb54LUfnvPPOi3JeHwQqEYG+NhWQjcrkPuhmsqJkiYoOqw6/Sx2O7CxKaNyQfpNnOufoPzeLA9mxgseQ1kCaICGEEEKUkgZNwb7++uvo0JSXhp5nmzy7y/tyLHJO5n1Z8+JfiOwEy1+TDGt3/Nz85cBfJ6wVcg0If42+8847UWZnXb5P1wTx14vfZ3v5Av3mm29i7gb+nb5ERJGGjvM9+OyeVxbfaaedosz5l7ju8r7euL422mijKHMadtfIsOaKr73DDjtE2bUG3DaKtAr8derO2m3py6W54badV+/8+9kJdp111oky913X6vGXIi+Fwdfj+vH+VLQUArcFP477G+c7YW2TqB9PPvlklFkzu9dee0XZnc9Z+8P522666aYo87I4nn+KcxFxHXHOoBtuuAFAdhV6HqOVA6o6/mxZy8Pvtl69ekU5b0mSIsfooveb7891ypYAfm/4mM37Fi2x0xxIEySEEEKIUqJJkBBCCCFKSYP0+nPmzMHw4cMBVHK0AJVcIWzWKsLVXKxSZ3Ummzby8gvx6sKsMuNzsIrOy4scOFkV7+rB/fffP5YdcMABUR46dGiUOceMX4NzH9x3330Asqskt2W++uqr6Ji4zTbbxHJXd7OqkuWBAwdGmevGYadWNkOyucRVrlwvXIe8hMa6664bZXfsK1rmhJ+9O/gWXYPbB68+7m266BodEe4TjPdNNodynqCJEydGmVdq937KJnTO98PnYPPIyiuvDCDrXMn1x6bxHXfcEQBwzTXXxDJWv/OSN2WmIU7EHJAwffr0KHOOr7POOgtAts3w0jacJ4Ydcb1fjRw5MpZx3jfe1/PWNHbpBpFf1/y+4jE97znnLY9UF3kBNXxeNofXdY8tgVqVEEIIIUqJJkFCCCGEKCUNMofNnTs3LlvA3t1u2mAV14wZM6LMUVOuUmd1OKvMilYjdtU3b2e1PKvz8sxhrA7nc/C9uYe8q3iBrEnl9NNPjzJHxfh9cDTSLrvsAgD461//ivbAvHnzYrQN142buDhPCKs1+bl6nbNJk81MbEbKU69yfbIplJexYJW5n4Pz9nh6eCBrOunfv3/mWkCxiY/bj7dNbicdPTqMzZZ5+Vi4n3MkHdcfmzO8HjgdP9daAEbYAAAgAElEQVR/0bP1OuG64ePYTJa3nc1lfA1RPzjajyPx2CTtpjGOKPUcQEC277766qtR3mCDDQBkl8rhtsT93N8DRdHAjHIG1R9+DzLc573vNXTMy4sO4+tV67stiTRBQgghhCglmgQJIYQQopQ0SMfVo0ePuNqsp9AHgKeffhpA1hRx7LHHRpkjiDzCilcM5ggiVmfmJVTkyB1efb4omZ+bNlgVx+r+PDVfkerv3XffjTIv++ArJfOSDE57iWj45ptv4krQnN7c1Zlc36uuumqUeRkLjwQpWj6FVaNs6nRzCZvRONJw9uzZUWb1urc7Pu6nP/1plPnZuyqd65aP4+gvTrKXZ6rr6Gp2rjPuN24a5CVGOLKLE9jxs/dnx9FjvMI7X4/N6H4+jjrktsXm1QceeABA1pTLKneu6zLTkLb70UcfRZldFlZbbbUoX3zxxQCypkdePsiX0gGAX/7yl1H2sZT7NtctjyuPP/44gGwfLaKj982mZLPNNotykWtJtUixIvw4di3gsSJvGY/Won28oYUQQgghmpgGaYI6deoUZ+h//vOfa23nWT1/vf3jH/+Iss8yWYvDmqCi9Pb+RcozyKJ8JnmzVz4vawN4durn+9nPfpZ7Xua2226ruk97okePHjjnnHMAZLUpp556KoBsTgl2kuRn6c6RXLesSWDHRv769/ovyqnE9ck5jM4//3wAwEorrZS779ixY6O87777Asgu4shtgr9C85z669PuOgrcj7nOvJ7yHMeBbP2xo6xrYXg7txt2us8LYOBz5S2JA1TqLM+hFpCGII9qTsS+tAWQzZ3G9eGL1PI4uuWWW0aZNbcXXXRRlC+88MLM8UAlLxQADBo0KMre94o0Qarb6uQ9I14qg9/XeZqg+uQGyrsGH8fjcVtCmiAhhBBClBJNgoQQQghRShqc8MTVW3mqr7xlE4Bsvgk/nh3p2IGR1ap5TrVFeV7ycgNVu9+a5a52LVoWodqK8EWrXbc3Bg8eHOX7778fQPa3uwM1kDWN/ec//wEAjBo1KpZNmzYtyly3nB/En/dPfvKTWLbbbrtFmdXkDYHNZJ4niM0t7ETLppM8E88WW2wRy4rya3QU2CGWlz1w0xj3czY/sszP04/j5819jMcCrh8PqGAn2SlTpkSZ68nviXPNsPmtJVelbi9UG6O4H7M5/LDDDovyn/70JwDZYJNx48ZF+cc//nGUuQ+5OZSX5vjXv/4V5RNPPDHKW221FYDssiuNHRNEPjy+5/VpfhfXJ9jH2xa/o/OWymgLSBMkhBBCiFKiSZAQQgghSkmDzWF1eYAXRY2wGtT3ZZMKq8BZjc4ROa4+5fOyXKTa9X1Yncf7sore1ee8/AXTUcxd1chTjbIKlKMKWGYTVnNRFD3ocJvgaJJbb7212e6po1H0jP3ZFuWBYrM2R395vp/XXnstlg0YMCDK3Oc5n4+bWHiJHm6becue8GrnbH7lfi4SqkWHcb289NJLUeZoPs8fds8998QyNhevt956UealhtyMznXIeaaeeOKJKL/44osAgEsvvTSWsTmsPpFLom64zrhPV3MBKSJv2Qx3SWhrSBMkhBBCiFKiSZAQQgghSkmTLIftqtT6RGAcf/zxALKJk3hJBla/FckOq86LolT8noqW1eDVpT3h2rbbblv1dzDVItDaG215qQ9F+TQ/vKTN5ZdfHmXvN5zclM2hHPHFphQvZzMKR4r4silAtg+5OYyP48g0jkjaaaedAGRXKmczGo8xIqGaOYwj7XhJIF4248wzzwSQNTdyH73hhhuizOZpT4bIbalPnz5RPumkk6LsSVHV9xtP3juK36ncXxsy/heZIt0MxnXGyU3bEm33bSeEEEII0YxoEiSEEEKIUtIk5rCG4OtTtUfqk3BRiPYOm4gZj8j5+c9/HssOOeSQKHOySzaPePQnm6EfffTRKHNCRl77y6O7eK0qTpbIifZuueUWAMB+++0Xy6ZOnRrlTz75JPc3iSxs3ihqB7x+nyckve6662IZrzfHEUG8pphHD9599921ygDgjjvuqHU9XsuM0fg7//CzL1pRPq+Mo8rY9OURZkqWKIQQQgjRRmlxTZAQom3DuXY4Z8jIkSMBACNGjIhlrPFhLczaa68dZdfo8BIqfA3WFnCuGNfkPPTQQ7GMnWtvu+22WvfO+aDYgXf8+PG19i07eRoUdpZlx/M33ngjygcddFCUjznmGABZ7dDhhx8eZXac5xXlXbvHdcjL9fC+7rR744031vl7RMMocoCeOHFilF1DxFrVIk0RjxW+LBJrBTkfYFtCmiAhhBBClBJNgoQQQghRSmQOE0Jk2HPPPaO86aabRpnz9Tj77rtvlDm/FpsufAVyXon8gw8+iPIqq6ySew3P28XmF88vUwSvHM+q+BVWWKHO48oIm8PcIZqdW3kpDIbNGn4ONqMNHDgwyuwMy2YUXxH+jDPOiGWcl6ghuWrkGF2das+T+6svaQJUzGFsIps7d26Uub24CQyo9Ld+/frFMjZP59Fa9ShNkBBCCCFKiSZBQgghhCgl1pAVeM1sOoAJVXcUTJ8QwnKtfRPVUN02GtVvx6bN16/qttG0+boFVL/zQb3qt0GTICGEEEKIjoLMYUIIIYQoJZoECSGEEKKUaBIkhBBCiFKiSZAQQgghSokmQUIIIYQoJZoECSGEEKKUaBIkhBBCiFKiSZAQQgghSokmQUIIIYQoJZoECSGEEKKUaBIkhBBCiFKiSZAQQgghSokmQUIIIYQoJZoECSGEEKKUaBIkhBBCiFKiSZAQQgghSokmQUIIIYQoJZoECSGEEKKUaBIkhBBCiFKiSZAQQgghSokmQUIIIYQoJZoECSGEEKKUaBIkhGizmFkws3712K9vum+nlrgvIUTHoM1OgszsZ2Y2yszmmtkUM3vIzDafz3MON7NfNNU9isaj+m3fmNnmZvacmc02s0/M7FkzG9za9yWaH/Xdjo2ZjTezL9L6/dTMHjCzXq19X81Fm5wEmdkxAC4CcBaAbgB6A7gMwE9a875E06D6bd+Y2RIA7gdwKYBlAPQAcCqAr1rzvkTzo75bGnYNIXQBsCKAj5H09Y5JCKFN/QFYEsBcAHsXbF8YSSecnP5dBGDhdNvSSAbn6QA+TeWe6bYzAXwH4Mv0/H9v7d9axj/Vb/v/AzAIwKyCbasAeALATAAzANwEYCnaPh7AHwC8BmA2gFsBdKbtxwKYktb9zwEEAP3SbTsDeBnAZwA+AnAKHdc33bdTaz+fjvqnvluOv7SPbkf/3wnA26lc2AfT7QcBmJD2/z/XPFdb/GuLmqBNAHQGcFfB9hMBbAxgIIB1AWwI4KR02w8AXAOgD5IvlC8A/B0AQggnAngGwOEhhC4hhMOb6weIOlH9tn/eBvCdmV1nZjua2dK0zQCcDaA7gP4AegE4pcbx+wD4MYCVAKwDYCgAmNmPkUyQtgewKoDtahz3OZJBdikkg/FhZrZ7k/0qUQ313ZJhZosC2BfA82lRYR80swFItIJDkGiQlkSiJW7TtMVJ0LIAZoQQvi3YPgTAaSGEaSGE6UjU8AcCQAhhZgjhPyGEeSGEOUi+MLZqkbsW9UX1284JIXwGYHMkmperAEw3s3vNrFsI4d0QwqMhhK/S+rsAtevokhDC5BDCJwDuQ/LSBJLJ0TUhhDdCCJ+jxuQphDA8hPB6COH7EMJrAIblnFs0H+q75eFuM5uFRFu7PYC/AlX74F4A7gshjAghfA3gL0jGiDZNW5wEzQTQtY4oj+5I1G3OhLQMZraomV1hZhPM7DMATwNYyswWaNY7Fg1B9dsBCCGMDSEMDSH0BLAWkjq6yMy6mdktZjYpraMbAXStcfhUkucB6JLK3ZGo2B1uBzCzjczsSTObbmazAfw659yi+VDfLQ+7hxCWQqL5OxzAU2a2QpU+mOm/IYR5SNpMm6YtToJGInGwLFJzT0aiUnV6p2UA8HsAqwPYKISwBIAt03JL/23zs9ISoPrtYIQQxgG4Fslk6Cwk9bB2WkcHoFI/1ZiCxHzm9K6x/WYA9wLoFUJYEsDlDTi3mH/Ud0tGCOG7EMKdSHy2NkfdfXAKgJ5+rJktgkR72KZpc5OgEMJsJGq0f5jZ7ukXxIKp78F5SNRvJ5nZcmbWNd33xvTwxZHYmmeZ2TIATq5x+o8BrNwyv0Tkofpt/5jZGmb2ezPrmf6/F4D9kfgNLI7EuXW2mfVA4uhcX24DMNTMBqS+CDXrd3EAn4QQvjSzDQH8bH5/i6g/6rvlwxJ+gsSxfSzq7oN3ANjVzDY1s4WQmLPb/kdKa3tmF/0hsS+PQuKINRXAAwA2RaKeuwTJrHNKKndOj+kOYDiSQfhtAL8CRYwgcex7G0l0wiWt/RvL/Kf6bb9/SJwdbwMwKa2/SQCuALAEgDUBjE7r6BUkGoCJdOx4ZCNPTgFwI/3/hLQ95EWH7YXExDIHSXTR3/1YKDqsJetffbcD/6V99Iu0ruYAeAPAkHRbYR9Mtw8F8CEq0WGTAGzR2r+prj9Lb1wIIYQQokkwsy4AZgFYNYTwQWvfTxFtzhwmhBBCiPaHme2amkkXA3A+gNeRaJbaLJoECSGEEKIp+AkqyTJXBbBfaOPmJpnDhBBCCFFKpAkSQgghRCkpSnqVS9euXUPfvn2b6VZaH9eKmTVdVN/48eMxY8aMNh8m2BbqduLEiVFmDWWnTpVm+uWXX0Z5kUUWAQAsv/zysewHP2jZef3o0aNnhBCWa9GLNoK2UL/tkfZQvy1dt199VVknd9y4cQCABRdcMJZ99913Ueax9Pvvv49y795JCqilllqq2e6zGu2hboG23XenTq3kPV122UpKIG4PrUV967dBk6C+ffti1KhRhduLGn+eya3adiD7QmvKiQlfj2XvpEUv0qL7XGCB4qSngwYNaswttjjV6rYl+MMf/hBlHjC5c7311ltR7t+/PwDgd7/7XSxbdNFFm/MWa2FmE6rv1fq0hfptj7SH+m2KuvX+xuNs0Zj77rvvRnmLLbYAAKywwgqx7JNPPonywgsvHOV58+ZF+fzzzwcA7L57/Zd+4zGhKT522kPdAq3bd6spBs4555woH3zwwVFeccUVM8fXdY7mor71K3OYEEIIIUpJgzRB1SjS7uSVf/ttZQ0+Vp0VzRb9K2K11VaLZUOGDIkyf4m89tprUfavkrvvvjv3Giz718U333xTq6wmLT2rba/U50vA65+fdZcuXaL86aef1toXABZffHEAwJ/+9KfcfVnVXk3LJ0TZ4L7ZkH7x4x//OMrLLLMMAOCXv/xlLBs9enSUBwwYEOVZs2ZFec899wQAfPBBJX1Mnz684kZt1HdbHh832drx3HPPRXmttdaK8uzZs6PsddWtW7da5+LtbYG2cydCCCGEEC2IJkFCCCGEKCVNag6rD66CXWihhXK3z5kzJ8oPPvhglJ9++mkAwN577x3LnnjiiSjPnDkzymwy23TTTQEAhx9+eCwbOHBglPfff/8ouwmmyLOd1XnKr1Q/ikxgl112Wa2ytddeO8pu6gKArl27RpkjyDp37gwAeOWVV2LZL37xiyjfcccdUW5L6lch2gLcN909wcdZALj//vujfNVVV0WZTVx+DjZD8/jL43n37t2jvMYaawAAttpqq1i29NJL515jlVVWAQAcf/zxsWyxxRaLcms633Z08sbN22+/PcoXXnhhlEeMGBHlm2++GQBw2mmnxTKZw4QQQggh2hAtogniGaDnfOF8L+xo9cILL0T5ww8/jHKPHj0AZB2gWZvEXyL+5QBUQqbZ0dZzWwDA5ZdfHmX/GmLtEDvr8eyVf5Mo5u23347yscceG+V33nknyv71xk6S/Hz5C5Lr2eE8Qu+9916U2YHz2muvBZBtP0KUmXvuuSfKJ598MoCs5ob7Feep4VQorvU56aSTYtl6660XZQ6RnzChErHsfZo1vpx/iLW7w4cPB5ANbhkzZkzufbZVbUN7Iu8ZTpkyJZbxeMysueaaUb7vvvtqba8rlUxrolYihBBCiFKiSZAQQgghSkmTmsOKnIVZXekcd9xxUWZHOs80CWRVpTvvvDMA4LHHHss9bpNNNonyXXfdFWU3f3DOGL4fd64FKo55F1xwQSw74ogjotyvX78oyzG6fnAW0UmTJkWZl7ro2bMnAGDatGmxjJ3T2QTG6nXP59SrV69Yxk7U77//fpQPPPBAAMCjjz7aiF8hRMeDx7mvv/4aQNb872VAtj/OnTs3ym4m4cz47HrA+3Lmdze58DXYvYGv58exOe3SSy+N8tFHHx1lOUY3Dzxu7rfffrn7sGP7Z599Vmt7ffIItgbSBAkhhBCilGgSJIQQQohS0mzLZhRFT/33v/+tVcYqUV4gc9ttt42yRw5wBAGrWl999dXc63kkA0cFff7557nH+arkHCFx3nnnRfnKK6/MvYbIwpFfLPvK0UA2UsAjT1ZaaaVYxnmfuM7ZrOlq8qL8TWwme/PNNwFk63vdddetz88RosPAYyYvdLryyisDyEbk+ngIZPsguxP4+MrnGjx4cJSff/75KOeZQ9gExkspcWTXF198AQBYcsklY5n355q0tmmlI5AXVcfv5YMOOijKRWYtf9++/vrrsYzzwMkcJoQQQgjRymgSJIQQQohS0mzJEvMiwgDg4osvBpCNIGA1KEcNjRw5Mspjx44FkE3UxEsosOqWIwumT58OAHj88cdjGSdq9NXpgYoqmCOQ8pLzAW038VNb4D//+U+U+fmyKp6fn6tDfUVqIBtJwnXA0XzcbhxO5MbRZm4yu+2222KZzGGibPCYyn3T+yP3HzYz50Vl8j7LLbdcLHvppZeizKYVlr3vFvVnvp6b4jhaeNSoUVHm8ZzPJ+pPUZLJjz76qM7jisxaG264IQDgf//7Xyxjcxi3s9ZOailNkBBCCCFKSYvkCWLcwYpzO7CjMueCYK2Qa4A222yzWMY5g959990osxO0L9DHDrrPPvtslH1ZDaCiqVh99dVjGaf/dgc9IKt5ElluvfXWKPPzZefKvDxArD3k7fyll7e4LX/FcFtiDZIvuHjLLbfEsjPPPLPaTxGiQ/HII4/klk+ePBlA1lE5T3MD5Gv5uW8X9Xnup94fWavE1+N+7svpsMM1a7HYSXqDDTaodW+i8fiz5SUx6oPn8Bs2bFju9rZkSZEmSAghhBClRJMgIYQQQpSSFjGH8XIJvqwB5wZih1hm6623jvIdd9wBoOIgDQCzZs2K8qqrrhplNn25YzQ7yfIqx6za9dWKOeW3Hw9kV7jnexNZOKeEL4kBZB2jWfXt7Wb27NmxrMhxPi9fCdchtwl2vnPTKuctEaJssHmCHVXd5Mx5gtitgPsSy27W4PGcl97gsT/P2Zn7Mzs+s+uBH8djAp+L+7TMYY2jyDnZndwPPfTQ3O1FOX569OgBIOveUnQ9H/9bK1+QNEFCCCGEKCWaBAkhhBCilDTbshnMmDFjouwmEc4ls/7660eZo64434Qf161bt9zrjR8/PsocceD7sEll9OjRUWavd8+JwOY0jnTgnAcyh9XG1eSsyuY64igvrue8HCUcPcCRIix7ThA2X3J0GJvf+NoOH7fEEkvk/yghOhDsesD9zZejYbcBXj6Il6vhKC83Z/GYy24RfA0u9/7IZi02kbBZ203qvrQHAIwbNy7KDz30UJR/+9vfQtSP+ixd4VHX/N6tDz428xjMbYTHcZnDhBBCCCFaAU2ChBBCCFFKmm3ZDOa9996LsptBuIxNH2uttVaUH3300Sh7ksQf/vCHsey1116L8pNPPhnlAQMGRNmXRpgyZUos44R5bLpxFR2bTthM4gnFRD5sinJYxc3bWb3upsq844Fs++C6cZm3e/RhzX3z0umzCXWdddbJvbaoP9WSpRapu5944okor7HGGlHmJXKai9ZWxbcEvMI7myd4VXaPzOJkiRy5xVGyPCb6cXyNfv36RXnmzJm59+ERnWwOYzMbR5t5ZCcf37t37ygXrShfdvh5VoPbP7t9cELiPKqZ1NgNhSO788ZbPhffe3MnVpQmSAghhBClRJMgIYQQQpSSFokOe//996PsJic2k7CabO+9946yry8DVCIVePVgNk/xOmNsVnF5xowZsYzVwLvvvnuUfU2x5557LpZxFBP/DlEbXqvLKVJrcmSW1webrFhNzlEqnDDN64YjSVhlztEIvi8fz4ncZA6rP0Vmr2omJU6iycnXNt544yiffvrpUb7tttsAZFcobwhPP/10lG+44YYoeyI3ADj33HMBZMcHHnc6AmyS8nW4gGzSWI8aY/NFkWmMTVU+nnPfffvtt6PM5+Pn6n2Tz8VJT/n94GMIn4uvxyY+Ph/ffxlp7OrsvLYmu5Y05ho8jp933nlRvvHGG+s8R0uuLSZNkBBCCCFKSZNqgopmhfxlwHl3HHZO5hw9//d//xdld9DipSvyHPuA7JfBiy++CCDrJMvO1fy1cPXVV9cq469baYLqhlPuO6w14Nk9a4hc5q9Nfu6cU4K/9Pw4/oJcdtllo8waJD+Oz8tfxaJCNU1PfZyIua9ceeWVAIAHHngglj344INRZk3PEUccEWXXFl1zzTWxjB3qH3744Vr7sraAHat32WWXWvsCwB//+EcA2S/WjgZrxtnxnJ2dfVzmfsljNfc7xvMAFeUGYk06L4uTF4SS924AKu8H1jRzfXF7ZI1eSzjWt2W43v39yWMwa805Xx5bQlxzzstf8Dua393cnjz3H2v/2HLDcwKvM743nksMHjw47+c1GdIECSGEEKKUaBIkhBBCiFLSInmC2AHVVxhm9So7sL7++utRnjp1apR9/3nz5sUyVp8VrTruKlhWo7Oa9JVXXomyL5vBqyuzajfP8VdUYPWqU2TiGjRoUJR9Feill146lrEJjM1dLHv9e70BwOabbx5lTvXuKtwVV1wxluWZ70R1cxebmzlXFzs7jhw5MspnnnkmAOCcc86peu2rrroqyjvuuCMAYI899ohlXH8jRoyIspvGzz///Fj2ox/9qOr1ygCPo2wO4yU0fBkKHjt5XC5yVHUzGOcO4qAHPgebOLwfc1tjNwTu534ONotw3X/88cdR5jG67OYwNg2effbZAPJzPAHZ3Hm+VAZQefZDhw6NZWzW9Dx8QLYefGkqdllh94Ojjjoqyt6G2H3B5wkAcNNNN+X8uqZDmiAhhBBClBJNgoQQQghRSlrEHMZquVVWWQVAVg3KprH+/ftHmU1jzzzzDIDssghsGuNzsMe6q9g4CoHzIHCUgavuWG3L6uGWzF3QHmE1qcMRCmye4FwtrtpmExjXYZGa3GU2hbJKlVXxbsLh9sMRD2UgL+qrmumLVeMnnngigKyp69hjj42y59wBsqr2+t5Lzfu54447AGTz2XB0KEejVMvtU3Q9N3dz3+5oS2iwmZojdFZaaaUo+/jJ5n82ZbCpI88kzWMxm9nqYxpzeIzmcdnNeR7py2UAsPrqq0eZc4aVHc6d5xGYefmXgKwrAo/T3na4PvgdzdG43EY8+ov71XbbbRdl7sfe9vjeNtpoozp+WdMiTZAQQgghSokmQUIIIYQoJc1mDmMzUl5qdI4aYtPITjvtFGVeRd6jfrbeeutYdskll0SZ1bh8PVf5sgqPz8vLdLgal1W7nJ69o6nJmxpWfTusUmdVNUd0eUI1fu6sfmUzGZs1/HqcZI2jQ1j97uYSVvuy+rYMNKb9brXVVlG+9dZbM/829714nb388suxbK211oryXnvtFeWHHnqoUddj005HhU1HbALh/ugmZzZJscz9Ls88zc83L0oUyPZTH//5+fM7g8/hx7FphSO/OHlf3hhUVngMdbM29x92I+jZs2eU+dl7NBmbOIvGW65Lj+6aMmVK7r4cge3L27D7y+9+97s6flnTIk2QEEIIIUqJJkFCCCGEKCXNpgvmqCA2VblKk8sGDhwYZVbRsbf4yiuvDCCrzmUVLKv+2Aziq4NzhAmr3TiayE1tnrwPyKqE+byiNlw3DkdjsVmDTZaeyLKobtl0yu3D1a98Lm5XHD3k6vy8eywD3377bXwebAZ0E0Tv3r1j2RtvvBFljhRxk3R9InDYdJEXmVWUlI/7vNclJ7085phjonzkkUdG2c3ovFo8r09UtB5g3j3wOkodAe4H/BzYPOGmRzaLFNUzPz+vW65vHjO5v3K51z+P29yPuR342M1jNZu1+RxFprgyws/Q3Tq47nis9GSZQNas5e2Fo0T9nQpkx1Oun169egHItqeJEyfm3pubzl566aVYxuNRcyNNkBBCCCFKSYtognjm6LBzFX95ca4ZdqryFaN5BskpwNmplr923GGSZ5k8I11hhRVq3efw4cNjWdFq5ny9otWPy0aekyl/KfCXB+NfoVz3/NXIztV5ztNFX/ncBt35mrUSfK6OTqdOnWKuEP5ydm0AawvY6fSMM86IMi9V4LCWjuuhsRo31ih4f+N0+xzIcOCBB0bZ0/TfeeedsYy1ENwu8nJNcdvjMaEjMG3atCgXacxdG8tf7o888kiUOecM4/Vc1LcZ3sfzgPEq83xv3DfHjx9f6944x9GoUaOizBpGUcGtLZyfh3NrcZvn/uEaJF/CBsjWzdixY6PM/d/7MY/BnDuMc7R5P+UlXfr27Vv1NzUV0gQJIYQQopRoEiSEEEKIUtJs5jB2vmQ1qJuzOJ8Dm5nGjBkTZTaDbL/99gCyKnlezZph85TnyODVp1ktx0t65DmP8b2x+Y3V5zKHJbBpxGEVNz8nVqnyEhkO52di0wrXgR/H7YAdJlnV7veWl6ukbPAzZLkabXlV7h/+8IeZf0UFNhFxv2Kzh/cxdkLnflnkvJ63lBCPmXxtNpd4OZu9Gb7Pfv36Aci6MfB1+Rr1McuVETd38bPisZmfG+/jZlB2oufxlmU2UXrbYWd3PgeXe54nXtLFTfctgdS8K4YAACAASURBVDRBQgghhCglmgQJIYQQopQ0mzmM1WSs2vToHF4qg5k5c2aUN9xwwyi7SvTVV1+NZRw9xudjVZtf2/MWANlotMcffzzKrpZjT3k227G6r9oq2WUkz7zEZaz6ZpW6twk2X7Eqns2TedFhHOXAx7Fa3nNYFKlkheiosCmL83axSd/7xaBBg2LZX//61yj7+Atk88H4+MqReJxfiPsmm1y8T7OJjM/xv//9r9Y9c64a7rtsOuFoJFHB82jdfffdsYzNXjxu8jvY65rHZnYp4FXk+R3sbijc9vi8XO7tgq/RkkgTJIQQQohSokmQEEIIIUpJs5nDOPkam45c/cmJkZgilairyjgtOqtEWWYziJvlPOEWkFWZcsSBX5vVq2zOYTVgWZdfqAs2ceXBdcSRCX5ckSo7b9kFoNIWOFKEo504QtHPUZQ0T4iOCps6ipLiPfPMMwCy/SNvCRMgPyKsKCkqm1y4H/u5+TiW85Lict9mNwU2kWsV+Xw8ETC7AxSZSfl5eqJSfvYctc0RXfwu9fe1J+Gsed68pZBkDhNCCCGEaEGa7VOYFy9k3FGuKKU9awv4y+DNN9+sdS52tOWvDJ5RuuaJnag5jTx/JXmODP6S4a8lduziczQk10oZYGc5riPW/jD+hcBfmEVLMPCXpWv8+KuCvwS5Hfg5uH0VaZiE6EhwYEpR7h/XmLPWnvsaa2n5OB/78pZMALIaHe57fh9FGiYeNzwghR2jWavAY3RZc39Vw7U3POZxoA9bObiePDcYP2N2jC/KH+RthNsFn4Md5v294IuktzTSBAkhhBCilGgSJIQQQohS0mzmsHHjxkWZVW1uUuIU/KwGZdMY46o2Vq8V5XlhNa6fj8tY5Zu39AY7D7K6j5f0YNUs59AoM67OZLMhq19Z3cn5nnxJE65PVmuzGY3V+a6KZ0d4NlNyPXobfPnll2MZq4OF6Khw/+EcPmzWcPPFNttsk3sc9zE2M3uf5fG1qO+y6cvLi0zS7FDr9/Tkk0/GMg6Q4RXuZQ6rG37vTpo0KcpsnmLcjMbvyTyXhJq4GbRoWRR2IfE641x+LYk0QUIIIYQoJZoECSGEEKKUNJs5LG95A6ASpcVqyw022CDKecspABW1GptDWA3KZjSOhvD8B3wuNrtwlJpfg9PJswp34MCBUV5llVUgsuy1114AspEkbAodPHhwlLlNuHqV2wSbPRk+zvfntsbXe//996PsJrq8HCdCdGTYtMTm4jxTBUfw8HaOCGPTiZvGuM+zuwGfj8d278c8FvP12GznYzjnp2FTHlPkTiEStt566ygPGzYsymye4nfie++9B6D4ncimMa5rr18er3nszTNb9u3bt16/oamRJkgIIYQQpUSTICGEEEKUkmYzh+26665Rvvnmm6Psqs3jjjsulv3yl7+MMi9ZkRf9xWUTJkyIclFiLzeDsIqP1XJsJnMV6w477BDL3njjjSgvvfTSUWaznMjCJilm9OjRUeZn6SpsrqOiKA9WmbvanU1n3A5YhSszmCgr3PbZrMVmqzwuvvjiKF9//fVRzluOhhOa8pjK5inum74/jxW9e/eO8hlnnFHrPvm8M2bMqPPeRf4yJD179oxlPJbyO/Odd96Jsr/nuJ7YHLrMMstEmc/tZlJOXsvvTHZh8Hax6qqrVv9RzYA0QUIIIYQoJZoECSGEEKKUtMjaYaw+dXPY+uuvH8t23nnnKO+2225R5ugvV7uxCpejDTj5HqtNPTkUR4zxdlYDeuTaWmutFctGjhwZ5Y033jjKnuBPVMhbqZ1hdScnO3PY1MlJuFity6YvV6+yup/lPn361DoHt5miVauF6Ejss88+UeaEg2xyZvcE58gjj8yVOTJr+vTpmX+BbLJUNpfweO4mFTatsDk8D45s+u9//xtlTt4os3eFvHF4tdVWizI/e4684ygt36foubJZixMq+urzbAJl8sZsjr5uSTTyCyGEEKKUNJsm6OSTT47yMcccE2VfhoJngmeeeeZ8X2/ddddt1HE8A+aU4s6jjz7a6HsqG9VydPCyGZyvxL9I+auhIY7nPXr0iDJr9jgNe56mRzlFRBngHDDcr9i52DX0TJGDM2vjXW7qFcDzrs252fh+WRNUpHkoI3nPkC0w7LTMGh3OAzR16lQA2fGaj2NHe24jnh+ItU08BrOm3x2xiwJqmhtpgoQQQghRSjQJEkIIIUQpaVJzGDuacgptzgnjMqvqWGZVXDVzBW9nme/D5aLcQHkUOcnyefl6csarHw899FCUWW3t6lU2ZTHsiMnmSycvjT+QTdmeh8xhogysscYaUeacbdzfBgwYUOs47h88ZublBGpoYIGfg6/B58jrm2zKef755xt0PZHArgPsLlD0PnazY79+/WIZv6PZuZ6d4N1Jmp2leV9eFuXwww9v4K9oWqQJEkIIIUQp0SRICCGEEKXEqpmGMjubTQcwoeqOgukTQliu+m6ti+q20ah+OzZtvn5Vt42mzdctoPqdD+pVvw2aBAkhhBBCdBRkDhNCCCFEKdEkSAghhBClRJMgIYQQQpQSTYKEEEIIUUo0CRJCCCFEKdEkSAghhBClRJMgIYQQQpQSTYKEEEIIUUo0CRJCCCFEKdEkSAghhBClRJMgIYQQQpQSTYKEEEIIUUo0CRJCCCFEKdEkSAghhBClRJMgIYQQQpQSTYKEEEIIUUo0CRJCCCFEKdEkSAghhBClRJMgIYQQQpQSTYKEEEIIUUo0CRJCCCFEKWmTkyAzG2FmQwu2rWxmc1v4loQQBZhZMLN+Dd1W5ZxDzWzE/N+daEo0NpcDM+ub9t1O6f+Hm9kvWvu+moMmmwSZ2Vz6+97MvqD/D2mq64QQ3g8hdKlyL7kd1cy2MLOnzaxTWsF9m+q+RMMxs/HUTj41swfMrFdr31dZSQe6T81s4da+l+bCzLY2s4mtfR8ticbmclNjnP3YzK41szrrqUw02SQohNDF/wB8CGBXKrupqa5TF2b2AzOr6zftDODBlrgXUW92TdvMigA+BnBpK99PKUlfOlsACAB2a9WbEU2KxmaByji7PoBBAE5q5fupipkt0BLXaTVzmJktamY3m9lMM5tlZi+aWVfaZSUze87M5pjZw2a2THpcPzMLdJ4RZna6mY0E8DmAYQA2AXB5OvO9iM65E5KO9nT6/zfTfX6anuvXZvZuek93m9mKabl/nRxhZh+Y2QwzO6dKpxYNIITwJYA7AAwAADPb2cxeNrPPzOwjMzuF9zezg8xsQlpXf06/drZrhVvvKBwE4HkA1wI4mDekX47/SDV1c8zsBTNbJe8kZrZ5Wl9b52xb2MzON7MP0y/Sy81skTruyczs72Y228zGmdkPaUN3M7vXzD5J++wva1znIjObnP5dlJYtBuAhAN1JE9K9IQ+pDGhs7riEECYh6QNr1RwzzewUM7ux2jnSCe1J6fg7zcyuN7Ml020PmdnhNfZ/1cz2TOU1zOzRtN++ZWb70H7Xmtk/zexBM/scwDZN9LPrJoTQ5H8AxgPYrso+vwVwN4BFACyAZHbaJd02AsA7AFYFsCiAZwCckW7rl9x2PM+I9Hr9ASwIoFNaNrTG9XoB+DCVOyH54u1L23cAMA3AQACdAVwG4Ika+z8GYGkAfQC8W/Ma+mt8O0nr+ToA16f/3xrA2kgm6usg0RLtnm4bAGAugM0BLATgfADfVGtz+quzLt4F8BsAG6TPshttuxbATAAbpn3hJgC30PaQ9ssfA/gIwIY1t6XyhQDuBbAMgMUB3Afg7IL7GQrgWwBHp/16XwCzASyTbn867aOd0z47HcC26bbTkEzolgewHIDnAJxO7Wpiaz/vVqzn2Ofq2Edjcwf6Q3ac7QXgTQCn12wLAE4BcGMq902fa6f0/8MB/CKVf54+45UBdAFwJ4Ab0m0HAXiWzjkAwCwACwNYDMn48H9pva0HYAaAAem+16Z9fDMk437nlng+rTlb/gZAVyQD5HchhFEhBHaquzqE8E4IYR6A25F0gCL+HUIYG0L4JoTwbcE+OyGZARcxBMC/QgivhEQrcQKArcysJ+1zTgjh0xDCBACXANi/ym8U1bnbzGYhafzbA/grAIQQhocQXg8hfB9CeA3JV+RW6TF7AbgvhDAihPA1gL8g6bCiEZjZ5kheHreFEEYDeA/Az2rsdlcI4cW0f92E2v1xbwBXANgxhPBizjUMwKEAjg4hfBJCmAPgLAD71XFr0wBclPbrWwG8BWBnS/zGNgNwfAjhyxDCKwD+hWQABpK+fFoIYVoIYTqAUwEcWL+nIaCxuSPi4+wIAE8h6XuNZQiAC0LiAzYXwB8B7GeJE/VdAAaaWR/a984QwlcAdgEwPoRwTQjh2xDCywD+g2TscO4JITybjvtfzsc91psWmQSZ2QKWdc7rjmTW9xiA28xsUqrC7ESHTSV5HpIZZxEf1eM2XN1aRHcAE/w/IYTPAHwKoEfBdSakx4j5Y/cQwlJIvvAOB/CUma1gZhuZ2ZNmNt3MZgP4NZKBGUiee6yLdDCe2dI33oE4GMAjIYQZ6f9vRg2TGKr3x6OQTKLeKLjGckg0B6NTE8ssAA+n5UVMCuknYor3ue4AfCLF27yvZvoy1FcL0dhcGnYPISwVQugTQvhNCOGL+ThXXv/qhER7PAfAA6h83OyP5KMJSD60NvL+n44BQwCsQOeqT3tpUlpkEpR+TXShv8khhK9DCKeEEPojMWvsgeSBNOoSdf3fzBZKr/FYwf4AMBlJJfkxiyNRr06ifThyqXd6jGgC0jZyJ4DvkNTVzUhMJ71CCEsCuByApbtPARC/AlO/kmVb9o47Bumz2wfJl/VUM5uKxAS1rpmt24BT7Q1gdzP7XcH2GQC+ALBmOhgvFUJYMtQdTdQj1SA53ucmA1gm7aO8zftqpi8j21elMSQ0Npeaz5F8mDgrFO1Yg7z+9S0SlwUg0drvb2abIPm4fTIt/wjAU9T/l0rb3GF0rhbvn63pGL2tma2VOrB9hkQF+30Tnf5jJPZKZysAo0MInwNJx0eiOeB9hgE4xMzWsSRE+GwAz4QQOJz2ODNbysx6AzgSwK1NdL+lxxJ+gmRwG4vEZ+STEMKXZrYhsuaZOwDsamabpoPoKahMkETD2B3JxHMAErPGQCQ+HM+gYl6qD5MB/BDA78zssJobQwjfA7gKwIVmtjwAmFkPM/tRHedcHsCRZragme2d3teDIYSPkPj5nG1mnc1sHQCHAHCnzmEATjKz5VKH3r/Qto8BLOuOnKI2GptLwytIzFgLmtkgJG4G9WEYgKPNbCVLQu3PAnArmTsfRDJJOi0t97ZzP4DVzOzA9JoLmtlgM+vfdD+p4bSmT1B3JA5VnyFx1HoMydd/U3ARkpnoLDO7APnhlycDuDndZ88QwsNIKu0uJJqG3qj99XMfkobzcrrftU10v2XmPksSrH0G4EwAB4cQ3kTipHuamc1B8hK7zQ9Itx8B4BYkdTUXif/IVy187x2BgwFcE0L4MIQw1f8A/B3AkBpmkDoJIXyIZCJ0guUnVjseiUPl82b2GZI+v3odp3wBiQPuDCRtY68Qgps990fivDkZSV88OYTg2oQzAIwC8BqA1wGMScsQQhiHZBB/P+37MpvURmNzOfgzgFWQmBZPRf3r+N8AbkASnPABgC+RjMcAgNT/504A2/E5U1PZDkhMZZORmFXPReI03WpY1uTeMTGztwHsEkJ4u5HHd0LyNbRSCGF8U96bmH/Sr5FZAFYNIXzQ2vcjhKgfGptFa9PhcymYWWck0QyN6mSibWJmu1qSz2QxJCHyryMJ+RRCtAM0Nou2QIefBKUhtOe29n2IJucnqDjJrgpgv1AGtaYQHQSNzaItUApzmBBCCCFETTq8JkgIIYQQIg9NgoQQQghRSuod/goAXbt2DX379m2mW0n49ttKZvUpU6ZE2c12yy5byYnXuXPnWtsB4IsvKskwZ86snUi4d+/eUf7BD5p3Hjh+/HjMmDGjzeewaYm6rcb331dSkXz88cdR/vrrr6PM9bzQQgsBAFZYoZLjq7nrsyajR4+eEUKoK+txm6At1G97pD3Ur+q2cbSHugVavn55vH3nnXcAAAssUFnQ3cddIPu+Znr0SJJ5L7poJRdjNu9p81Pf+m3QJKhv374YNWpUvfbll1VDfvy0adOifPbZZ0f5m2++AQAccMABsax///61tgPA66+/HuXrr7++1j1cfPHFUV58cU46W5vG/g5n0KBBDT6mNWhI3TYXPHm94IILovzBB5Wod54o9eyZJI0+4YQTYhl3upbAzCZU36v1aQv12x5pD/Wrum0c7aFugca/d5mGvLsmTqzkoNxxxx0BAEsssUQsYyUCKxm+++67KJ9xxhkAgA022CCW8eQpDx7bm+Jjtr7126BJUDXqM2HwSc4///nPWHbNNddEedasWVFeaqmlouwvyCuuuKLqffDsdMklk8SwXIndunWLcp8+lezfRx99NADg0EMPrfo7RNPx5JNJVvXtttsull177bVRPvbYY6PMk93zzz8fALDYYovFsqeeeirKW265Za1rNcUgIURHoCEvHf4gffjhh6N8ww03AMi+GOuDj+dHHXVULOOx/9JLL43y8ssvX+e5mvrl2VHIG9PGjRsX5VtuuSXKzz//fJT79esX5fXWWw8AcPfdd8ey5557Lspsmdl5552jfPvttwOovFMBYPXVK3lRN9lkkygPHToUQNay05KoxQghhBCilGgSJIQQQohS0qA8QYMGDQqNsT0//fTTUT7yyCMBZFWfCy9cWTqkU6d8C52rOdlpi01Z77//fpR5HzeVsMqU4X3nzp0LANhhhx1i2U033ZR7XH0ZNGgQRo0a1eZtLY2t22oUmUg//fTTKP/qV78CANx4442xrJr9mOG2tOeee0aZ627FFVes834ai5mNDiG0ecev5qpfptqznT17dpTdTA0Ab7zxRpQfeeSRKB9zzDG1zvHJJ59EmceNRRZZpNY9sGmEy9lc7g6f7PjJtIf6rVa39Wnz8+bNAwCce24ld+Ell1wSZQ4++PLLL6Psz33llSvrnRb5Wfr4ClTawtSpU2MZm7X5nt977z0AwKmnnhrL8toGkPVL8Tot+v3toW6Bxvddfuf9+9//BgC8/XYlObfXXU2Z34le7126dIll3laArA8mB7P4mFzUrz7//PMoez/de++9Y9n666+f+zsaYu6sb/1KEySEEEKIUtKkjtEMz954Bu+z/QUXXDCWffVVZfFvnsnnhd+xpmjSpElRZs1B3qyWz8uwM5Y7TLPjFzvuXXTRRbnnEMUUfXmeeeaZUT7kkEMAZOsw74sOyHdsZgd61gTxNf7+97/XeT+i+XBn9quvvjqWcb/jr9zhw4dH+eWXXwYAzJkzJ3c7O+Puu+++AIDllqtExD722GNRZk1Fr169orz00ksDAC677LJY5m2lveNjcNHX83XXXRdl7ys8vg4YMCDKrN3h+vD9WSvHmoIiXIPATs98Du7zHtTC4+8TTzwRZXfCBbJjf7Xf39G57777ouwa1MGDB8cyjsbld+1nn30WZdfYsbadg1NYa8TvdNcc5VllgGzf9fbEztmsCWru+itn6xBCCCFE6dEkSAghhBClpNnMYZxLYvz48VF2dTWr1IqcFlkN5jI75TFsSmEVnJtVWL3Kpha+DzfLsXnl8ccfjzKrCTnvkMhS5MjGKlVOsvWjH/2o1jnqcFSNcp5p7PDDD4/yXnvtFWWvO663pnaSFvm4mnzNNdeMZWPGjInyu+++G2Xu/94Pub+ygyab0b1t8b7PPvtslN0xHsgmWb3zzjsBZLPTV8tL05ap5kT6+9//Pso333xzlD2pHR/P5hJ2aman9smTJwMApk+fHsvYpMZ9LK98mWWWyb1frkfvm2ye4+vx+MHvHTe5cZsqCrzpiLAJ0xPLcp1ykAGbsvhd6uMlPzduI0UZo/0dzCYwrl82qea5qnDfZjNpcyBNkBBCCCFKiSZBQgghhCglzaYb5KUwWJXmZgnOL8AmKTaDsOxqN1aNsQmD1XJ8Plfz8blYLZenaivylOf1rE455ZRax4mEItMSL2mRl2afVef1yfdSzYTFZg2PlBgyZEidx4iWYezYsVFmFT3Xz/+3d+bxdk3n//8sMxWERCYZyCCICBVKEmKImQaJSs1Kq+bO9OtXihpaihZFaal5CjXEXCFSGcQUQ4REIkREDBFDalq/P/Z51vnse9e6596bO+/P+/W6rzxZZ5+999lrr7XXfsbvf//7APL5R6ygI1BO6Q+UTZ+sWueac2a2AfJj3u4RbuOyOq2FmNnf2GuvvYL8yiuvBHmrrbYKsuXt4qi91LzM7RZpx5+zKYNdE3gc2zOBxzCbWWK/g+8Ti+oD8qY6LpVjOafY5JaKEm6LvPzyy0E2E6aZxQBgwIABQeaIPu6T2H3F/ct9xia12HXmdQCPNxvfbJ7jZ7DMYUIIIYQQjYAWQUIIIYQoJA1qDmPVJ0dV9evXL8im+mJzGKu7OPqrSorzasdgL3ZWtXIEiUWYsAqXt+X9WSpvbuNoIq5gL3NYdcxUlTJT8T0RS62fMoHV9rhVj80Vjp9//nkAeXOLIsKaFo7cYdPowIEDg3z00UcH2SK2WLXO1cxZRW+q/4ULF4a2ww47LMg8J7z11ltBHjFiBADg9NNPj+63tWDnzOaJgw8+GAAwd+7c0LbZZpsFmaM17fuxiFwgb8rgcWNzJpfB4fmTI21jEbw8v7IJhOcHc0lImWR4H7yNRY1xYsVUSY+2yKabbhpkSyKZisDj+4b7z57HbIrkhJR8X/D3zLzG446/x24mfI9U/T6QjzBrDKQJEkIIIUQhaVBN0C233BLkXr16BTnm7JxyfOK3E36Tt1UrrxrZyYvfTvjNwPbHJTZSuQ1sVcurXj53PjYXhWVnvLZAXYrqxrR1Kc0Ma//WX3/9ep1bXbQ3nFfkzjvvrHFb5QxadlLX0Ark3nHHHaGNndb33nvvILMzs705srMu5/Ox3DZ8PE63z7moeEzHAiOOOuqoGn5Zy+arr74KGnbOkzVjxgwA+eKnXLgypt1hjQBf99R8bTngzIkdyI9tLlfCeZtMO5PS7jA29/P5sMWAZdYamGaCS+nwPdjWYW2L9S/neErl6mOnc7sfUvmnWOZ7xJ7dfL9xAWXuS9s35w7idQCXwmkMpAkSQgghRCHRIkgIIYQQhaRBzWFPP/10kFn9zM5opnZjVRyr2lglGsvtwblBGM4f8sILLwTZ1G6sJq2k2ks5BLJ68YorrghyWzOHxcxBdTEXpXJ/cL9wjhKjvtWCU+fD7bNnzwaQv0/69u1bcR+VnL1FmVT/XXbZZQDyjpPMvvvuG2Q2qZu5i+cPVucvWLAgyDY/pMzibDLp2rVrkC03CTtntza++eabYPrjMWYuCakyFrESRTxeeVt2amYTluXgYfPmEUccEWQ2e7Bp5K9//SsAoE+fPqGNj81Ou9aP3Iep+YifH+a+MHPmzNA2a9YstGVSOZrsecxO8ttss02Q2fWEndztvuB7JVXaivvMZDad9u/fP8jjx48PsuV54vxcKdNoYyBNkBBCCCEKiRZBQgghhCgkDWoO+9vf/hbkQw45JMgcSWV5A1KqVpZZzWkpuTntO6tXWUXLavBYxFKqIq5tyyo8NslZinggX4G5LbOs5qC33347yFz+wKJKgLKpynL5APmcEtzPrOI1lSu3DRkyJHpsU9efeeaZoe3666+veP6VIt5EZWy8nX/++aHt0UcfDTJHcbGJ0kzYvC2b0Xfaaacgm7qf+4kjyTgyke89O/YBBxxQ25/T4lhllVVCJOT9998f2vfff38A+eiwVL6f2D3N5g3O28LlESyaj01OPHaZWA6va665JrRxqSXO7WPRSqnzTbkv2DnddtttoY2jB9s6/LyysZSq3j5hwoQg83xrfc2mSH5G8z5iJjMejzx2n3322SAPGzYMQD76uilzdUkTJIQQQohCokWQEEIIIQpJo1WRZ1PDSSedFOTrrrsOQN4TnFWYnKiJ1a5m8mD1GqtdY2YtJlU9mI9tqkJWz++yyy5BLpoJDChfS472S5m4zKOfo2+4P7lkxR577BFkU41vu+22oY2j+Vg1Gqs0z33Lfc8lGMxEyonc2PzGKmBO9NmlSxcA9Y9cKxIpk6GNKzZFcnLCadOmBdnKWADA448/Xm2/O+ywQ5BffPHFINv9wvcp34d8z/I9YGOdK5G3Rmz+Y3PihRdeCCA//3LywpjrAZs0uA85Yui8884Lso2bsWPHVjzH3r17B/mXv/wlgPzYnTp1apDZfGn9z22p/uLoJ3sGcVJNfk60Rdjk9OqrrwbZ5j8bU0DehGkmKQBYtGhRkC0yk/spZQ7j+8XuI3ZVeP/994PMyWvtnDnCkO+VjTbaCI2JZnYhhBBCFBItgoQQQghRSBrUHJZSh19yySVBPuGEEwAAe+65Z2jjyAM2T7Fqz2D1Gkc9sKqNo7tMhWpJ0YC8mY3Vqj179gSQj7DgZF5FIWZOTEXU2TUD8rXcDI5G+Pe//x1kNj/97ne/A5BPipeq7xY7Nz4fVtVy/ZnLL78cQL5O1VlnnRVkvnf5nM1UM3jw4Oj5iDLcD2zCNBPFXXfdFdr4erP5kZP9bbjhhtX2yyp+Poap0lk9z/3PZlmubG3mXL5vWjN8Xc20yJFvHIEVMzPwteZ5kscj78NMzlynjxOS9ujRI8jct926dQMAXHvttaGNTVm8P5sreOxz0kyeV1hm87rR1s3abA5mc7E9E7mGJo87NhHzNYpFh6VcS2IR3zzuuM/YRGn9y9uy6bOxadt3hBBCCCFEggbVBNUmf4ppVvgthN/uWBvA2gLbN7+dLFy4MMi8OuU3+Vj6bX4T5FIY9uZQRO1PJfi6c/4VcxwG4tXn+a2CV/oxrRGXQeC+57cCPg/TFPJbaSpu3wAAIABJREFUKu+XtVeWM2PAgAHVjgvk7wPOMzVp0iQAQL9+/UIbv9G0JmL9s6w5j3ifqbdsu+bsoMtagZdffjnI7KxpucY4AIIddFk7Zw7OfC/wOOc5gbXJ5oDJWuXWiF37WB+fccYZQeYSJTfffHOQTfvN45nnVHZUfeihh4JsY2z48OGhbcqUKUHmfDCsubMSS1zVnccmH9u0GJMnTw5tjz32WJBvvPHGIHNAhVGkHF88P+68885BtjHGcylfC3ZK59Iitj+2mPC4YmJV6XmscdADawjnzZsHID9/pErsNAbSBAkhhBCikGgRJIQQQohC0mh5gioRU9sC6XTZtn0qz0OqUnIslwyr2vh7lgJe1AynnmdHPFOHch+yzGaNmOmEzVBsOmNi901tcn9YP6ec+hi+PzbbbDMArdcExjSGKaAu++Sq1WwyYbM25yix7Tm3Dd8jHAwRy2fFZls2s7/xxhtBNjNaW3GM5v6Ilbyx+xkALrroomrf46CSxYsXB5nNjAMHDgyymdS4j7gPuL+43cbYjjvuGNrYDMP9ZbAj72uvvRbkSqUw2roJjOEcd2+99VaQzemcg5B23333ILMZ2gISgHz/xUjNvda/bEbjZy2bLS13ETtn8/mMGjWqxnNYVqQJEkIIIUQh0SJICCGEEIWk0cxhlTzy2RySqlYcU7XVxtM/Vm2YzTKpvDJNWbm2tcH5Ja666qogn3LKKUG268rXkSMG+LpzhIH1aSwvFH9eVY71f8rMarBaP7VfPn+LRuL7silzWLRWuC/t2nGE3bHHHhtkvrc4WsiigSySiNsAYPPNNw+yqdJZ5c5p+C0CBcibNldZZRUAbcdkUun+Zzifj93TPC/zNWFTNpsZbfxzRC27FXC5EiuPA5RzF7FZZNdddw3ypptuWu082FTH/cnw+OZ7oSiwOZnzZFmePK7UzpG0HJnL19DGbsrsxSZOfo5Xuvbc17fddhuAfGQi93VjI02QEEIIIQqJFkFCCCGEKCTNpi9MpWdPqd1i0US1iQoy9TB/P2VSqYsquWgcd9xxQeYIEzMnAOUEh9yfnKySVdgcoWPUxhxZqWwG9yGbZCxqgiMmUvuIpY2fP39+aCtSMs26JFjkhJNsPrR9sOqcTSN8vxxzzDFBtggTVusfeOCBQeZSOB07dgSQT/rG9x6bATj6ZcaMGQDyyTlTyeBaMrFIsErzGfeRRQFxH/F45DHB19WOwePZSpEA5fIYQN7kYtf4j3/8Y2hLlcqx8+Dj8nkybcWsWV/YvMilKcwsySYnTiD68MMPB5m3sT7heZ5JJZk12DzH45Ujwawv2czKJmvuazbLNhTSBAkhhBCikGgRJIQQQohC0mzmsFgEV1VYnWvmitpUAY5tw/tKJcxrynolrYUJEyYAACZOnBjahgwZEt3W+ojV2pz07Pzzzw9y3759q32PSUVuVYL7kKO4Lr74YgDlGmJVzzNlLjX1cpHMYZUi8Hj8sIo7VkUaKCc15KSIXJWaE7yxit4SrfG2fO05YZ6p8DmRH9ckYzMBm1XM1GL3OZBPItdaqI8ZiCu1z549G0B+HKTcDbj/LXryt7/9bWiLmUIBYM6cOUG28c9jlOtJMTZO+bipSNKi89JLLwWZa3Ja/3bo0CG0sdmXE07y3GzjkaO9+L7gOZTNp7Y9m7J4HHOkqEVx8lzCx+A5QeYwIYQQQogGotk0QbXRusScVWtT9iD2BsPf47cmXslWOqciVSM2DjroIADAyJEjQ1sspT1Qvj78ps1vEEOHDg0yX3d746+vk3pMY1gV0xBwH/MbK8P7MAderlS93Xbb1frcWjoxh9pUP5gTJJdT4Lc/7lN2NLbrzNc+VvICiGts+B5imTUZzzzzDIC8Uy7nQeG8I+yAaW+WrDVqjZqg+hALTmFNEF9rHit8Lc0h+sEHHwxtnBuIyyawJsg0d/z2Xxstv1GU+beu8D3PWhPTtg4fPjy0xcYokM8fZd9jzRvL/Fzl+8LGMR+Dz4efBb179wYAdOrUKbSxNqqx8z1JEySEEEKIQqJFkBBCCCEKSaPpmSqpK1MqtUrUJo9QJbNVyrErlXuiaHBuB8vts++++4a28ePHR79n/cgmEjaNxfKLAJXVnXUxjXHfxsqx8LFSTqAsr7322rnvtzVi44N/Kzstm8mEryGru9ncxWYpMz/x9/geiVUX53PjnCGXXnppkHv27FntnDkvTWq/rLa3yuRsDuP7tC3Dc3CsvBCPO75msb7jwAl2gOU+YKdcM3dwbpm6PAfkGB2Hrz1fIxunbG7mvG3m4F4V2742c2VqfBs8xniOsWNzuRV+Bm2zzTZBtvm4IZEmSAghhBCFRIsgIYQQQhSSZosO46gBJlUCoVIuGVal1qUafKqCfZH5xz/+EeQf/OAHAIDvfe97oW3cuHHR71kfpcxblaI/uC9S1awrlXGoVP6iNvA+LF08571pS5g5mHP4sBqdf7e1s4mD0+bzmOYSCWZSS1UlT5mfrNQFm2K4ZAvvw6L42OzFKnU2e3MUis0VnD+qKStYNyex654agzzu2HRy1llnAchXfU+VOeB7zOAyKHfccUeQrQwKH5vPR+awOFwWiK+3Pdt4HuzcuXOQucQGj9NYxDTfN6n51p4BlgMIyOclYhO35f7i5zY/b1LRyA2FNEFCCCGEKCRaBAkhhBCikDSbOYypS5IsJhU1FDOdpTzaGZnDMjj1+o9//GMA+SrCKXOB9Qf3SyrahKlv2YxKUWOx/dYmIWPsXklVuG6NsNnKIrfY7MW/nxMj2jXgKA6u8J5KNmoqcd4vH4/vJ97GVOa87dy5c4PMKnwbu7wtq99Zhc99aaa6mNmvrcO/0+ZgnotT0Voc0fXPf/4TAHDiiSeGNo4oZHMpm2c22mgjAMAtt9wS2nhsxsxybGZPjceiJ1G061pVfueddwDkzVMvvvhikGfNmhVkHoM2plPPzFREdcwlhecSHrvWv5zElMsUNfZ4lCZICCGEEIWk2TRBqbwD/AZQ3/wwlXIDpd5wOMdCkeHrbg6P/KZsKe+rbmvXPaXFSfWnfS/l4BzbNnW+lUhtm7rv7E2IHfVaI9778Fuee+650G5Oh3zvc9kDdi62PmFNUsrhnJ0Z27dvDyA/5nm/nGsopkXk7/Hb4tNPPx1k0wywgzM75bIzNN9Ddl9zGY+2kicoVhKFieUJSjnFslaNNXe2PWuPuRQGF0jlt3vrL3OsBoAHHnig2udAPCihvtaDtg6XvOBcXaaF4+tqwQRAfkyz1j92nXlurpSLi/uf5xXWFJmDNo/B2mj9GgrdSUIIIYQoJFoECSGEEKKQNJo5rFLpCjY/sFq2Uo6f2lQMj5HKf8HtldTgRXG64xwOBqsnt9122yCzGSXmRFwbU5X1R8ppuS7V5St9L7Wv1H1l9+aQIUMq/IqWzZdffhnU0Wx+MtNFbcpY2D3ApSm4r1OqdlOv87W3chVA/h5i04eZ2tj8Mnr06GrnA5THcWps8xzD52mOu5xfpS1TyVSdqgqeyv1j5smbbroptPE9w/3B+YUGDx4MID/XsDlk4MCBQbb+4nNLOeHXxTTeFuFSMpZnCyj305IlS6Lf4zHB/W4BB2yGjgUvVMXM3exEzyU7eOzGSmGw+Zq/1xhIEySEEEKIQqJFkBBCCCEKSbNFh3FOnpQJg9WfJrOqrjYRZqbm5yiWVGmOopi7KnHAAQcE2dSanMae+yDWRykzJW8bu9bcn6myGUwsooWp1Ld16fvGVsk2Nt9++20wg/Xo0SO0m6kqZcKIlUDhfmQ1Ovc7m7hsrHNOITav8D7YVGemKv6co01iJhEe56myOoyp4tkMV5eyO60N7iO+rnb/c9/zdUi5LNj9w9GAPD9wf3EVcTONcbkNjkCLRQTVZrwWfQ5nkyLn1LKxxC4fHD3GYzPmIsLjg/smZV6zffAx+Jnfv3//IFs1e44emzp1apD79u0bZC710VBIEySEEEKIQqJFkBBCCCEKSbOZw1gNOnHixCCn1LWmjmO1HKvtUiYYU6GmzGWsPu3Xr1+N51wU0xlHQlnyLVZ7sjqc+8NMJ6lEZhxVwti1TJU2YRVupSRplRIypqKH+DfFzAStvWzG119/HUybrGqORealxoddAzaNcGI1NmVxVIiRqk6f6gfry1SiPpZt32x+4XuI98smPotumT17dmhLRR61Nbhv7ZqkytzwdeXEejaPH3TQQaGNkyWymYzLaey6664AymU3gLyZlrF7hc+XzfOiDJuceK6z8ciRWE8++WSQ2YzM/WdjvjYuDmwCN/eBVEQfz6e9e/cGUC7tAQA77LBDkC3ZamMhTZAQQgghCokWQUIIIYQoJM1mDmOVdEpVzZhqj7dNRXHEzBmpWiSxirlFh6/rpEmTAAAXX3xxaPv5z38eZL5mZm5htSgnSON2NnHZPjgJ3y677BLkVNV6O8+GME3yPRFLwtfa60m1a9cOw4cPB5BPqGbRJGyK4PpDnPTwlVdeAQAMGjQotLFKfcyYMUF+5JFHgrz33nsDACZPnhzahg4dGuSnnnoqyDFT7HrrrRfa+H5i1X/Xrl0B5OtPHXrooUG+5557ghyLhOMEoKkEcG0BNkkuWLAgyGa+YJN1KoEeV4a39unTp4c2jkpis+ibb74Z5GHDhgHIu0Kw+Y371qqPp+YSUYbHMY8bm7/YZM3bct9wbciYOYxl3h/fO2ZeYxMo32+MHYM/nzFjRpDZ9NmnT5/oPpYFaYKEEEIIUUiaTRN07733BpmdK1OOVvbWz055qRIIqZwgBr/p8/c4x4LIsJU8vz1fe+21Qea3vlj6c3uLA/L92aFDhyDbmze/CfAbK2uIuG/tzSOlHeT7I1bhnrflN13ext5o+K2qtWLXYIMNNghtLBv8Jshssskm1do4hwdz5JFHVmvba6+9otum2rfaaqtqbabxSXHUUUdF20eNGlXj94oCv8WPGDEiyOYMmyqrwU62nDOre/fuAIB99tkntPHbfyyPGADMnDkTADBu3LjQZtohIK5V4L7nsgqiDGtmOfjgjTfeAJDX7O63335Nd2I18NBDDwHIa9vtfAFg8803b9TjSxMkhBBCiEKiRZAQQgghCkmjmcMqOaveeOONQX788ceDzPkoGHO6Zae8VB6QmKM1nw+b33h/bdkhsr789Kc/BQAMGDAgtMXSsQNldTe3sRmNTVys+rRcInyMQw45JMislq+Ur6cuTtK8bcqMJkRrJZZTi+fXSy+9dJmPEcvDxs7QsVxEvD3npGkIij5211133SDzPGzPvEp51pqDXr16Acg7QLPJNZZzrCFpeVdECCGEEKIJ0CJICCGEEIXEpcoMRDd27n0AcytuKJie3vsWn+NdfVtv1L9tmxbfv+rbetPi+xZQ/y4DterfOi2ChBBCCCHaCjKHCSGEEKKQaBEkhBBCiEKiRZAQQgghCokWQUIIIYQoJFoECSGEEKKQaBEkhBBCiEKiRZAQQgghCokWQUIIIYQoJFoECSGEEKKQaBEkhBBCiEKiRZAQQgghCokWQUIIIYQoJFoECSGEEKKQaBEkhBBCiEKiRZAQQgghCokWQUIIIYQoJFoECSGEEKKQaBEkhBBCiEKiRZAQQgghCokWQUIIIYQoJFoECSGEEKKQaBEkhBBCiELS4hdBzrlezjnvnFuh9P/xzrmjmvu8RN0o9WGfun5WYZ+HO+eeWvazE0IIUUSadBHknJvjnPvCOfepc+4959y1zrnVm/IcxLJRWoR+5JxbubnPpbFwzg13zr3d3OfRWqBxvcQ597Fz7r/OuWOccy3+JUvUjPq2baP+bR5N0N7e+9UBbAFgSwCnNcM51Ann3PLNfQ4tAedcLwDDAHgA+zTryYiWxt7e+3YAegI4D8BvAFwT21DjqdWhvm3bFLp/m221571/B8ADAAaUVqM722fOuTOcczdU2odzbjnn3GnOubnOuYXOuX8559YsffaAc+74Ktu/4JzbryT3d8494pz70Dn3mnPuANruWufc35xz45xznwHYoYF+dmvnUACTAFwL4DD+oHTNLnPO3V96q5jsnOsd24lzbqhzbp5zbnjks5Wdcxc4594qaQuvcM6tWsM5Oefcpc65xc65Gc65neiDrs65e0p9/IZz7ugqx7nYOTe/9Hdxqe07yO7LriWN5afOua51uUhFxnu/2Ht/D4AfADjMOTcgNp5q6mfnXAfn3H2lN9MPnXMT7M3UOfcb59w7pXvsNe5v0biob9s2Re3fZlsEOee6A9gDwHPLsJvDS387ANgAwOoALi19djOAMXS8jZGtdO8vPegeAXATgHUBHAjg8tI2xg8B/AFAOwDyO8k4FMCNpb9dnXOdqnx+IIDfA2gP4A1k1y+Hc243ZH2zv/d+fOQY5wHoB2AQgD4AugH4XQ3ntDWAWQA6ADgdwFjn3Nqlz24B8DaArgBGATjHObdj6bP/A/C90nE2A7AVgNO8958B2B3AfO/96qW/+TUcX0Tw3k9Bdu2HlZqqjqea+vkXpe92BNAJwG8BeOfchgCOBzC49Oa6K4A5TfBzBKG+bdsUrX+bYxF0t3PuY2QX8wkA5yzDvg4C8Gfv/Wzv/acATgVwoMucqO8CMMg515O2Heu9/x+AvQDM8d7/03v/tff+OQB3AhhN+/63936i9/5b7/3SZTjHNoFzbiiyReRt3vtpyBYeP6yy2V3e+yne+6+RLZQGVfl8NIArAexeGmhVj+EA/BjAz7z3H3rvlyC7Pw6s4dQWArjYe/+V9/5WAK8B2LO0yB4C4Dfe+6Xe++cBXI1sIQdk98OZ3vuF3vv3kS3eDqnd1RC1ZD4AW5CG8QTgf6i5n78C0AVAz1K/TvDeewDfAFgZwMbOuRW993O897Oa9BcJQ33btilM/zbHImik934t731P7/2x3vsvlmFfXQHMpf/PBbACgE6lzrkf5c4Zg+zBDGQP861LKruPS4uygwB0pn3NW4bzaoscBuBh7/2i0v9vQhWTGIAFJH+OTDPHnIxsEfVS4hgdAawGYBr1y4Ol9hTvlAaZMRfZfdEVgA1S/qxbSY7dOzJ7NSzdAHxYknk8VernPyHTJD7snJvtnDsFALz3byC7h84AsNA5d4tMlc2G+rZtU5j+bSke4J8hu7BG59SGVZiPbEFj9ADwNYD3Sv+/GcAY59w2AFYB8HipfR6AJ0qLMftb3Xv/U9oXP1gLTcneewCA7Z1zC5xzCwD8DMBmzrnN6rCr0QBGOudOSny+CMAXADahflmz5EifoltJg2T0QHZfzAewtnOuXZXP3inJsXvHzF7q+2XEOTcY2URqpmS+pjX2s/d+iff+F977DZA54P/c/Ae89zd5700r6QGc30Q/SZRQ37Ztita/LWUR9DwyM9aKzrktkflv1IabAfzMObe+y0LtzwFwa8kcAwDjkF3wM0vt35ba7wPQzzl3SOmYKzrnBjvnNmq4n9SmGIlMnbkxMhPXIAAbAZiAsnmpNswHsBOAk5xzP636Yal//g7gIufcugDgnOvmnNu1hn2uC+DEUh+OLp3XOO/9PAD/BXCuc24V59xAAD8CYA73NwM4zTnX0TnXAZlN2z57D8A6ruRkL2qPc24N59xeyPyxbvDeT6+6TaV+ds7t5ZzrU1rcLkZ2733rnNvQObejy9IzLEU2GX9bdf+icVDftm2K2r8tZRH0/wD0BvARMt+Mm2r5vX8AuB7AkwDeRHZxT7APS/4/YwHszPssmUh2QWYqm4/MjHM+MpulqM5hAP7pvX/Le7/A/pA5oR9U8sGqFd77t5AthE5x8aSXv0GmTp3knPsEwKMANqxhl5MB9EX2hvIHAKO89x+UPhsDoBeyPr4LwOne+0dLn50N4BkALwKYDuDZUhu89zOQLZJml1S+LUJt28K51zm3BJmW9f8A/BnAETVsX1M/9y39/1MATwO43Hv/OLLxeR6yvl6AbAF8asP/FFEF9W3bptD96/LuFEIIIYQQxaClaIKEEEIIIZoULYKEEEIIUUi0CBJCCCFEIdEiSAghhBCFpNZRPQDQoUMH36tXrwY/CXbO/vrrr6Py8ssvn/sXAJZbrryG433E9vfVV1+FtpVWWqnafqvKDcWcOXOwaNEiV3nL5qWx+ratM23atEXe+5qSObYImrp/v/nmmyB/8sknAIC11lortOVTO5X57LPPgvzpp58CADp1qlqdpeloDf3bFH3Lc/F7770X5G7dusU2rzUff/xxkHn+bdeuXWzzBqU19C3QvHPzt99mUeyLFy8ObTx211yznEXkrbfeCvLKK2eB1p071zblX8NT2/6t0yKoV69eeOaZZ+p/VgmWLi1XpeBB8f777wfZBsXaa68d2ngxwwuf//3vf0H+4IMsWvrdd98NbT17lnPkcSeuscYa9fsBNbDllls2+D4bg8bq27aOc25u5a2an6bu348++ijI//nPfwAA++yzT2hbccUVo9+bOnVqkJ944gkAwC9/+cvGOMVa0Rr6tyn6dtGiRUG+4IILgnzeeect037Hjh0b5Pbt2wd5hx0av2Z1a+hboHnnZnsReeCBB0Ibj9099tgjyCecELLTYP311wcAnHLKKaGNn9Gpl6CGpLb9K3OYEEIIIQpJnTRBlajNSm/Bgqy81MyZM0Pbl19+GeQuXboEeZVVVgmyqdrGjx8f2hYuXBhk1v4wn3/+OQDggAMOCG22ugWA559/PsimFWJN0XrrrRfkxjCXCdGaYTPzbrvtFmQeV1988UXu39piWt9f/epXoe2Pf/xjkLldNDysiT/++OOD3LVrOXfoRRddBAA49thjQ5uZQqrC2qRLLrkEQPl5AABz58Zf3JtCKyTimBZ3wIABoe32228P8ocffhjke+65p9r3mKbQ/tQHaYKEEEIIUUi0CBJCCCFEIWlQc1hK3TVx4sQgm7f5uuuuG9rYwTkV8WWOVmwuW221cuF5PvZ3vvOdIJsJi1XxFq0CAJtsskm147GKlj3ehw0bFvt5QhQWHrvMOuusE2Qbpxzxw9FjbGZeYYXylGQOmKuvvnpo+/Wvfx3khx9+OMiPPPJInc9d1Mzs2bODzNFBHJxy1VVXAcj3EUeS8RzOc+n8+fMB5INi2KVh2rRpQZY5rPmwe4DdQk477bQg77///kFmN5KNNspqkdvzHsg/21sSLfOshBBCCCEamQbVBDH85sDhsltvvTWAvOYmlauH3wzMSS+Vl8IcoAFg1VVXrXYe/MbBjnu8OrV2Xr1y3hLeBzttC9FWib3JPfroo9FteWzyeDRSgROsFYptz2ONnXI5X01N3696PFE7Bg8eHGTWpE+ePDnIG2+8MYB8H6U06axBGjNmDADgsssuC20c6MIaetF82DP4yiuvDG0sz5o1K8jDhw+v9n0OQmqMFDQNgTRBQgghhCgkWgQJIYQQopA0mjmM1adsUrJ2dqTjnEGsMmUH56eeegoAMGTIkNDGalfOabHVVlsF2Uxj7JTJKjrOcxIzh/E58O+QOUwUgZgz4/XXXx/9nMcSjyF2djbY7M2OtGwas7HL5mveLzvumimFAy7EssF9y7ncLEiFt+EcQHfeeWeQef787ne/G+SHHnoIQH4O52oBrSXTfltnzz33BABsv/32oe2KK64I8g9+8IMg77XXXkG2nE9ckaGlIk2QEEIIIQqJFkFCCCGEKCSNZg5jFTerxMwU9fTTT4e2119/Pcicw4dzjbzzzjsA8upuNqNxmn42Ve28884A8pFmU6ZMCTKfx09+8hMAQMeO5cKzqegw0XCYiSOlfk9dd7uXOBKJI0z4vnvllVcA5NXvHIHSo0ePIPN5mJl10003DW2cn6qIsLmDIzF5rLAJq1JkFl9vNpOZeY1NYDyOWb7vvvsAAEceeWTlHyDqTP/+/YPM86P1HUcJWY4YIN+fHCVsZs+UewO7S4jmw8pl8LiaNGlSkLmcCs+9N9xwAwDgt7/9bWOf4jIjTZAQQgghCokWQUIIIYQoJE0SHdanT58gv/nmmwDyEVpciZa/1759+yDHkiSyCvbggw8O8o477hhkU8Ged955oY1V+L/4xS+qbRuLZgHSSd1E7aiULI/NIn/4wx+CfM011wSZo/xmzJhR62NblAqfQyyhHwCstdZaQV6yZEm1Y/H9XEQ6dOgQZI7K5D616wbkx3GMVDp92webxTfbbLMgc9JGq2DNanslSFw22LzZu3fvIHMU1+OPPw4gn8Syc+fOQeZ5+6WXXgqyjUO+l9js+atf/SrIl156af1+gFhmzD2Fn4lPPPFEkLmMlZVQAYB9990XQH4MttQSGi3nTIQQQgghmpBG0wSxpoffnM2B+bXXXgttI0aMCPKtt94aZNbYWKHGV199NbRx3glzgAaAqVOnBtk0CkcccURoM20UkH9jNceuTp06hTZ28OTfJOpO6s3cCmUy48ePDzI7wHJ/WD+xho7fWDm9/zHHHAMg79R55plnBpkdMdnx2Y7NDvtFxcYKa275WlkuLyDvHGvaXd6WNXKpvFxWFoOdKw844IAgc1+//fbbdfkpIgH3Bfchl9DgIIHjjjsOAHD11VeHNi6PMGjQoCDPmTMnyBaowPlnLLcMANxyyy1BNm095ycSTYP1JQeq7LbbbkG++OKLg8w5/syhuqVqf5iWeVZCCCGEEI2MFkFCCCGEKCQNag5jswSrz9ipyhypWH19xx13BJnzC7EZzUxcG264YWgbPXp0kDnfzw9/+MMgX3jhhQDy5gx2vuZztlTtnM+CzS+i6eDcQGwOY2dmU69yG6fvZ3Pqn//8ZwDp/COstuV7147NZtOiYoEIfC1Y5rHZs2fPIJuZg53a+RozZvZm9t577yBvsMEGQWbzqpXQYKdddnAXtYP7pVevXkHmscRz9JNPPgkgP0/y/Hn//fcHmQNZrG+mT58e2njMc9kMM7/KHNb02NzKz0nO1cfPaL4HFi9eDCCfJ4pN3S2Tx9qHAAAgAElEQVQJaYKEEEIIUUi0CBJCCCFEIWk0cxjD0T9mivrxj38c2rbYYosgc4TAv/71ryBbpML+++8f2lgV/+677wbZcoYAwMMPPwwgXxaBq13ffvvtQbbcFGwaYXVeLIpJNA4cgcL5RdgEYqYqjjRiVT33nanf+XNW8af63ExunPukqHDVdoMjO5m33nqrWlsqUoT7lPvH4Cg/LnXC/W4mmDfeeCO0qRJ53eE5br311gsyz5lswjI4PxP3PUeNHXLIIUHefPPNAZTdFYB8mZuUy4JoWmzMc99wdOjAgQOD/NhjjwXZTJscUS1zmBBCCCFEC0KLICGEEEIUkgY1h7Eqm1XcLJupgVPpcxKtm2++OcicDPH73/9+tWPMmzcvyGwme+SRR4JsFeUtvTsAnHzyyUHu169fkC1NfEwlD+QjJ1g9LDPZshGrIs+J2jg6jCOMLHKBow9TJi67B1kly/2ZSt5nEQ+cCKyofPDBB9XazKxRFb6GNgb5Gqfg7xljx44NMptdWEVv0SgcdSpzWN3hMcjRdexOwMloZ86cCSBvvnruueeCzGUV2GXBojQ5ape3nTJlSv1+gGhQJkyYACD+nATycy8/B609FQXakpAmSAghhBCFRIsgIYQQQhSSRosOY9U3y1aLhBNnLViwIMjdu3cPMkd/WY0SjhQ5/fTTg8wmtwsuuCDIN9xwAwDg73//e2ibOHFikLmWVOx3sLovVRFX1B2+J2I1Zdgcxv3BsplZ2DTJanlO3mXH4H7jxHyp8zG5pda9aUo4CZ7BCRJT1CXhaCx678EHH4xuu9deewX5xhtvBJCPXBF1h8cBm7V4jFlNNwAYNmwYgLxrAu+jb9++QWbTiM3/HIHGY/71118Pspk6RdNj0WFWFR7I3wsMzw/mwtAa5s2Wf4ZCCCGEEI1Ak+QJYg2KaVbYyZKdrqy6MFCuOA+U39pZc8O5ZH76058GmatVmxMf5yvgtwzTJgBlhy9+Y+GVLDt+SRNUO/itMOUsb3DleKscDeSdofkt1LQG3N+sdeD+sn7k1Pzct3wfcLvtjz8vKvPnz6/WlnKMZmzMpwInOC8TzyHmjP7OO+9E98vlNEwTFNNWidrD9z7Pk9zP/fv3D7KVqWGnZy6rwPM1Ozt36tQJQN7hmvML8Thnh2nRtNjY4zl2xowZQf7e974XZL53zIpjlp+WjDRBQgghhCgkWgQJIYQQopA0qDkslWuFVd+mVltnnXWqtQHA3XffHWR2fDTnuJ/97GehjdVv7Jg3ePDgIJtjFx+P1eucN+b9998HkDeZpEw4SuWekTJ31dQGANdee22QjzjiiGqfm7ocyDvL831lpg92hmX1a8ysmXLUY4fqmMM0q+e5knmRYJOywf2Uwu6B1JzA8P3E84LBwRI77rhjtc9TTpti2XjttdeCzKUSzDH6iiuuCG3cB/vtt1+QOQDmv//9LwDg2GOPrdYG5M1vbDITjQ/Pm2bmZNeCl19+OciWvw/Ij2m7BzhvW0tFmiAhhBBCFBItgoQQQghRSBrNHFYpBwurTDkKgUtlTJo0KcjbbrstgHK6daCcOwgAevXqFWRWu3fr1q3a8WJqO6AcpcKV7DkSopLppy0SK3VQKcqL4fxMHMHH0VbWR2yaZNMLm6I4ksjMJawu51T/HIFoKl4+Lt8nrLblivGmwj/nnHNCG1fGLjpdu3YNMpsU60ulXFy33HJLkI8++uhqn8dKe4j6scsuuwSZ50krVwOUrzf3vY1nIB81xiUyLCeQuSAA5RIcANChQ4fosUXjEysbxH3OJmnelt1IWpO7iDRBQgghhCgkWgQJIYQQopA0qDmMYXMYqzNNzclJEbnaM5ufWD36k5/8BEC+3AYn1Hv11VeDfN111wXZKspzQkaOaImZR1ilztFERSmbUV+z31VXXQWg3FdA/vpyEjW+rnZ/fPzxx6GN1al8DlxR3kxmfH+xWYuPYQn7+LdxYkU+T44etH08/vjjKDqVIj04QpMxsyVXn05F6XH/cHJFY9y4cUFmc5hFr6jEQsPBZmZ2WXjjjTeCbBGaPXv2DG08frj0BidDjD0HDj744CCfe+65QeZniWh8eNxZv/LY50gxjszlMW3jWFXkhRBCCCFaKFoECSGEEKKQNFrtsJhqDChH9/C2c+bMCTKruzkix/Z3/vnnh7aRI0cGmRNxsTrPqlyzapfrnTBmHuHoIN4X/47W5P1eV2ImMP693C+/+93vgmwmJY4YYjMTm61YTRo7HpsbU0n2bN/8OUebxMyXrNblzznigfvc7gm+v4qKmbVSJlI2kzB1qSTNY8zuF44INPN2VWxbjkYSywZHybLpmCN0rZ7cySefHNrYxHXzzTcHecyYMUG2eZnNXuwKYeZrIN//ovHhuZmjwgyeb9k0xmPP5giOCKxNYtXmQJogIYQQQhSSBtUE8Rsfr9555Rh7K+TcQP/3f/8XZH4zeOihhwDkNRKcWv3KK68MMmsibKXKKdm5+nzMCZhLL/Dx+DfV5e22NXPZZZcBAP70pz+FNnaG49W95fnha8b5fmJV3YHyW3xK48NyrDQLf4+PzQ6V5lCdcrJmLRXnK7LjcXXyojrf2htiLHcUkE+nz6S2NyqV0GAtBPd17C01VXFe1A7Wgk6cODHI2223XZDbt28fZBsXrM2fPn16kNdcc80g87h5+umnAQB9+/YNbaxBYqyfY2VURMPD483mbA5aWbhwYZBZs87z7dprrw0gP2/yeG1JfVmMJ7kQQgghRBW0CBJCCCFEIWm0shkpc5g5vHHOkI4dOwaZ80qwmvyaa64BAGy//fahjc0rm222WZA5J5CZY2rjyNyuXTsAeXMIpwIvigns0ksvDfIJJ5wAIF85nUtTxEqQpBznUn1g17WS2bQqduyUEyXLdmxO78/H4PNk0xirhg1WBxcJM4elVNmc14uxfq1N5XjG+oyPt2jRouj3TN5pp51C29lnnx3k0047LXoMkYfHBDu1cjvPBRYwwHmEeMz06dMnyDz2rG957LLMZhbLL8SlNETjEXMH4MAQzvfGY5D7z1wN2Mm6klm8uSjGU10IIYQQogpaBAkhhBCikDSoOYxVX6w+ZTOIqUrZ5MBqtFjkAQAMGjQIQN4c9sQTTwTZqswDedXsFltsAQAYPXp0aGNV64MPPhhkq2zMKeAZ/h0tVbVXX5YuXRrMGVwl3SLwOCKM+47NmkbqOsXKIABlc0mqXEddcjKl7iu7N1NRZ7xtrLQG50bhEi1tHTYH2+/mnErM/fffH2QeY9a/tSmVwdj3OFqTzWEc3WcqfL5POUpU1A42SafmYnMbAMpz5rPPPhvaOKqXTZm8Tffu3XPfr3psPp59z+Zy0XTYWOdxxXn0eN5kNwnL18YmUF4fsMmtuZEmSAghhBCFRIsgIYQQQhSSRosOS0WKGZxEi6MQ+Husdv/9738PAHjyySdD29Zbbx3kIUOGBDlWFoPNJJy0iSsbm9p9vfXWC22s7ksl7WsLLLfccsH0w2pwS4vPkRkp05Gps1ldzgm0Kl2/VHQYt8eiEbg/2UQSixpjMw1HsfC2XC7AvsdJHx999NFq595W4WtrptGUWYvT5rO6O5bUsjbRf7YN9ynzwgsvBHmHHXYAkI8C23///SseQ+ThhIZskmJTB0fw7rjjjgCACRMmhLY333wzyCeeeGJ0388//zyA/BzO5jKeQ/j5IBofnmMt+Si7JHBCUp7T2fxsffbSSy+FNiuVAuSfMc2NNEFCCCGEKCQNqgniNz0mVsiScwPxW0bqDdE0EvzGzvkqUtokk/ncUkU9bVt+6+fzZFK/tbWy0korBYfwq666KrRfdNFFAICpU6eGNi6UyY7R7ETbVlhnnXUA5N+EDj/88CD/9a9/bepTalIs/T0AXHjhhbX+HuddijlG1yZnUMxhnjWLXArHNEHS/iwbnOuJ88FwsMi///3vIJuWzhydgXw/jx07NshcWsPm/ClTpoS29957L8g8n6cCVUTjwGPTtLtszeE5n+dFLqFk7bNmzQptrEFih/jmRpogIYQQQhQSLYKEEEIIUUga1BwWMy0BedNRLFcMq7jZEZMdV03tymnY2TSWykFjarlUdfHddtut2nmyWpYdgvnc2HGvrcGVnS+//PIat+V+tjwQ7MiaqtTOmPo1lRsoZXq0PudjfPDBB0GOmVZTad7ZRMpOe3YPsjrYTGQin/uDr1vMCZ7bUmbvWJp9Hq/cZ1ytXDQMfP153HGwAJunLHcUm4jZLMKlS8xkCZSr0t94442hbd68edFjmEO+aHpsjuX5mINLOA+QuawAZVMqPydnzJgR5J133rnhT7aeSBMkhBBCiEKiRZAQQgghCkmDmsM4yovNEjHV+Kabbhra2MzEKlhWg9v3OAKJ1XIMq+7MzMH7YpUvp+S33CZ8Pnw8jnhJHbtocN+a6ShWeV20fmxcsWmQxznn9eK5IPa9VM6gmBmdxzPvQ+awhofnNe4LjhTj3Grrr78+gLwLwaRJk4LM+aLYHG7RptzGrg58HmyKE40Pu5bYPcDjjmV+llqpDKA8Zrl/W+p4lSZICCGEEIVEiyAhhBBCFJIGNYcxXHWWo2lMvcZVuVllllKfmmqco0PY7FKXkgz8PU4Nb+fE58C/g8+Zk8gJUQRiCQ65FEKlCE2GxzHD4zSmUufvcUX5GDwPpJIzijxs/ufSRtzPHD26YMECAPnIH57vOSkeRxKZCZTnUTapcUI+Nr+JxofHqz0r2ezF447dTDixsCVG5P7l6LGWhDRBQgghhCgkWgQJIYQQopA0qDmMEyNxxVj2Jjf12WabbRba7r333iD36NEjum9TZ7PKnVWm3M4qc1PtpSrcs/q3S5cuAPI1yXi//DtqUwVbiLZEzMzM9bsYHoP2PTZDc6RlamzGzGuc1JLNNZXOV+aw2sFzOFcF52rgW2yxRZD3228/AMANN9wQ2lZbbbUg77TTTkHmqDEzn40YMSK0DR06NMh33313/X6AWGbYbGnjjc2hL7/8cpDZfM3uIhbdx89JrhPXktCTXAghhBCFpEE1Qfx2x3lCKmFvE0A+JwQ7ysUqvPNbC7/1sYbI3gD5zZRzA/Xv3z/IMe0OO34JUWRi2pRRo0YF+Uc/+lGQP/744yCbU2Wq/EklYppkoFzhGihrdFlTJOoOV4gfP358kIcPHx7khx9+OMj29v/222+HNnacZa0RO8m+8MILAPLlMXiOfuSRR4LMedtE4xMLduBn8XPPPVftcyCfM8ysO2eeeWZou/TSSxv+ZBsAaYKEEEIIUUi0CBJCCCFEIWm0PEF1cUpkdTc7JbNsDs7syMxyrHwDy6m8JKlzroQcLUXRiJmL2bTM44crgs+cObNaG+fnYlU7q9fNubJbt26hjc0n22+/fZBjZjCN0bpzyimnRGV2deD52hyc+/XrF9p23XXXIPP9wSaugw46CEA+jxCbOq+44oog19eMKuoHjzEbu7Nnzw5tr7/+epA/+eSTILMJ/NRTTwUAjB49OrSx3JKQJkgIIYQQhUSLICGEEEIUEldHE9D7AFTSt2709N53rLxZ86K+rTfq37ZNi+9f9W29afF9C6h/l4Fa9W+dFkFCCCGEEG0FmcOEEEIIUUi0CBJCCCFEIdEiSAghhBCFRIsgIYQQQhQSLYKEEEIIUUi0CBJCCCFEIdEiSAghhBCFRIsgIYQQQhQSLYKEEEIIUUi0CBJCCCFEIdEiSAghhBCFRIsgIYQQQhQSLYKEEEIIUUi0CBJCCCFEIdEiSAghhBCFRIsgIYQQQhQSLYKEEEIIUUi0CBJCCCFEIdEiSAghhBCFRIsgIYQQQhQSLYKEEEIIUUi0CBKtFufcHOfczs19HkII0RZwzj3lnDs88dkGzrlPm/iUGp0WvQgqPeS+cM596pz7yDl3v3Oue3Ofl6iOc26oc+6/zrnFzrkPnXMTnXODm/u8RNPjnPuhc+6Z0rh91zn3gHNu6DLuc7xz7qiGOkdRf9S/LYtSP9jft/TM/NQ5d1BDHcd7P9t7v3qFc4kuopxzw5xzTzrnVnDOeedcr4Y6r2WlRS+CSuxduvBdALwH4K/NfD6iCs65NQDch6xv1gbQDcDvAfyvOc+rtjjnVmjuc2grOOd+DuBiAOcA6ASgB4DLAXy/Oc9LNAzq35aH9351+wPwFkrPzNLfjU1xDs655ZxzNa0n9gQwrinOpc5471vsH4A5AHam/+8BYGZJ3hPAcwA+ATAPwBlVvnsogLkAPgDw/6ruS38N2k9bAvg48dnhAJ4CcAGAjwC8CWB3+nxNANcAeBfAOwDOBrB86bPeAP5T6sNFAG4EsFbs/gCwUWnfY0r/7wrgTgDvl9pPpO+dAeAOADeU7p+jmvsatoW/Ul9+CmB04vOVkT1A55f+Lgawcumz9sgW0u+X7pP7AKxX+uwPAL4BsLS0/0ub+7cW8U/92/L/avOcA7AagJtK8+rHAKYA6FD67ClkL7D/BbAEwIMA1i591geAp/08BeAsAE8D+ALArVX68WLa9kUAA0v79QA+K22zf+nzYwC8UTqnuwF0KbWvUNr+hNI8vgjAeQCWa7Br1tydVtsOLXXcdQD+Vfr/cACbItNmDUSmJRpZ+mzj0gUeCmAlZA/gryrdHPqrdz+tUbp5rwOwO4D29NnhpWt/NIDlAfy0NEG60ud3AbgSwHcArFsakD8pfdYHwIjS5NoRwJNVBtYcADsD2ALZG9BepfblAEwD8LtS/28AYDaAXUufn1E6p5GlbVdt7mvYFv4A7AbgawArJD4/E8CkUj93LE2IZ5U+WwfA/qVx3g7A7QDupu+Ohxar6l/9Veqj8MysYZvjkC00Vi3NyVsCWL302VMAXgfQt9RXEwCcXfostgiag+wFdEVkC5anABxe5XjdAbxVkm1R04s+3wXAQgCDAKyCTLP4nyrbP4psId0T2WLp8Ppcn9hfazCH3e2c+xjAYmQPxD8BgPd+vPd+uvf+W+/9iwBuBrB96TujANzrvX/Ke/8lsoehb4ZzLwTe+0+QLTg9gL8DeN85d49zrlNpk7ne+797779BtlDqAqBT6fM9AJzsvf/Me78QwEUADizt9w3v/SPe+/95798H8GeU+9gYBuAeAId67+8rtQ0G0NF7f6b3/kvv/ezSeR1I33vae3936f75omGvSGFZB8Ai7/3Xic8PAnCm935hqT9/D+AQAPDef+C9v9N7/7n3fgky7UDVvhbNi/q3bfAVgA4A+njvv/HeP+O9Z4fna7z3r3vvP0e2WB1Uw77+4b1/1Xv/VQ33xR4AHqhhHwcBuNp7/7z3fimAUwBs75xbj7Y5z3v/kfd+LoC/ABhT4TfWmtbgCzHSe/+oc255ZHbnJ5xzGyNbEZ4HYACyt/2VkXUYkJlC5tkOvPefO+c+aNrTLhbe+1eRaX3gnOuPzNR0MYCHACyg7T53zgHA6sj8h1YE8G6pDcg0M/NK++kE4BJkC512pc8+qnLoYwA84b0fT209AXQtLZ6N5ZG91RjzIBqaDwB0cM6tkJgQuyIzURtzS21wzq2GbAG8G7I3PgBo55xbvrR4Fs2P+reVUXpuLqamfgCuRdYvt5X8Oa8HcBr16QLa/nNkc3WK2syjewD4Rw2fd0WmNQSQvVQ75z5C5ltq58LHCfdVQ9AaNEEAgNKKdSwym+NQZDbNewB0996vCeAKAPYkfRdAWEU651ZF9hYjmgDv/QxkA21AhU3nIXOe7uC9X6v0t4b3fpPS5+cg0y5t6r1fA8DBKPexcQyAHs65i6rs903a51re+3be+z34NOv360QNPI2sP0cmPp+PbIFq9Ci1AcAvAGwIYOtSX29Xarf+Vn81P+rfVkbpubk6/c0vacfP8N5vhOxZui8ybUy9DlHT/51zK5WO8Whie6DKfeOca4dsofwObcNR4XxfLTOtZhHkMr6P7OK8ikwz8KH3fqlzbisAP6TN7wCwt3Nu21InnIHqD0/RQDjn+jvnfmHqy1IagzHI/AOSeO/fBfAwgAudc2uUIgx6O+dMTd4OmW/XYudcNwC/iuxmCbK3y+2cc+eV2qYAWOKc+41zblXn3PLOuQEK2W9cvPeLkZmeL3POjXTOreacW9E5t7tz7o/ITNanOec6Ouc6lLa9ofT1dsicKz92zq0N4PQqu38PmW+XaCbUv20D59yOpflwOWSBIV8B+LaBdl+1H7cHMM17/xmQLcqQaRR5m5sB/Mg5N9A5tzKAcwFM8N6/Tdv82jm3lnOuB4ATkTlhNwitYRF0bylB0yfI7MiHee9fBnAsgDOdc0uQDbbb7Aulz08AcAsyrdCnyByvWkXIditkCYCtAUx2zn2GbPHzErK3v0ocisyc+QoyU9cdyHyGgMynYAtk6tz7AYyN7cB7/zEyf7HdnXNnlQbaXshs2RZRcDWy6BbRiHjvLwTwcwCnIYsEmgfgeGSOmGcDeAZZpMh0AM+W2oDMdLoqsr6ahCwqhbkEwKhSvrC/NPLPEAnUv22Crsjm0k8AvIxMS3NTA+37YgBjnHMfO+f+jHho/OkAbipts5/3/kFkTvV3IXte90B1zdS9AJ5HFhF+FzJLQ4NgETptGufc6shCAft6799s7vMRQggh2jrOuZnIonZn1vP7KyDTVK3vvZ/TkOdmtAZNUL1wzu1dUtd+B1mI/HRk4XxCCCGEaEScc6sgizSr1wKoqWiziyBkkWSWtKsvgAN9EdReQgghRDPjvV/qvT+/uc+jEoUwhwkhhBBCVKUta4KEEEIIIZJoESSEEEKIQlKnjNEdOnTwvXr1aqRTqR1ffvllkL/9tpzaYMUVVwzy8ssv36TnVBNz5szBokWLWnyOopbQt62RadOmLfLed2zu86hEc/bvN99kCYG/+KJcneSTTz4JMpvk11yznMVg5ZVXBpAf201Na+jf5uzbjz7KErivuuqqoS01/y5dujTIliF+9dVrSkbcuLSGvgUar3+//rqc9Pvjj8vJ9Tt06NBgx7CxDwALFy6MHqOxxndt+7dOi6BevXrhmWeeqf9ZLQN2Md95p5xE8rPPPgtyly5dgrzWWms13YlVYMstt2zuU6gVzdm3rRnn3NzKWzU/Td2/vLBZvDjL2v/SSy+FtkceeSTIPBnvtttuQe7bty8AoHPnzo12npVoDf1b377lPrJFSaytJu68804AwCabbBLa2rdvH2R+CL7++uvV9r3ddtuhEvayu9xyDWu4aA19CzTe2H3//feDfM899wT5Rz/6UYMdg192Lr744iD/+Mc/DnJjje/a9m+Lrh3Gg+aWW24BAGy00UahrWvXcvmQv//970Hedtttgzxq1KhaHy/mJF6biUCIImDjg8cEP+R4DE6ePDnIjz/+OICyZgcAPv20XK9xvfXKdRJvuqmcs800R/vtt19oO+6444LMD96q51j1PEV16jLfff7550HmOfX5558HACxZsiS0DRhQrpbDL6TvvvtukE2DtPHGG4e2c889N8iDBpVrdjb04kdk3HZbyC+ceylhlnVBdMkllwT5tddeCzIvunhB1Bzo7hJCCCFEIdEiSAghhBCFpMWZw15++eUg/+tf/wry6adn9fZWW2216PfYBHbdddcF+cEHsxI17GuQQupzIfJUMi+deeaZQWbfHjaP/OUvWSko9uGbMWNGkN94440gb7311kFed911AQAvvPBCaOOxzWN+5MhUYXORImZm4j78/e9/H+SxY8tl+9gJ2kycbJqcPXt2kD/44IMgs6+QOU/PnVt227j66quDzP4qv/nNbwAAW2yxRY2/B5BLQ13o3bt3kLnP/vnPfwZ5n332AQB07Bj3L07NDzNnZkmib7755tC27777BnmNNdao72k3ONIECSGEEKKQtAhN0FdffRXkp59+Osj8JrLKKqsAiK/0gfwq9LDDDgvyRRddBCDvUN2zZ89lPGMhBJAPaX/llVeCfPbZZwfZnKc33XTT0Na9e/cgpzRITz75JABg1113DW1/+tOfgnzAAQcs07kXhdo4i5933nkAgGnTpoU2DpseMWJEkDfccMMgn3TSSQDyju4c9s7av0WLFgXZtufQb5bffvvtIP/1r38FkHfOPuOMM4LMc7u0PrXnww8/DDJr91ir169fPwBlR/aqpK73T37yEwDA8OHDQxtrAt966626n3AjIU2QEEIIIQqJFkFCCCGEKCQtwhz26KOPBpkdsMwEloJVcSmV7/bbbw+grFoHgEMOOaTG/dbG5CZEEah0z++xxx5B5jwg48aNC3K3bt0A5McVO+V+5zvfCfL8+fOr7Y8dp81ZGsjno6nt+Yoyl156aZCvuOIKAGVHWCDfR7fffnuQLUgFKDvGn3rqqaGN3RvY1Mk5pdZee20AwN/+9rfQdv/99wd51qxZQbacQXz/HH744UF+4oknglzpmSHisBn6yCOPDPIdd9wBANhpp51C22OPPRbdR58+fYJsCVItRxiQv2/WWWedZTzjhkOaICGEEEIUEi2ChBBCCFFImsQcxoVOY7kpOLJg/fXXr3FfdVV3Dxw4EEBeLceFHNkrPlYWQAiRZ8KECUF+6qmngsxRQe3atQvy9773PQDAEUccEdo4fwjPCT/84Q+r7ZvV72yuOfHEE4N88sknA8iXYSg6leYzjsQdMmQIgHJ+FyCfw4cj8bickZlJjj766NDG5VPMFArkTZ2W74kj0DgHHEejWSQRm7q46OZdd90V5DFjxgRZ83nNcBkTfkZzvS/L88TXkPuXt2UTpl17rvXJ0aM77rjjMp17QyJNkBBCCCEKiRZBQgghhCgkTWIOi6kj2QTGnumpshiVVJup9hVWyH4iR6CwWu673/1uxX0IIcqq8Ycffji0cbQWq9c5SZ6Vv9lzzz1DG5fH4agyTqhoFci//PLL0MbmLh6vFmXEZTw4OZvI4HmX50FLgMgJCTnp7DbbbBNkrgA+fvx4AMChhx4a2kPLs5cAABUPSURBVLjv2Q3h17/+dZAtOoiTIrI5lUtkWPTXnDlzor/j7rvvDjKbwzSf1wxHXXIZi2uvvTbIFl3NkXlsimRiUdV//vOfg8zRY5w4s7mRJkgIIYQQhaTZNEH8dtehQ4cgxxyna0Ol3D49evQIbfy2I4SoHeY026VLl9BmafWBfB4YTsm/dOlSAMC9994b2nj8n3POOUHebrvtgnzLLbcAyGuHubAmB1GYJuOll14KbcOGDav8o9owMe05a1Niedb4DZ2L3HJ//e9//wvySiutBCDf36NHjw6yFbAG8gU7n3vuOQB5x1ou4mkaJqDsoN2/f//Qxk7SrIEUNcPPSS6FweVvunbtGmTT3nEBcs4ZxM9SzsX33//+F0A+T1SnTp2CzA7Tze3ALk2QEEIIIQqJFkFCCCGEKCQtomwG5+3hXBKs/qykKqv0+auvvhrkzTffvK6nKNogrKo1B/qqjBw5EkC+UvW5557buCfWQrH8MJxThMcr54Rhs7ap19n0wdebK0pzdXBzumZTNpvG2DnWzmnhwoW1/TltnticyHmdll9++SCbaYSv75QpU4LMTrQnnHBCkM1Z/r777gttO+ywQ5CPOuqoILOJyxxxt95669DGY4z70fJMsSM3O+dyPiNRM++9916QuXQFP4P52lpA0dixY0MbV4bnEin/+Mc/gmzmNTazsemMj2fn1Llz5zr8koZDmiAhhBBCFBItgoQQQghRSJqtbAar5TgiwfISpPZRVw9y257Vstdcc02QOYIklf9ANC8cpcL5LEwVe9ppp4U2TuleqaJ0ygTGUUwWCcWms6JiER0czcnmlaFDhwaZ83JZaQRWh3OEGbdzVXozd3E/cZmbBQsWVGvneaXoxOZKNimtvPLKQTaTEps3rNI7kO8vjjAzEwabN9gswvl+OGfQ7rvvDiAfVcblOPr27Rtki/jjiKL11lsvyGaSE5Xh+ZOfyzwG+b6x7Xk8c4Qmw/eI3Q9sso6VqALyJXaaA2mChBBCCFFItAgSQgghRCFpUHMYq7hYjiVAZDU6p8pPeYjXN4miwV7qluALAC644IIgn3rqqQAqJ14Ujc+zzz4bZCuJAORNMQcffDCAvAl13rx5QWaVeiUsNX/V41kkxNSpU2u9r7YEJ8azpIesGmeV+uLFi4PMKm6LLOJoFJY5iRonajOz5KBBg0IbzwOc7M2OxyV4RHW4cnzHjh2DbOOGXRO4/AVH6rJJbdy4cQCAwYMHhzaOGORxxVFjluCQzTNcgoWTXlrCRSujAuTNN/z84HuQ53yRwdF/Np6BvMmZ3UJibigs8/zAz01zReAEqjEzG5CfT5oDaYKEEEIIUUi0CBJCCCFEIWlQc1hKZcZYNMD06dND24EHHhjdliMOTO3GEQ2c7IvVeZVMZ8cff3yQWdV+0kknAUhXsheNg6ndubI41xzihGq33XZbkC3q6IgjjghtbLay+jVA2azFNZBmzZoV5L/85S9B3nnnnaP7KyIceWOqcVZfczQWJzXkyvA2Zjk6hE3S3CdszjDzCM8lXCeKkyzasXlfrJ6XKTuD+4XNYWYaYTMTm57ZxDVgwIBq27D5iqPK2FzC8/XAgQMBAC+++GJo4/mez9PuA4404ii2lCxqhiPseC7k559dT4605XGVirC1+4i/x8lSN9hgg/qedoMjTZAQQgghCkmjOUbzmwE7Tz7yyCMA8m/3Vp0ayDtrsUbH3gJ4ZclvBuzEx9j2vGLt06dPkA855JAgm5Zhq622Cm3sqMmOeWLZYKdWyx/C+Uc4Lw+/3R1zzDFBvv322wEAxx13XGjbb7/9gszlUUxrxG+m/NbLeaSef/75INv9wzlK+B5t6/D1Mi0Lj0u+FtxnrLGx8cRvmzyueH5gzGGa99W+ffsgs1bY9sHnwP3b3M6Xzcm0adOC3LNnzyCzZsbKVLA2j7VqrDXgeX7jjTcGkHeo5nuG+2j11VcPsmmhWCPIztesYTQtFJ8PO+9yP1t1egAYMWIERBrWBHKOJu4T60vW0vGzlO8F7pOYNYaf0ewE39xIEySEEEKIQqJFkBBCCCEKSYOawyZMmBBkrhjMZoltttkGQN7pjlVtrCZjda2pwdnBkR3wWA3OuQnMlMImFU63v//++wfZVLBcMZmrGbOakB2q5UidhlXYbCLlPEDmLM9mSs7xMXHixCDfdddd1Y7BfXvWWWcFmU0u1nebbLJJaGPzJqeCZ+dcMwOwCvjyyy+vdg5tFe4/Mzmx+YrNHexEHbv2sUAH/hzI5/mxXCLslMtqdh7zdp6snpc5LIODDNidgOdJ42c/+1mQOV8W95GZloF8Pxo8L3N/ch+YeZnnzu7duweZ833ts88+APLlbNgVgp8Zd9xxR5BlDqsZDlRImbjtGZzK+8ftsfuJ5wce/6lcfM2BNEFCCCGEKCRaBAkhhBCikDSIOey6664DkI/951w8rCYzVWoqvTl7kMciU1h9mirTEYs2YRUeq2vZlGLqc46gYJU6R7FNnjw5yBZZ1NzVcFsKbOq6/vrrg8yqeE51b33AUVmTJk0KMpuievfuHWQzh/D9w9FDr776apDN1MkRaHwfcGQDm2FjcMr3tg6rsG3ssamCzdOs+l5//fWDbOp1vsZsiuS5gM0uNhewmZT7lE0tNub5XuFzLzK33nprkLt16xbkWE4dvvc5rwvD19jkVNQl74PnaLtXuI/YDYGPYS4Us2fPDm2cR8hyDgHAzTffHOQrr7wyev4ig83J/Hzka2/Pbt6W7xHuUzad2zjmz/l7HCnY3EgTJIQQQohCokWQEEIIIQpJvc1h559/fpAtuodVX88880yQOTGimURYdc4qU4484P3FIkxYHZ6qgmsyq+058R2r5Uzlx97xvO2wYcOCfOaZZwb5iiuuAAD86le/QluAzYlmkuBrygnJuHRB586dAeRNhZyMkk0gbFKxqCJWz2+22WZB5kgQlq2fOFEbRzyw6cxkNp1xJfNU9XHbH5thUmaCtgibOSyiM1WagE1ZjN1D3De8DzaHsanRxizvl6POONrQ5iA2ubJZpsjw+OCkhxx1Z6ZOMz0B+b5PVR83Ewj355tvvhlknq/ZBG59y/3F+41VuP/ud78b2thcztvy/CBqhsdPrHI8EC+LwaYxfo7HtuFt2V2En6vNjTRBQgghhCgkWgQJIYQQopDU2xx2wQUXBNmiozgyh9WjrHY18xObJdhrnE0mMdU2b5uK8koldqq6LyCfJC8W6cAJvDgZ3E477RTku+++GwAwd+7c0MYRZq2Bb7/9NpiEzLQAlM2THOHHJjBWk1uNIjZ7TJ8+Pciswma1tUV98H3CavSU+cXaeVs2cfF5GHyMVLQCJ1/r0qULAGDw4MGhrW/fvtHzaYuwOttgkxTfKzxuWI1u6vW33347tHGyVD5GLGIlVSWcx7bdu2xOU0XxDDZZcB+xSeKggw4CkK/flUqKx3X/bH7kyNnU/cHj0fqZ+4vNzDyv2LzLbhWMjVE+H1EZ7ht+1vK4sTmS5382T3NEWKzSPJs4+XscCdjcSBMkhBBCiEJSb01QrGrwhhtuGNpSb2z2NpDKS8C5INhh0jREvLJkbRJvy9vY6pS1RqlyG3ZufO6psgDbbrstqnL11VcHmcs3tAa+/vrroPXhFb1dK9bQsbaFNTr29sbXjD8fNWpU9NixN3bW1rHTHr8h2n0T01akSOWR4fsnBt9TfD5tnZhjJF+3VK4RvkamOeB9cQkF1jLwvWD3IX/OY5ffTu2NlZ06U9XpiwZfU+4vbjctPo9X1tKwBokdkfv16wcgnb+JtTs8X5sGnrURKa2CaRA22mij2M/LWSBYC2X7SznsFxGeV1krzrm4eFzZWOd5ty5jjO837lPWJtq9lXKybmykCRJCCCFEIdEiSAghhBCFpE7msCVLluDxxx8HAIwcOTK0myqNnWDZ4ZjVlQZXcme1LDsUs4nC1JysMmW1fKqUgangWFXPpjw+hqnw+XxYDczquldeeSXIpopnh+Frrrmm2rFaMt98801QTXM+B1ONvvDCC9XagHwfmKqVTSHc9+yIzP1YyYGVVbisPo99j48dc6hl9Syfe8zsw9u/++67oa1Izpd8XcxczA61bNZih3LuJzMlsgMrm5Zjeb342DyGONcM36d2P8W+X3Ri5m0gP66GDBkCIF+2KFYypSoPPfQQgHx+NzaR9OjRI8g8Hi1PEM/LqRxPNq9yfjLmqaeeirbbb5E5rAw/l9nEz/0QKxvEZlIe87wt9689I3i/fF/wsW0t0FzBRNIECSGEEKKQaBEkhBBCiEJSJ33xiiuuGKoQc3p1U0tbpW4gb+6IlTXgCAI2LXG5BM49YREisegRIK/6jlWfT3nFx1Ku8zF4v2xK4YgVU+2NHj06tO21114AgL/97W9oDSxduhQzZswAkM/ns8kmmwDImxnYDMH9GDNPpT6PbcttqQrgsUgwNs8tXLgwyKm+i7WxupfbbR8czcC/v63D6m67Fqm8TDwe2axiZjIegzw/MDyurE+45E2qWrmZw5UnqDrchzHXBKCcw+nf//53dNvU2GS3BmP48OFB5jmcx6OZS9m0wiU92HTy4IMPAsjn5+L5iO8Py1UGlJ87qd9cRG666aYgczR3aoyZGTT1Od9bseryPJ65z9hEOWXKFAAyhwkhhBBCNClaBAkhhBCikNTJHLbKKquE5Fis+jbzUixRFZD3BLeoEFaTcVQJq9FNTQaUKwhzlEIqSR4f21R3rM5lExjvz7ZhtW1Kbc+Jv+ycOaFga6N9+/b4wQ9+AADYd999Q7uVAmFTJxNLIpiq3l3JPMHqUr6+DKtcYxErfGz+PJbgkNP4s4qft7XoFlapc8mH1pYUs67wWLDrwmOCy41w9CSPbxuDnAjVzKxV4XvETC025wB5cxffIxaFwueQMqkWBZuXOFKPTcccuWWRva+99lpoGzhwYJD5Wk6dOjXIlsCQTVU8Brk/2fTVu3dvAHlzGZ+bfQ6Unw/8fOH7jvc7dOjQILMpXmRwhB1fQ772jJklU0kP+Xvc77yNwc92HrvPPvssgLw7SVMiTZAQQgghCkm9E2mwY5PJ/PbHWhF+I7e3Es67wvBbCztK2T5YI8EOqqzdYScuO6dYG5BfvcbyI/Bqmd+AeQXc1hxluW/tDa9IRUNFmZhDZCpVfqwYMcNv7Lzf1DamAeDSC1yElccdO7YbRXeMtvmK5zCe+2KBAxMnTgxt+++/f5DZGZaDV0wzx/My9xffKzy3W6AB52njvuWcUqZB5HPjskU8L6fyGRWdWNBPrGQUkL9HbJymcrwx/NywfadydfH+LJiFxzDfs42NNEFCCCGEKCRaBAkhhBCikNTbHMbqLFN/srMTm5liVaLZuZTVp1yNmFO8G5xLgp1yWQ1aKXcNq/NYLW+qeFbrsTqXv8dqezt/duAUoi3Ajsam4k45u/IYjFUEZ6dm/jyWX4T3x+Oct2WVuZlXeN5JOdcXhVgFcO47dlS3eZfnYnaSZkdlnhPNTMamSXZg5oACzh80btw4APmyClx6g80oRx55JADg8ssvD23sbmE52arug014RcdM1dz//Jzj8cjX3p6P7P6RGq+8b+tX/h73Ncu2DZvTZQ4TQgghhGhktAgSQgghRCGptzlsiy22CPLkyZMB5PP9sNd/KgeBwWprNmXx90y1yapdVpOzijZWEZfbUpWmYxXnWWXIqnY+NzMZcESDEG0BNo9YBAlHcXBUScqMbOOD5wSO5uRxzNhY53HHx+NxHEvTz9sWEbtu3C/cB7EyBrfeemuTnNv222+/TN/ne4ZNOVbWCVB0IGOm0VTpCn6esWwm8FieNSBvcuTcQPYM5Xkg9szkdp5rmhJpgoQQQghRSLQIEkIIIUQhqbc5zNKlA8ADDzwAIK8mZ7WklcoA4lXkUx7rHLllZiveV0oVx/szVRur5Xi/bPoy9TF/zufDUQ8vvPBCkDfeeGMAbS9pohAc0TVr1qxqbRwRaSVWgHzUmEVucRuXYUglVDPTDUcYcdXyzp07B9migh577LHQtqwml9aOzcdcouTll18O8siRI5v8nBqKUaNGBZlNfHyPpcr3FBF73vLzjMcgR3zFygnFTM9V98f7sOcuP1/ZbBlLcMnzByfkbGykCRJCCCFEIdEiSAghhBCFpN7mMI7SOvbYYwEAd999d3RbTmxlKjNWqXN1WZZZBcfbG1ZzpOrnsQSHbOKK1QgDygma+BzMBADka99svfXWQR48eHB0f0K0dvr06RPkM844o9rnzzzzTJDHjx8f5O7duwfZzFlsqvjPf/4TZJ4ftttuuyDPnz8fQL7GESfD22mnnYJ8/PHHA8ir2VlVX0TsWvHcx24Ihx9+eLXvpJLb1ZdUjbgYbGaJtfP57LvvvkG+7LLLgtypU6cgc0LeovPOO+8AyI81HiuxiGqWeQyy+Zq35ed1LDIv9gznfadqEjY20gQJIYQQopDUWxPEWHkLrjp85513Bpm1KeY8nKo0zPkf2PHZ3gbYmStVcZ4dlO1tkFe6qVVtbEXKK9pdd901yIMGDYIQRYfHMTs28hizMdSrV6/QxkEGPMZiQQ3mWA0A06dPD/KIESOqnU/RtT/MlVdeCSD/hv7uu+8GOVUN3KiLFqchSB0vpiHgqvVz5swJMjvqW86jLbfcsoHOsPUybdo0AGXtKpDXzPA9wmM6FrTAz2XWBMXKlPB4Zgd2fo7bNjNnzqzwKxoHaYKEEEIIUUi0CBJCCCFEIWkQc5jB5S+s8i8AzJs3L8iWg4DVbKzOZPUZm7ViVWU5LxE71XE1WlPR8fF4X6w+N2dvrl7Pzpyci0iIomFjjM0WO+64Y5D79+8fZHPEBMpmMjZf87asUufvmbqeTd377LNPkDn/TdVzrHqeReTGG28EkHcFGDNmTJAHDhxY7TsN4Qzd0MTOiSvHswsF3x9s+is6lhOKy9Vwzi02X/P1tucxm8t4W4bNlvbs5ucrO62z2dL2zeO8KWl5d7wQQgghRBOgRZAQQgghColL5WaIbuzc+wDmVtxQMD299x0rb9a8qG/rjfq3bdPi+1d9W29afN8C6t9loFb9W6dFkBBCCCFEW0HmMCGEEEIUEi2ChBBCCFFItAgSQgghRCHRIkgIIYQQhUSLICGEEEIUEi2ChBBCCFFItAgSQgghRCHRIkgIIYQQhUSLICGEEEIUkv8PW1uC7XrxP2QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# How many images to display.\n", + "numbers_to_display = 25\n", + "\n", + "# Calculate the number of cells that will hold all the images.\n", + "num_cells = math.ceil(math.sqrt(numbers_to_display))\n", + "\n", + "# Make the plot a little bit bigger than default one.\n", + "plt.figure(figsize=(10, 10))\n", + "\n", + "# Go through the first images in a training set and plot them.\n", + "for plot_index in range(numbers_to_display):\n", + " # Extract image data.\n", + " digit = data[plot_index:plot_index + 1].values\n", + " digit_label = digit[0][0]\n", + " digit_pixels = digit[0][1:]\n", + "\n", + " # Calculate image size (remember that each picture has square proportions).\n", + " image_size = int(math.sqrt(digit_pixels.shape[0]))\n", + " \n", + " # Convert image vector into the matrix of pixels.\n", + " frame = digit_pixels.reshape((image_size, image_size))\n", + " \n", + " # Plot the image matrix.\n", + " plt.subplot(num_cells, num_cells, plot_index + 1)\n", + " plt.imshow(frame, cmap='Greys')\n", + " plt.title(label_map[digit_label])\n", + " plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False)\n", + "\n", + "# Plot all subplots.\n", + "plt.subplots_adjust(hspace=0.5, wspace=0.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Split the Data Into Training and Test Sets\n", + "\n", + "In this step we will split our dataset into _training_ and _testing_ subsets (in proportion 80/20%).\n", + "\n", + "Training data set will be used for training of our model. Testing dataset will be used for validating of the model. All data from testing dataset will be new to model and we may check how accurate are model predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Split data set on training and test sets with proportions 80/20.\n", + "# Function sample() returns a random sample of items.\n", + "pd_train_data = data.sample(frac=0.8)\n", + "pd_test_data = data.drop(pd_train_data.index)\n", + "\n", + "# Convert training and testing data from Pandas to NumPy format.\n", + "train_data = pd_train_data.values\n", + "test_data = pd_test_data.values\n", + "\n", + "# Extract training/test labels and features.\n", + "num_training_examples = 500\n", + "\n", + "x_train = train_data[:num_training_examples, 1:]\n", + "y_train = train_data[:num_training_examples, [0]]\n", + "\n", + "x_test = test_data[:, 1:]\n", + "y_test = test_data[:, [0]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Init and Train MLP Model\n", + "\n", + "> ☝🏻 This is the place where you might want to play with model configuration.\n", + "\n", + "> ⚠️ Be aware though that the training of the neural network with current parameters may take up to 15 minutes depending on the hardware. \n", + "\n", + "- `layers` - configuration of the multilayer perceptron layers (array of numbers where every number represents the number of nayron in specific layer).\n", + "- `max_iterations` - this is the maximum number of iterations that gradient descent algorithm will use to find the minimum of a cost function. Low numbers may prevent gradient descent from reaching the minimum. High numbers will make the algorithm work longer without improving its accuracy.\n", + "- `regularization_param` - parameter that will fight overfitting. The higher the parameter, the simplier is the model will be.\n", + "- `normalize_data` - boolean flag that indicates whether data normalization is needed or not.\n", + "- `alpha` - the size of gradient descent steps. You may need to reduce the step size if gradient descent can't find the cost function minimum. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzt3XlwHOd55/HvgxnMYDC4gQEIXgJJUaREyrooWrJsWZZtRXIcHxWv7ayTOGtnuZvEiR07ycabKmeTqk3iteN1DpdjlY/YiXwkspwoilaHdUayRImkqIOiKIn3ARAHAeIGcTz7RzcgkMQlkY0Ben6fqilgehrTT6up39vzzttvm7sjIiLxV5TvAkREZH4o8EVECoQCX0SkQCjwRUQKhAJfRKRAKPBFRAqEAl9EpEAo8EVECoQCX0SkQCTzXcBkdXV13tTUlO8yREQWje3bt7e7e24u6y6owG9qamLbtm35LkNEZNEws4NzXVddOiIiBUKBLyJSIBT4IiIFQoEvIlIgFPgiIgVCgS8iUiAU+CIiBSIWgf/XD7zCIy+35bsMEZEFLRaB/41H9vKoAl9EZEaxCPxMKkn/qdF8lyEisqDFIvCz6QQDp0byXYaIyIIWi8DPFCfo0xm+iMiMYhH4pakEAwp8EZEZxSLws+kk/erSERGZUSwCP1Oc0Je2IiKziEXgl6YU+CIis4lH4Kc1LFNEZDaRBb6ZrTOznZMe3Wb2mSi2VVqsYZkiIrOJ7BaH7r4HuBzAzBLAUeAnUWyrNJWgf3gUd8fMotiEiMiiN19dOu8E9rr7nO+9+HpkUkncYXB4LIq3FxGJhfkK/I8CP4jqzbPpBICGZoqIzCDywDezFPA+4J+neX2LmW0zs21tbW9sArRM8Xjg64tbEZHpzMcZ/i3ADnc/PtWL7n6ru29y9025XO4NbaA0FXwVocAXEZnefAT+LxFhdw5Aqbp0RERmFWngm1kWeDdwR5TbKVWXjojIrCIblgng7n1AbZTbAHXpiIjMRUyutFWXjojIbOIR+Cl16YiIzCYegV+sLh0RkdnEIvAz4Rm+5tMREZleLAI/lSyiOGG6zaGIyAxiEfgQXG2r2xyKiEwvNoFfmtJtDkVEZhKfwE8n1KUjIjKD+AR+Sl06IiIziU/gF6tLR0RkJvEJ/LRuZC4iMpP4BH5KgS8iMpPYBH6mOKk+fBGRGcQm8EtTCfrUhy8iMq34BL768EVEZhSfwC9OcmpkjJHRsXyXIiKyIMUn8MenSB7WWb6IyFTiE/jp8RkzFfgiIlOJT+DrJigiIjOKTeBnJm6CopE6IiJTiU3gZ9M6wxcRmUlsAl9dOiIiM4tN4I936eg2hyIiU4tN4I936fQN6QxfRGQqsQn8jMbhi4jMKDaBX5pSl46IyEwiDXwzqzKz283sJTPbbWbXRrWtTLG6dEREZpKM+P3/CrjH3T9kZimgNKoNJYqMkuIiBtSlIyIypcgC38wqgeuBXwNw91PAqai2B0G3ji68EhGZWpRdOquANuA7ZvaMmX3TzLIRbo9McYJ+demIiEwpysBPAlcCX3f3K4A+4A/PXMnMtpjZNjPb1tbWdk4bzGpOfBGRaUUZ+EeAI+6+NXx+O0EDcBp3v9XdN7n7plwud04bzKSSGpYpIjKNyALf3VuAw2a2Llz0TuDFqLYHUFqcoH9IffgiIlOJepTObwO3hSN09gH/JcqNZdMJjnUNR7kJEZFFK9LAd/edwKYotzFZJpXUsEwRkWnE5kpbCLp0+tSlIyIypVgFfiaV0C0ORUSmEavAz6YT9A+P4u75LkVEZMGJVeCXppKMjjlDI2P5LkVEZMGJVeCPT6Cmbh0RkbPFKvAn7murkToiImeJVeBnwjnxdfGViMjZYhX4pcW6kbmIyHTiFfhpBb6IyHTiFfjjXTqaE19E5CwxC3yd4YuITCdWga9hmSIi04tV4GfTQZdOn7p0RETOEqvAV5eOiMj0YhX46WQRZurSERGZSqwC38zIppI6wxcRmUKsAh+CKZI1J76IyNliF/g1pSk6+0/luwwRkQUndoGfK0/T1juU7zJERBaceAZ+jwJfRORMsQ183fVKROR08Qv8sjRDI2N0D+qLWxGRyeIX+OVpAHXriIicQYEvIlIg4hv4GqkjInKa2AV+vc7wRUSmlIzyzc3sANADjAIj7r4pyu0BVGaKKU6YAl9E5AyRBn7oHe7ePg/bAYL5dHJlGosvInKm2HXpgK62FRGZStSB78B9ZrbdzLZEvK0JutpWRORsUQf+W939SuAW4LfM7PozVzCzLWa2zcy2tbW1nZeNKvBFRM4WaeC7+9HwZyvwE2DzFOvc6u6b3H1TLpc7L9vNlaXp6BtiZHTsvLyfiEgcRBb4ZpY1s/Lx34GbgBei2t5kufI07nCiT9Mki4iMi3KUTgPwEzMb38733f2eCLc3Yfziq9aeIeorSuZjkyIiC15kge/u+4DLonr/meTKg5DXSB0RkdfEclimrrYVETlbLAO/rkyBLyJypjkFvpn9w1yWLRSZVILydFKBLyIyyVzP8DdMfmJmCeCq81/O+aOrbUVETjdj4JvZ582sB3iTmXWHjx6gFfjXeanwDarTxVciIqeZMfDd/c/dvRz4krtXhI9yd69198/PU41vSK48TbsCX0Rkwly7dO4KL57CzH7ZzL5iZhdEWNc5y5WlaVXgi4hMmGvgfx3oN7PLgM8Be4HvRVbVeVBfkaZ3aIT+U7qZuYgIzD3wR9zdgfcDf+vuXwPKoyvr3OXCoZntPZpeQUQE5h74PWb2eeBXgH83syKgOLqyzt1r97YdzHMlIiILw1wD/yPAEPAJd28BlgNfiqyq8yCnq21FRE4zp8APQ/42oNLM3gsMuvuC7sNX4IuInG6uV9p+GHgK+E/Ah4GtZvahKAs7V7XZNEWmwBcRGTfX2TL/CLg6vJEJZpYDfgrcHlVh5ypRZNRkdbWtiMi4ufbhF42Hfajjdfxt3jRUpDnWpS9tRURg7mf495jZvcAPwucfAe6OpqTz56KGcp7c15HvMkREFoTZ5tK50Myuc/ffB74BvCl8PAHcOg/1nZP1S8ppPjlIV7/G4ouIzNYt81WgG8Dd73D3z7r7ZwluSP7VqIs7V+sbKwB4qaUnz5WIiOTfbIHf4O7Pn7kwXNYUSUXn0cVLgouBdzd357kSEZH8my3wq2Z4LXM+C4lCrjxNTTbFS806wxcRmS3wt5nZfz1zoZn9OrA9mpLOHzNj/ZJyXmrRGb6IyGyjdD4D/MTMPsZrAb8JSAEfjLKw82X9kgq+/9RBRsecRJHluxwRkbyZMfDd/TjwFjN7B7AxXPzv7v5g5JWdJxc3ljM4PMbBjj5W58ryXY6ISN7MaRy+uz8EPBRxLZG4eNJIHQW+iBSyBX+17Lm6sL6MIoOXNFJHRApc7AO/pDjB6lwZL2qkjogUuMgD38wSZvaMmd0V9bamo5E6IiLzc4b/aWD3PGxnWhc3VnCkc4DuweF8liEikleRBr6ZLQd+HvhmlNuZzfrwituXNcWCiBSwqM/wvwr8ATAW8XZmND5SZ7cCX0QKWGSBH94KsdXdZ7wi18y2mNk2M9vW1tYWSS2NlSVUlCQ1UkdEClqUZ/jXAe8zswPAD4Ebzewfz1zJ3W91903uvimXy0VSiJlxcWMFzx7piuT9RUQWg8gC390/7+7L3b0J+CjwoLv/clTbm83b1+V44Wg3zScH8lWCiEhexX4c/ribLlkCwP0vHs9zJSIi+TEvge/uD7v7e+djW9O5sL6M1bks9+1S4ItIYSqYM3wIzvKf3NfByX6NxxeRwlNQgf9zGxoYGXMe2tOa71JEROZdQQX+ZcurqC9Pc++ulnyXIiIy7woq8IuKjHdf0sAjL7cxODya73JEROZVQQU+wE0bltB/apTHX23PdykiIvOq4AL/2tW1lKeTGq0jIgWn4AI/lSzinRfXc/fzzRqtIyIFpeACH2DL9WvoGRrhW4/vz3cpIiLzpiAD/5KlFdy8YQnfeWy/zvJFpGAUZOADfPpda3WWLyIFpWAD/+LGCm7ZqLN8ESkcBRv4AL/zTp3li0jhKOjAHz/L/+Z/7GNvW2++yxERiVRBBz7AF37hEtLJIj71/Wd09a2IxFrBB35jZYa//PBl7G7u5s/u3p3vckREIlPwgQ9w4/oGfv2tq/jeEwe554XmfJcjIhIJBX7oD25ez2XLK/n9f36OHYc6812OiMh5p8APpZJF/N2vXEVNWYpf/dZTPH3gRL5LEhE5rxT4kzRWZvjRlmupr0jz8W8/xRN7O/JdkojIeaPAP8OSyhJ+uOUallVl+Ph3nuIHTx3C3fNdlojIOVPgT6G+vIQf/bdr2dxUw+fveJ7P/GgnvUMj+S5LROScKPCnUZNN8d1PbOZz776If3v2GO/7m8d4cp+6eERk8VLgzyBRZPz2O9dy269fw9DIGB+99Uk++6OdtPUM5bs0EZHXTYE/B9euqeWnn307n3rHhfzbc8e48S8f5m8ffEXdPCKyqCjw5yiTSvB7P7eOez9zPW9eVcuX73uZ6//PQ3zjkb30KfhFZBGwhTQCZdOmTb5t27Z8lzEnOw938ZX7X+bRl9uoKEnysWsu4Nfe0kRDRUm+SxORAmJm291905zWjSrwzawEeBRIA0ngdnf/45n+ZjEF/rgdhzr55n/s454XWkgUGTdvbOSX37ySzatqMLN8lyciMbdQAt+ArLv3mlkx8BjwaXd/crq/WYyBP+5QRz9//7MD3L79MN2DI6ytL+MjV6/gA1cso64sne/yRCSmFkTgn7YRs1KCwP8Nd9863XqLOfDHDZwa5d+eO8b3tx5i5+EukkXGDevq+cUrl/GO9fWUFCfyXaKIxMjrCfxkxIUkgO3AhcDXZgr7uMikEnx40wo+vGkFrxzv4fbtR7jjmaP8dPdxykuS3LJxCe+7bBnXrK4hmdB35iIyf+brDL8K+Anw2+7+whmvbQG2AKxcufKqgwcPRl7PfBsZHeOJfR38yzPHuHdXC71DI9RmU9y8cQk/f2kjm1cp/EXkjVlwXToAZvYFoN/dvzzdOnHo0pnN4PAoD+9p5a7nmnlgdysDw6NUlxbz7ksauHnjEt6ypk7dPiIyZwuiS8fMcsCwu3eZWQZ4N/DFqLa3WJQUJ7h5YyM3b2yk/9QIj+xp455dLdz9fAv/tO0I2VSCG9bVc9OGBm64qJ7K0uJ8lywiMRFlH34j8N2wH78I+Cd3vyvC7S06pakkt1zayC2XNjI0MsoTezu4d9dx7n/xOP/+fDOJIuPqpmredXEDN66vZ3WuLN8li8gipguvFqCxMefZI138dHcQ/i8f7wVgVV2Wd6yr58b19Vy9qpp0Ul0/IoVuQfbhz4UCf2qHT/Tz4EutPPBSK0/u6+DUyBilqQRvWVPHDetyvP2iHCtqSvNdpojkgQI/xvpPjfDE3g4e3tPGQ3taOdI5AMDquizXX5TjbWvruGZ1Ldl0pCNuRWSBUOAXCHdnf3sfD+9p45GX29i6v4PB4TGKE8YVK6t524V1vO2iHJcuqyRRpGkeROJIgV+gBodH2X6wk0dfaeOxV9rZdawbgPKSJNeuruW6C+u47sJa1uTKNM+PSEwsiGGZMv9KihNhqNfBLdDRO8Tjezv42avtPPZqO/e9eByA+vI0b1lTy7Vrarl2dR0rajJqAEQKgM7wC8ihjn5+tredx/d28MTedtp7TwGwrCrDm1fXcM3qWq5dXcvyajUAIouFunRkVu7Oq629PLGvgyf2drB1/wlO9AUNwNLKEjavquHNq2vZvKqG1XVZNQAiC5QCX163sTHn1bZentzXwdZ9J9i6v2PiE0BdWYqrm2q4uqmGzatqWL+kXHP/iCwQCnw5Z+7O3rY+nj5wgqf3n2Dr/hMc7QqGgGZTCa68oJqrLqjm6qYaLl9RpWGgInmiwJdIHOsaCBqAAyfYdqCTPcd7cIdEkXFxYzlXrayeaAiWVel7AJH5oMCXedE9OMyOg53sONjJtoOd7DzcRf+pUSAYCXTlymquvKCKK1ZWc+mySs0CKhIBDcuUeVFRUswN6+q5YV09EMz7/1JLDzsOBY3A9kOd3LOrBYBkkXHJ0gquWFHF5SuruHxFNU21pfoUIDKPdIYvkWrrGWLn4S52HOpk56Eunj3y2qeAykwxl62o4vIVVVy+opI3La/S/X9FXid16ciCNTrmvNLaw85DXew8HDxePt7DWPjPcFlVhsvC8H/T8ko2LqukokT3BBCZjrp0ZMFKFBnrl1SwfkkFH928EoC+oRF2Hetm5+FOnj1ykueOdHH38y0Tf7O6Lsulyyu5dFnw2LCskjKNChJ53fR/jeRdNp1k86pgjP+4zr5TPHf0JM8f6eLZIyd5av8J/nXnMQDMgnsDbFw63gBUsGFpJZUZfRIQmYkCXxak6myKt18UzPU/rq1niOePdvHC0W6eP3qSpw+c4M5nj028vqImw4bGSjYsrZhoBOrL0/piWCSkwJdFI1ee5sb1Ddy4vmFiWUfvELuOBQ3Ai8e62XXs5MTIIIDabIpLllZwSWMFF4eP1bksxbpSWAqQAl8WtdqyNNdflOP6SZ8EegaHeamlZ6IBeLG5m+88foBTo2MApJJFrK0vm2gALl5SzvrGCmqyqXzthsi8UOBL7JSXFE/M/TNueHSMfW197G7uZndzNy82d/PwnlZu335kYp1ceZr1S8pZ11DOuiXlrF9SwdqGMl0wJrGhYZlS0Np6htjT0sPu5m5eaulhz/FuXjney9BI8GmgyKCpNstFDeVc1FDGRWGD0FSnbiFZGDQsU2SOcuVpcuVp3rq2bmLZ6JhzoKOPPS09vNTSwyvHe9hzvIf7XmyZuF6gOGGsqsuytr6ctQ1lXNRQztr6Mi6ozZJKqiGQhUmBL3KGRJGxJlfGmlwZ77m0cWL54PAoe9t6eeV4L3uOBw3BC8dOcvcLzYx/UE4WGU11WdbWl3Fh+Bh/r0xKXUOSXwp8kTkqKU6wYWklG5ZWnrZ84FTYELT28PLxXl5t7WVPSw/37nrtE4FZcBXxePgHDUGWNfVl1GZTGjoq80KBL3KOMqkEG5cF00BMNjQyyoH2fl5tDRqBvW3Bz637OxgcHptYr6IkyepcGatzWdbkylhdl2VVLktTbVZfGMt5pcAXiUg6mWDdkmDEz2RjY86xkwPsa+vj1dZe9rX3sq+tj8dfbeeOHUcn1jODpZUZVueyrKoLHk11WVbVZllendFdx+R1iyzwzWwF8D2gAXDgVnf/q6i2J7JYFBUZy6tLWV5detr1AxDMK7S/vY997X3sa+tlf3sf+9v7uGPHUXqHRibWSxYZK2tKaarLckFtKavqslxQm6WptpRlVWoMZGpRnuGPAJ9z9x1mVg5sN7P73f3FCLcpsqhl08kpu4fcnfbeUxzoCBqAA+19HOjoY19bH0/u65iYchqCxmB5dYaVYQOwsqaUC2qDhmFlTam6iQpYZIHv7s1Ac/h7j5ntBpYBCnyR18nMJoaQTr6gDILGoK1niP3tfRw80c/Bjj4OtPdz8EQfzxzspGfSJwMI7kZ2QW0pK2pKuaAmy8raDCtrgue5Ms09FGfz0odvZk3AFcDW+dieSCExM+orSqivKOHNq2tPe83d6ewf5mBHH4dO9HOwo59DJ4LHz17t4I7uo6etX1JcxIrqIPxXVGdYUVPK8uoMy8NlmpF0cYs88M2sDPgx8Bl3757i9S3AFoCVK1dGXY5IQTEzarIparIprlhZfdbrg8OjHO0a4FBHP4c7+zkcNgaHTwzw9P4TZ306KC9Jht8/ZCYaguXVGZZVBc8rM8X6hLCARTq1gpkVA3cB97r7V2ZbX1MriCwc7s7JgWGOdA5w+ETQIBztHOBw5wBHOvs50jlw2ncHANlUguXVpSytKmFZdYZlVaXhzxKWVmWoLy8hUaQG4XxaEFMrWNDMfwvYPZewF5GFxcyoKk1RVZo660tkCBqErv6gQTjS2c/RrgGOdA5wtGuAo50D7DjUxcmB4dP+JllkNFSUsKwqw9KqEhqrMiytyrC0soTGymCZPiVEJ8ouneuAXwGeN7Od4bL/6e53R7hNEZknZkZ1NkV1NsWly89uEAB6h0Zo7hrgSNgINJ8c4FjXIEe7Bth+qJPm55oZGTu9lyFTnKCxqoSllRmWVJawtLKEJZUZGitLaKwqobEiQ0UmqUbhDYhylM5jgI6ISAErSydZ21DO2obyKV8fG3Paeoc41jVA88nBiZ/jDcNjr7TT2jPIGW1C0ChUltBQURL8rCxhSUXwfEn4e648re6jM+hKWxHJm6Kwi6ehooQrpllneHSM1p4hWk4O0hI2Bi0nB2nuHqS5a4Ct+09wvHvwrE8KRRbMhjq5IRjfVkNFOvhZXlJQnxYU+CKyoBUnilhWFYwEms7YmNPeN8Txk0O0dA/S0j3I8ZODHA9/P9DRx9b9J876TgEgnSyaaATqy0uoD3+e/jwdi+8WFPgisugVFVkQzuUlXMrU3ydAMLPp8e7B4BND9yCt4e/Hu4PGYXdLN4+8PHTaNBbjUskicmXpiQYg2F5wMVx9RZpcWdCNVFuWWrA3x1Hgi0jByKQSNIWT0M2kb2hkoiFo7RmitXuQtp6h4PeewXBKi6k/MQDUZFPkytITV0fnytPkytLUlacmGoa6shTVpSmK5vF7BgW+iMgZsukkq9JJVs3SMAyNjNLee2qiQWjrHaK1O/g53kDsb++jrXeIUyNjZ/19osiozaZoqs3yT//92qh2Z4ICX0TkDUonE7N+vwDBNQvdgyO09w7RHjYM7T1DtPeeoq1niPn6akCBLyISMTOjMlNMZaaYNbmyvNWxML9ZEBGR806BLyJSIBT4IiIFQoEvIlIgFPgiIgVCgS8iUiAU+CIiBUKBLyJSICK9xeHrZWZtwME3+Od1QPt5LGcxKMR9hsLc70LcZyjM/X69+3yBu+fmsuKCCvxzYWbb5npfx7goxH2GwtzvQtxnKMz9jnKf1aUjIlIgFPgiIgUiToF/a74LyINC3GcozP0uxH2GwtzvyPY5Nn34IiIyszid4YuIyAwWfeCb2c1mtsfMXjWzP8x3PVExsxVm9pCZvWhmu8zs0+HyGjO738xeCX9W57vW883MEmb2jJndFT5fZWZbw2P+IzNL5bvG883MqszsdjN7ycx2m9m1cT/WZva74b/tF8zsB2ZWEsdjbWbfNrNWM3th0rIpj60F/jrc/+fM7Mpz2faiDnwzSwBfA24BLgF+ycwuyW9VkRkBPufulwDXAL8V7usfAg+4+1rggfB53Hwa2D3p+ReB/+vuFwKdwCfzUlW0/gq4x93XA5cR7H9sj7WZLQN+B9jk7huBBPBR4nms/x64+Yxl0x3bW4C14WML8PVz2fCiDnxgM/Cqu+9z91PAD4H357mmSLh7s7vvCH/vIQiAZQT7+91wte8CH8hPhdEws+XAzwPfDJ8bcCNwe7hKHPe5Erge+BaAu59y9y5ifqwJ7sCXMbMkUAo0E8Nj7e6PAifOWDzdsX0/8D0PPAlUmVnjG932Yg/8ZcDhSc+PhMtizcyagCuArUCDuzeHL7UADXkqKypfBf4AGL8DdC3Q5e4j4fM4HvNVQBvwnbAr65tmliXGx9rdjwJfBg4RBP1JYDvxP9bjpju25zXjFnvgFxwzKwN+DHzG3bsnv+bBkKvYDLsys/cCre6+Pd+1zLMkcCXwdXe/AujjjO6bGB7raoKz2VXAUiDL2d0eBSHKY7vYA/8osGLS8+Xhslgys2KCsL/N3e8IFx8f/4gX/mzNV30RuA54n5kdIOiuu5Ggb7sq/NgP8TzmR4Aj7r41fH47QQMQ52P9LmC/u7e5+zBwB8Hxj/uxHjfdsT2vGbfYA/9pYG34TX6K4EueO/NcUyTCvutvAbvd/SuTXroT+Hj4+8eBf53v2qLi7p939+Xu3kRwbB90948BDwEfCleL1T4DuHsLcNjM1oWL3gm8SIyPNUFXzjVmVhr+Wx/f51gf60mmO7Z3Ar8ajta5Bjg5qevn9XP3Rf0A3gO8DOwF/ijf9US4n28l+Jj3HLAzfLyHoE/7AeAV4KdATb5rjWj/bwDuCn9fDTwFvAr8M5DOd30R7O/lwLbweP8LUB33Yw38CfAS8ALwD0A6jsca+AHB9xTDBJ/mPjndsQWMYCTiXuB5glFMb3jbutJWRKRALPYuHRERmSMFvohIgVDgi4gUCAW+iEiBUOCLiBQIBb4sSGbWYGbfN7N9ZrbdzJ4wsw+e43v+LzP7vfD3PzWzd73B97nczN4zzWulZnabmT0fzvr4mJmVhbNf/ua51C9yrhT4suCEF978C/Cou69296sILrxaPsW6yTOXzYW7f8Hdf/oGS7yc4BqIqXwaOO7ul3ow6+MnCcZbVwEKfMkrBb4sRDcCp9z978YXuPtBd/8bADP7NTO708weBB4Iz6AfMLMd4Zn1xIypZvZHZvaymT0GrJu0/O/N7EPh71eZ2SPhJ4l7J13i/rCZfdHMngrf423hFd1/CnzEzHaa2UfOqL2RSZe+u/sedx8C/gJYE/7Nl8L3/30zezqc5/xPwmVNFsyBf5sF8+Dfbmal4Wt/YcH9EJ4zsy+ft//aUjDe0NmRSMQ2ADtmWedK4E3ufiI8y/+gu3ebWR3wpJndGa7zUYIz8mT4nqdNxBbOT/Q3wPvdvS0M8P8NfCJcJenum8MunD9293eZ2RcIrnj81BR1fRu4L2xMHgC+6+6vEEx+ttHdLw+3exPBHOebCa6mvNPMrieYYmAd8El3f9zMvg38ppl9B/ggsN7d3cyq5vIfUmQyBb4seGb2NYKpJU65+9Xh4vvdfXxOcQP+LAzMMYLpYxuAtwE/cff+8H2mmmdpHbARuD/oSSJBcNn7uPFJ6rYDTbPV6u47zWw1cBPBhGBPm9m1wMAZq94UPp4Jn5cRNACHgMPu/ni4/B8JbgzyVWAQ+JYFd/66a7ZaRM6kwJeFaBfwi+NP3P23wjP3bZPW6Zv0+8eAHHCVuw+Hs2uWzHFbBuxy92uneX0o/DnKHP9/cfdegobiDjMbI+jv//EU2/1zd//GaQuDex2cOd+Ju/uImW0mmFQcc5L6AAABP0lEQVTsQ8CnCLq+ROZMffiyED0IlJjZb0xaVjrD+pUE8+YPm9k7gAvC5Y8CHzCzjJmVA78wxd/uAXLhWThmVmxmG2aprwcon+oFM7vOXrsfaYrg1psHp/ibe4FPhPc3wMyWmVl9+NrK8XqA/ww8Fq5X6e53A79LcNtDkddFgS8Ljgcz+n0AeLuZ7Tezpwhu+/Y/pvmT24BNZvY88KsEMy7iwS0hfwQ8C/w/gum0z9zWKYIz5i+a2bMEs5C+ZZYSHwIumeZL2zXAI2EtzxB8Kvmxu3cAj4dDNb/k7vcB3weeCNe9ndcahD0E9yzeTTBL5tfD1+4ys+eAx4DPzlKjyFk0W6bIAhJ26dwVDukUOa90hi8iUiB0hi8iUiB0hi8iUiAU+CIiBUKBLyJSIBT4IiIFQoEvIlIgFPgiIgXi/wNhB4e4mp1d+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Configure neural network.\n", + "layers = [\n", + " 784, # Input layer - 28x28 input pixels.\n", + " 25, # First hidden layer - 25 hidden units.\n", + " 10, # Output layer - 10 labels, from 0 to 9.\n", + "];\n", + "normalize_data = True # Flag that detects whether we want to do features normalization or not.\n", + "epsilon = 0.12 # Defines the range for initial theta values.\n", + "max_iterations = 100 # Max number of gradient descent iterations.\n", + "regularization_param = 1 # Helps to fight model overfitting.\n", + "alpha = 0.1 # Gradient descent step size.\n", + "\n", + "# Init neural network.\n", + "multilayer_perceptron = MultilayerPerceptron(x_train, y_train, layers, epsilon, normalize_data)\n", + "\n", + "# Train neural network.\n", + "(thetas, costs) = multilayer_perceptron.train(regularization_param, max_iterations, alpha)\n", + "\n", + "plt.plot(range(len(costs)), costs)\n", + "plt.xlabel('Gradient Steps')\n", + "plt.ylabel('Cost')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculate Model Training Precision\n", + "\n", + "Calculate how many of training and test examples have been classified correctly. Normally we need test precission to be as high as possible. In case if training precision is high and test precission is low it may mean that our model is overfitted (it works really well with the training data set but it is not good at classifying new unknown data from the test dataset). In this case you may want to play with `regularization_param` parameter to fighth the overfitting." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training Precision: 78.0000%\n", + "Test Precision: 71.0000%\n" + ] + } + ], + "source": [ + "# Make training set predictions.\n", + "y_train_predictions = multilayer_perceptron.predict(x_train)\n", + "y_test_predictions = multilayer_perceptron.predict(x_test)\n", + "\n", + "# Check what percentage of them are actually correct.\n", + "train_precision = np.sum(y_train_predictions == y_train) / y_train.shape[0] * 100\n", + "test_precision = np.sum(y_test_predictions == y_test) / y_test.shape[0] * 100\n", + "\n", + "print('Training Precision: {:5.4f}%'.format(train_precision))\n", + "print('Test Precision: {:5.4f}%'.format(test_precision))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Test Dataset Predictions\n", + "\n", + "In order to illustrate how our model classifies unknown examples let's plot first 64 predictions for testing dataset. All green clothes on the plot below have been recognized correctly but all the red clothes have not been recognized correctly by our classifier. On top of each image you may see the class that has been recognized on the image." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAANRCAYAAAD+kB1gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzsnXeYXVXV/79r7p3eJzMpkzLpCSGNEgIaRIoISGgCUlRAeBVQUFEEBZQiChZAfgq+IOVViiDSQhMQQicQEpIQkpCEZNIzvc/cNvv3x9pn7z1zz5Qkd/r6PE+e7Fmn3HPPvnufffb67rVIKQVBEARBEARBEARh30nq6wsQBEEQBEEQBEEYLMgLliAIgiAIgiAIQoKQFyxBEARBEARBEIQEIS9YgiAIgiAIgiAICUJesARBEARBEARBEBKEvGAJgiAIgiAIgiAkiH7zgkVEbxPR+R1sm0hEDb18SYIwqCGi8USkiCio/15MRBf19XUJbZG+UdDtdHI39mvTpgVBEIS+YZ9esIiowfnXSkTNzt/nJuoilVKfK6WyurgW30EIER1ORG8SUVA/eMYn6roGI71Vp0JiIaLNTl3tJqIHiajTNiP0HNI3Dg2IaAERvUtEtURURUTvENG8vr4uoXs4/WY9EdXouryYiPrN5PNQRMYhg4uh2s726csppbK8fwC2AFjo2B5OzCV2DhEldVFJXwPwQm9cy2BgT+u0P8yU9odr6Ccs1PV2IICDAVzbx9fTJUQU6Otr6Amkbxz8EFEOgOcA/D8ABQBGA7gBQKgvr0vYYxYqpbIBlAC4BcBVAO7z23Gw9lf9DRmHDEqGXDvr1bdHIsogokeIqFK/xX5ARIXOLhP0m209Eb1ERAX6uMlEpJzzvE1ENxHRewAaATwK4DAAf9UzHHc45zwBPIh4U/+9Wu/zdX2ui4log76mp4lolLZ7s7qXEdEmIqogolsG+xt3VxDRr4noMSJ6lIjqAXyTiNKI6E4i2klE24noNiJK0ftfRESLnePbzJYT0YlEtEbX+TYi+rGz70lEtEL/Vt4mopnOtm1EdCURrQL/BgSNUmo7gBcBzNQzR8d424joeiJ6qKtz6MH5tURUSkRlRPR3IsrV214koh+0238FEZ2my9OJ6BU9o7+OiM509nuQiO4moheIqBHAkQn62gMa6RsHJFMBQCn1qFIqppRqVkq9rJRaSUSTiOg1fe8qiOhhIsrzDtTt8qdEtJLY+/UYEaU526/U/ekOIvqO+6FE9DUiWk5EdUS0lYiu77VvPIhRStUqpZ4F8A0A5xHRTL/+iohSiegPRLSFWC3wVyJKBwAiKiSi53QbriKit7x2QURX6edjve4Xj+7DrzugIRmHDFiGVDtTSiXkH4DNAI7pYp/vA3gaQDqAAHiWPUtvexvAegBTAGQAeAvAr/W2yXyp5jxv68/bD0AygKC2nd/u88YC2KLLQQAKwHhn+7EAygDMBZAG4C4Ar7Xb/1UA+eC37g3tP2Mw//OrUwC/BhAGsBD8gp4O4DcA3gVQBGA4gCUAfqX3vwjAYuf4NvUAoBzAF3S5AMCBujwPwG79fwDAdwBsBJCit28D8BGAMQDS+/pe9fU/t6707341gJva1yGA6wE8pMvjdV0E9d+LAVyky9/Rv/eJALIAPAngH3rbtwG845xzBoAaAKkAMgFsBXCBrusDAFQAmKH3fRBALYAv6t9PWl/fu96sm072kb5xgP0DkAOgEsD/ATgeQL6zbTKAr+g2UQR+ib2j3W/iAwDF4H5vDYCL9bbjwH3fTN2eHtH3e7Le/mUAs3T7ma33PUVva9Om5V+XdejbNsFek0v8+isAtwN4VtdbNoBFAH6rj/stgL/qtpcM4HAABGAauF8sduppUl9//4Hwz6+OIOOQAfVvqLaz3p5xjAAoBD8oYkqppUopd4H2fUqp9UqpJgD/Aj/cO+J+pdQapVREKRXtYJ8TwDP5HXEugL8ppT5WSrUAuBrAEUQ0xtnnFqVUtVKqFMCdAM7u4jsOBd5WSi1SSrUqpZrB9/F6pVS5UqoMwI0AvtXNc0UAzCCibKVUlVJqmbZ/F8BdSqkP9W/lfm131zf8SSm1TV+DADxNRDXgAfUb4AfO3nIugNsUr/FpAPBzAGcRyyCeAjCXiEqcfZ9USoUAnAhgs1LqAaVUVCm1HMC/AZzhnPsZpdQ7+vfTsg/XOJiQvnGAoZSqA7AAPFC7F0A5ET1LRCOUUhuUUq8opUJKqXIAtwE4ot0p7lRK7VBKVYEHD16dngngAaXUJ0qpRvCkiPu5i5VSq3T7WQn2UrY/t7Bv7AAP7ACnvwLLP78L4Mf6eVUP7mfP0vtGAIwCUKLb31uKR3ox8Mv2DCJKVkptVkpt7NVvNPiQccjAZ1C3sx57wSKiALVdqFgMfkt9FcDj2oV3C7XVre5yyk3gmfOO2NqNy/AkMB1RDKDU+0M/MKvBWnq/zynVxwx12t/7NvdRl0eje5wK4CQAW4ij2M3X9hIAV2kXcI1+cRiFjutG4FnsPKVUiVLq0n3s8P3qNAhghO7snoft7M4G4OniSwDMb1dv5wIY6ZxrSNeb9I2DB/0ie75SagzY41QM4A4iGkFE/9R1WQfgIfALtEtHdVqM+HtrIKL5RPQ6EZUTUS2Ai33OLewbowFU6bJbF0VgL/JHTv/2krYDwO/B3tyXiehzIroaAJRSGwD8CPyyXKZ/G0OuvSQYGYcMfAZ1O+uxFyz9tp/l/NuhlAorpa5XSu0Hnvk7FTz42quP6Oxvrb1dAB60+O0P8NtziXNMNljyst3ZZ6xTHqePGeq0v5dt7iP4Pnn3sBHcUDzcgTaUUkuUUieBXfrPAfin3rQVwA36hcH7l6GUeryT6xDi6fT+d4JfnUbBcgmAZ83PJqLDwO7817V9K4A32tVbllLqEudcQ7repG8cnCil1oJflGeCZ1sVgFlKqRwA3wRLWLrDTsTfW5dHwNKZsUqpXLBUprvnFrqAOArkaLASAGjbPioANAPY3+nfcpWO5KmUqldK/UQpNRE8YL/CWwOilHpEKbUA3K4UgFt76SsNVmQcMoAZCu2st4NcHKUXtCUBqAO7+VoTdPrd4PUiHkcA+EhLLKCUioH18u4+jwK4kIhmE1EqWNf5llJqm7PPz4goj4jGAbgcwGMJut7BxKMAfqkXHhYBuA48YwsAKwDMJqJZeoHir7yDiCidiM4hohylVARAPezv4V4A3yeiecRkEdFCIsrsva81KPgYLO1LJqKDAZzezeMeBfBjIppAHO79NwAecyRnL4A7sBu13au35wBMJaJv6c9M1nW4X+K+0uBD+saBB3Ewl594skkiGgv25r4PXjPQAKCWiEYDuHIPTv04gPOJaAYRZcDpMzXZAKqUUi1EdAiAc/b1uwgcFZKITgQPrh9SSq1qv4/u5+4FcDsRDdfHjSair+ryicSBZwi8piQGoJWIpuk2ngqgBTx4TFT7FhgZhwwAhlI76+01WMXgxfJ14EX4r4Jn4xLBHeAZ9Roiug3+IYh/BeARvc9pSqmXwAPEp8CzhuMQP2u8CDxIXa73ezBB1zuYuAHcgX0CYCV4celvAUAp9Sl4cL4YwDrYiGUe5wEo1TKaC8EzvVBKvQ9e/Hg3WJr0mbdN2COuAzAJfA9vQPfb2/0A/gGur03gzuoyb6Pi9VZPAjjGPaeWDx4Llg/uAMugbgXrooWOkb5x4FEPYD6AJcSRr94H94E/Abe1A8EP/+fBddstlFIvguvsNbAM5rV2u1wK4Ebi6Gm/BL+QCXvPIn0vtwK4Brxe7oJO9r8KXC/v6+fWq+DF9QAHonkV/HL9Hnj9zuvg/u8W8Mz8LrCn5OeJ/ypDGhmH9G+GXDsjXhc2+CCizwCcqJT6bC+PD4JnkScopTYn8toEQRD6CukbBUEQBKFnGZR5S4jzidy3twMIQRCEwYj0jYIgCILQ8wxaD9a+IrO0giAI8UjfKAiCIAidIy9YgiAIgiAIgiAICWJQSgQFQRAEQRAEQRD6AnnBEgRBEARBEARBSBDBPdm5sLBQlYxvn/PQ4qc2pD1Mf7i7abcpVzY0AgCGZWUZW05KNgAgJSnF2JpjTabcEg3xsc0NzjXwRUzMtcm3g0kdf3X3e3T3+pd9tLxCKVXU9Z69S2HhMDV+XMd1lnBiEQCAKt9lbfomUpFNqB3+bJ0pB9OSAQBJ4yf3wgVaPlr+cT+ts87bWSKItsZMuaypDAAwKnOUsfn97t22WVFfDwCYVjTe2DprU4mi/7azva8zt79pVVwv4daQsTVFmwEAw9KG7f0FdkCLPnerkyokNZAGAEhCwNj2tB93GYx1Ntjpr3UG9E69uW1yZ9NOAMDIjBHGlkTdm5uuCdWYckqAxywZwYyOdt8nSjdvQUVFRb9MON2TdRbTKRhtKkaAdP2Qk3/bK7V2kBc4Se/hblW6XwxQwOeIxNBf29re1Fl33wGirZxOsy5cZ2xpQX7u7En7aIo2tTkfAOSk5HTr+nrjmbZHI6KS8ePwzpK3O9zuredSzk+0ux2Rxx0f32HK/3jvXQDAeV9cYGzHjjsSADA6wya6X1W1wpTX12zkY1e8Y2zJyfw1H/3ab4wtL7XjwYq7Lo26WQvpwczSbu3Yy4wfNw5L317ca5+nqvnFKnaPvddI5heowKU3GNPWI48y5cLp/ODKeGCRPY+ug+7e/72BMvP6ZZ111c4SQW242pRvX/5nAMB1h/zC2PweKG7bvG/xYgDAfy6939jyUgoSfZlx9Nd2ti911uoMDBoj/MDZ0rjZ2JaVfwwA+NbU8/f6+jris9rVAOyDCgAm53CqkYygndja037cZTDW2WCnv9YZ0Dv15rbJmz+8BQDws4OuMDZvEqIrnit92pTHZo0BAMwZdnAiLjGOL85f0PVOfURP1lljlCfTW5w+LF0P0oOUbGzeMy3kTF65Y9W0JK7TmDPZFI61AACykjsetO8r/bWt7U2dee2mzYutzxiuKlQOAHh12yvGNi1vKoA9ax+rqpYBAMqay43t6NFf7fL6gN55polEUBAEQRAEQRAEIUEkVNNj3lS7CExYF2a3+eF//Y6xjRjFHqXvHXSMsS2YwZKxN7fYlC1PfbIcAPD+w+8a20FnzLPlCezSdF2Bc0eOBAD8vxX/a2wNEZ6ZOHPqCfbYokPbfg/0jidlMBH7+20AADr0S8bW8te/AQBSb77c2J5cX2HKl93ys7jzyP3ed7zZnWvf+puxLfloLQCg9oNtdscsnuW7teEf1paqPVghKyVswzCe7Rt10qHWNiYTAPCFYw40phfO+Is+XfdmfIcSlS0szXx/93vGNj6nBAAwJrPE2Obd9D0AwF37v2xs08eynPOo8bOMbb989jy5colGZ1Z3Q80mAMDjqz40tncffAsAsO1pO1NZFeK2ubziI/t5edMBAEXpVkYqCION3y69lf9/7Flji1RzG/rT8JeMLTOd+7P7LrBerZc22Tb0l79pNUZeqrEFgtynTp9i1Tcffu8xAG2fdzEtE+5JWdpgYvQ1xwEAQrvqrdF7fm2xS0WMU6XAeRZVtsSdL3mWVX5FVrFnZMczdryZn1q4bxc8BHB/zy0xlqFf8t9rjW1XA9dLWtC+grz03B8AACNLhhvbWUfOBwC8vf5zY1uzzjqPGnew4uMLxx1kbH/P/w8AoCjDSg3/cPivAbT1WvXG2F48WIIgCIIgCIIgCAkioR4sT9/oviWGY6x3/fqiHxnbW++tAgCEmqwWtqySvVov5ecZ28Vzvg4AeGO7neFdulO/vY616wNqa+wsxYtLVvK1tFqtZSTMgReWfmwDK9x+4QUAgKteu9fYVq66mq/l14uNTTwpe0ZMzzQEJ00ztoyHngMALJ0y19impNsgJYEjTgcAqJideadAzwdMGIzkXPlFU46sq+RCijMTmqLb5kRHUx7Qv/GY4/atC/P/YzOd/Zz5GG/XfFuPaOT6e/dx217zXj0MALDo+t8a2zFjjuv6iwxSvPUCAPDuLp7xnjVstrFFW7mvcmevP/4Vr3O74El7D1dv3g4AWLt1p7FVVj4BABg2zNZtUpKts/Jy7mOra+1M73sPPwyg7ays138fUGhnBTfUcd8ZTLJrGmQmVxhoxBzvbkAH5Slvtm3oxtu5PSQXZxtb1ghuT+GIPbZsB/etf/zgKWP7aJkdX3ieq9xcO04J6P5z9Xt2v2ML/gcA8MqZVmXgrl8RuqZ4OK/93emM1SK6rmLT7DgiM5M9V6mp9plV39BsyqkpvG9+rq37+vlcj7uadhib9Ht7xl2r/goAaIpEjG3mcPZSBZ3nU+ncSQCANR9vNLb7XngDAFDfaOsJDfY8o6ayouJLEyfGfe6K3bZdP7D2PgDABdMvNDZv/V1PtjfxYAmCIAiCIAiCICQIecESBEEQBEEQBEFIEAnVYfmFPbxjxf8DALy7ZLWxzdxvPAAgOcXKTc6czYEqfv+sDdU9JoflgmsryowtU4f8Xvrb+4wt0mpdhqX1WwAAr25eamxfHLM/AOB/g1Z2s6psMwBgwjAbWnprLn/Oyc9camzPnHxX3HcSOqa1iaVl22+2AUXGnchu2S2hsLEtmOwTJr/ayZ1VOKZnLnCQ4i3O9hblAgDNyAcAqKib/EH/H7MS2jbSQA8dxAKtzjb3GHM+x72uZTGUbxd2qyaWaiy8/ufGVn8PB7LpjbxZ/Y0VTuCIjGSWX6YG7P3y+tAdTVuNrSSLpRP3nPJTYzvmDl5cP37cSGNL0ekodu2qMrbUVNvHerLp+//nh8Y2dxj3uzWhSmPzJBPN0UZjm5DNAYd2N4tURhi4kM8Y5Z1dNqULknl7SrIdK0R1vxcMWFtyPrfdxS/agDHIsP1ZQQHLCkPOM6+1lc+dOtJK0Eo3O888zb6Ejx6KbNnBzzwvHQ9gpdGtAScFRjMvSQm49RiMDyQycqQzJnyf66cmXBO3nxCP32/3tc0cpG5kpl1uUBfiunCDXJw2j4Nj/XmXfRbV7tL3PdXWUzDXBin5zlc4mFp60D5DQzFuc8VO/tx/frIEQFuJYG+0M2nJgiAIgiAIgiAICaJHppDdJKabanh24fkf3WxsDRGeGZ2WZwMhbGvkGdvfnplrL07PcH9avtvYJubzrOkp91xjbEccuJ8pzyvmmdaFk2zSvV1N7Jn6+ky7aHt6Ae/3zIY3jC2QxDO3Hyxba2zRhdE21yJ0Tsq5ZwMAHj7DJq29WofDPP7oKcaW+s2zTDm2kuuARtjQ1LLMd8+45XEdVjjXLuBV3mLQJOduesWugrdE9MxfV1MwrvdLhxdWjo30rK7aZoM7XLaY2+7dR93axckHHxvrNplyYRp7cStarNfR82blpthgPzVhntGbnmdDsr91BYe//+IfrLe9zgv2U289+sFCG6r2lSv5fh864nBjq9czs+7Mvhdoww1ooXQAI1ct4Lef0LeEYjbstF9qhKGedsRvQft/Sz/y2TOeVjf3iy7mjLTjFTewVjhs20ncNTj3PiVZxhX7Skzf92GZ6cZWpgP6oN56EPPGsWcqxfGalJXXxZ2vwQl8MXI0jzdbovHh3IWOcfuh6moOqjTK8Sglex5Gp00F9DPoylNPNLZr//wP74TGdsW5C005L5W9wfVhq7aobuFyxGmPw7PYe9YQsfXdk8mjPcSDJQiCIAiCIAiCkCDkBUsQBEEQBEEQBCFB9Ih/emXlx6b8+rJPAQBzR0wwtne38aK3dVv/z9hCIZ3/xcm184eTOEfEZ5vtwuoXF7M7Pz3NSqHWbLMLRddu5/JHb3xibClFTi4fzfdP4YX2Sz6zkp3KGnZlJjmSque3PAMAOHn81+O/qBBH4GiWCF5yiA0O0vqvOwEA6X+829o2rjDl0B9+x9v/77neuMRBSXiNXhia6TRpn9gVJueVi+dJ72q6xZUVeTJANwiGOY/dzwTYcGz/XaoD3hzVxecNIjzJhCsjykpmyURNqNbY0oMs60pyKiM7haUMO53AFxNypgIAdt/0urE9telf/BnKfsbXJ34j7lpcCbeHUvEBTFpiViqTHmCpYVrAynC8IBjZjpxRYPxyQpY2cH6X9TXrja1R38OqFruI/rHVS0w5HGaJen2dlcDUaCloRbWVuwzLY6lMmpPj55kLWRI6KcdK8Vu1jDdAQ1Oa5ieN/Lh0m/1DB7lw1YBeIISYT5CfaNRKl9xTu/nnPLy278oCK2vq9Oc5suohKt/ca1q4jURiti4Q1XXlPA9rKuPlgF59AzCVHmqxssKyKm6XG2rtOPHI0ft6wYOfqpCVvY8q4ueDF9gCAEZquWBGspWX14ebAADD0q3s9pqLzwQArC63Y/zUoO3j1lVxPsjcVBvkojEcjvs8j9KGz015//y5cdsTjXiwBEEQBEEQBEEQEkSPTGP99Ll7TLmiimdnf/Pkk8ZWXMwLB1csszN5EyfztIA7k/Pbd3lG9qCp440tO5tnUt1QxKVbbRCMUSN4IeOsw6Yb20GTOXhCurO4cfHaDQCAOmdmcPrUcQDaziCNzZJw4XuCquDZwCRnli704qsAgNSpdpF+/fW/M+XsC9g76N531cqzUZQUH0ZV8MELShF05kwa9ULrPDu7g5DeL+AT+KK1i5nToLO9kWeJvnzyoca0+JWl8efWs4vudW1dbT0xQwVvRi85YGfsvEW91aH4EMDpQTv7lqaDSaQm2Xqs016o5CQ7m3fqhDMAtPVgud4qz3uRRE7IW58AFSoWv6A7oI9Jdvb3PFzZEA8W0PbZ5efBuv+ThwEAf/jXC8Y2YQyH2R8xyqat2LWjwpRHjx0OABhbXGRsE8eMAACcNOVgY9vRwL+ve1+1Hs2dTTsBtPVg+YUpH+p8vGqj/UN7NGKOp9lT1bSxaQ9VR84m77fg/ibanw8AaurYG7mp3hkLae+00DFuH4fNrDyKFNggCmNKuI3sKrf9X2oKj0lC2isMANEa66XPLea0Jg2N1ta6ho8n8UXsEZvrrcevKcL3u7bGBrryAlAMS7eKiAbteWqM2AAxnodrXvF4Yyuttd4xz3NV02KfWUm6UW7eafcbrd8LVld9amziwRIEQRAEQRAEQRhAyAuWIAiCIAiCIAhCgugRiWAkYl2whQW8YK10ow1UEdLbDzjYShfKytgVe+aX5hnb7Y88zwVnwej5pxwJoK1E8FvHfMGUX1vNATRmlBQb2+zhLBGcmj/J2N78lF3ypdvLjG3sOHYrbym1ksMvXn0xAKD5b8v9v6zQBipkSWXMWSiaeSZLAKuuuNbYMkbYHARJR58OAFAx+7uhwNBchL0n+MlP2izardN1EHXkFH5BLlRcoaMPtGUt+Vu2/DPnswPxn1Gu5RbZVsqGrVYqMFR4f/f7AGwQCwAoTGeptCsR3FxfGrdfts7XEWq1skFPGhh18lK5QTD8SNESQzcXkFdWiJe3xZRdNO7JAXOS7QLk7frzitJHdfq5Q5EkHyneDYf+ss3/PcHf33zLlFdXcj7HBSO/HHddElTBkpNtc8XV6N9+a2sXfaEP7n30u6d+OchUmNvYqqpVxiYSwa5ZVbXM/qEDKI0aXmBMAR2YJNOR+9VW6CAXEed5mGElz5np3D/m6YAxAFCWxkseclLjA6UJHbO6cp0pp+mlOSu22EAVm3X5nKMPM7bqFltXHgHdViIx+5zLT7OyQr8xUEqA6959RxhZxPLPTTXb4vbvScSDJQiCIAiCIAiCkCAS6ibY1cRvh8GgXUSdn8+zARX5dgYgLYVnDfLy7UzBl6dPBgDMLJpsbLPnTAEATNKLegHgqxPYw/Xe6g3Gdt8Lb5jyq1f8EQDw4Cc2qMbITF4gPCpjpLGdecghAIDfOwEy3lvC4aPdEKv5Y+ysiNA1qo7DhUdjzgzpxBkAgLw5Y60tzS7Yb929BQCQ5ITfRN7wnrzMQYEbCtUXL0R62JmxS9G/bXeGNrmTeZaYO0PknCeV23jdLhtiHOm6O2mws03ms30+w832nhpIi9s+mDhhHGefL2+xs3ivb18MANhaZ23f3u8sAMC6GjsD6BFMst11a2p8EAUvlHpj1HoIK1rKne088zcqw8YZ9kKtuzTHOFyuu5C8OsyzgaPS7bG5Ep69DW08GOg5r5BfAI1XtnHgjN0V1hv6+KoPAQDf2//i+HM4bTmAoRlIqD7M96quvsnYgoE9uxcdea28sq/KwEUHvPjXGut5lJQwXfN/q5+yf2g1RUamfYY0NfKzJcMZZ9R6nitH0ZGWYbd7AdTc8SvGcuCMN7esNKYzJ52zj1c/+Nlcu92UveAwbl3M2Z/TNm2osl4mz9PVErVKpoBpU7aNljc1+Wy3eAFo6hrsfrXak7mjIT6gVE8iHixBEARBEARBEIQEIS9YgiAIgiAIgiAICSKhEsF/fvYEAGDMqEJj8+Lcu4Ev1m1gKeGcEVb6d1jxHABAmrO4+6EzrwPQVqry5o53AADXfe1MY9vVaPOGXP3GvQCAxW/ZoBR3h/8DAHj6quuNzZNwNCy38pzk/fm609OsVM1z9X9eZxfzyyLUjmn98GUAQNowKwlV2zjPSNIBBxhb06L/mnJGAwc4UdW2Lkgkgl2ysW5DvDHNkTd48hQ36IRXdhf6xqdCcs7RgT3iI/3zPqYxErdfMMO2Ka8n2OJkVZ+SO6OTixj4eBLIMZnjjW1KLgfdufQemzdw6RHcN7rSh+/MPhZA24AWWUGWrqQEnBxnGjdXVWOkKW67S1TxOZOcubasIEu3n9n0jLGlJ/P1j58wxdiKk22gGqFrTG4kp1H5SQnd7X7BMpRPo3xzG8sBw85ztrGh47pPkrlVLK/8CAAQbXRyzuWyTKzVyXnlLRloGxgk/nx+gUNcm59aMKjzRa78rNQaj+/uNxi6/OjAC0357gDLBZubbD1Goxw8JBaLIQ7n+dQSCsdtTk52nqE1fM5vTP/qPl3vUGN1uZWme3mpCgrs82Lh5AMBAPd9sNjYxhTxcpwmJw+WJxvcWldnbK1OQ/LyZLnkpmbE7RfTvwf3PL2B9LKCIAiCIAiCIAgJIqEerP+ZeREAoLLlj8b2txc5AEVNuX1znL7/eADAOxtstuc7/sKzEI/8+jpje2gNe8TueXGxse0/gxfH5WTYUI2DR/pjAAAgAElEQVRvvmcXIHovrarZzuR5s1I3vvpPY1u+isO0Fx06ztgOOZDDxk8pGGZsqTpceHrQfp7QMeqlRQCA9Nk2JD5qOPAFUq13MinVmXlI5ll41TT0wnfvC5vqNsUb3aAUnpfJDXLhzby6nqeY39Sq3t7Rmm+vobnn0eFy24SFj8WHJvZYV2O9woPdg+XHoSMOBwBsuOlfxjb+6lMBAD856wRja9HBQMZmjTE2z3NVG7aLdrN9PEo1oWpTDmhvSIBspTZEuM2NySwxtrNf+CkAoKrWtsenz+A+PSXJCUQj7BFeG+gqAEZX293683hrI/cFASdA0wgdmrizaxnK/PszraIIxs8ztwml7nkelf/27uIdEnTqKEV7sDY5wbaErhnupobQgZuKRtjfe2UFB18q3WHT8ARyuM886EuzjO2Dl6zSKWOWT6ClFG5rk3ImxW8TOqSi2o73C/P5uZSbl2VsE3L5edPWw8vl7FSryqgLsQfR9UYlOW3PC8m+vb7e2I4Zz0qpUU7/19Skg544gVD80iYkGvFgCYIgCIIgCIIgJAh5wRIEQRAEQRAEQUgQCZUIZuqF1zcd+itju+lQ/r8mVGlseakswSu65gh7cC5LT/70zvPG9OFyzkSfn2vzZb3zjs547siQcobZ7RNKONfV+o02Dv/93/shAOCzqs3Gtm49517a8stXuvPVhG7SsGorACD7AieXRygUt194t82flNaoy8HOoi0I7VlVvj7e6Oa30vIGBB0XuOcOT3HmVpr1QmA3GIa32VH7tVnZ7ckKY+4O+qAkZz8tIXQXjXtsru3drOr9lRFObqna298GADy96Qlj84L85Dl5p8IxblOhmG1bSVo61hS1wQ3qIzbPVVE65wMMJMW3s5ZYsylfftDJAIA5w2xQGq/PdgMO2c+Vebqexr3v3v125TXrN8S3pYL0eFm7X6CNoVp/b6zUueYciaBf3iqv76I23Wj38lz55caKOccka4mg9z/gn+dMaId733W+x5Zm2xc263LrTtv/jZ3LsrQbj/6WsR338Hum7AVic/OzerhS7OLMcXHbBaZZP3vc332NDrYze7SVdRZnFMcdm6kDVrjtw5XTeuxubIw7pqHF1v2oTP6cwiL7vDS/B2d81BDhcWd2D+ZzlBYsCIIgCIIgCIKQIBLqweoMbwbUxfVMnXbUfADAjw78prFdGL4VALBx0w5jW7BgNgAbOhUALj7oK6b85taPAQBVVXbR270fvwoAuO4L5xrb4yUfdHitfrO0LjKz1DHbtvB93y/Hzgqoj5cCAOj404yNAk/bg6o4zD4NH9sLVzh4eK90a7yxwQmRHtKeKTcke6r2avkt7Ezysfl5xNx9nQAZSanaWxV1jgn5hMnVVLf0bsjUgUBYB7TYWmdTFswYxqHRI06Ydi8UezgWH2Y4pmyAn4pmG+TigEJOhRFzzpOXwguBqx2FwfhsDiSUn2rTbXhI39d/WFn1kSlX13K/G0iybXRMTnzQk+4G2hhKpKXawC3eAnq3e/QLcuGNP3zDgMPfs+W3mD4tRc/AN1kP8tZGDlhSkiWBFToi2Q22M5pTwrS02L4wOajbgfN8Kijg8ea84Yf6njMc4n4xK81JfVHNno/6iATg6g7VIT2Wc37rVTrgCBwPVqXzvPHwPFfktJ3qFm4X7jAk2Rn756Zx0IqYo6TZ0cjvC17YdwDYuI2DyHjh+wGgrIVt4sESBEEQBEEQBEEYAMgLliAIgiAIgiAIQoLocYlgZ7HmD5ppXeDvruKcOCdO2mBsfz+dc2Ld/P69xvbeSt5v4iS7MHxt5eem7MXLd13u/32J5YDDMzONLSNDuxaVdRl6+UVc+YTkC+ka1WLd57sa2aW+X5pdYN384RoAQNZldtF8Gw2GdgMjN16SJHRMs87tAMBK/xqtPCxpf3aRT51o8yetfZ3rAiOdBfCe3M/9qfupZNskgvFsziE68EygxEqTYttZuhRrdqSLmtLaKp8PGdpk6VxWAUeKF9Syr1afSqkNW5llkq4UN8jFmgob7Odr41n6EnUkhH6Sv8Yot2e/wApC3+An6fvnukWmrLQsN9pqZVIVTU1xx5htLVaCevoTVwMAfrxg4T5fZ3+nKWoXyG/dUQ4AaKl17pMO9JPt5Ozx5EdJfhJqB7+AFn42N+BPhc41F3OkS898zoG+Lp99eVdfZ8gSSLJD11EjePlJerqTP6lO12mT7esmjh4BAMgI2rp1SdG5Od1xovfMG5ExYt8vegiwu5n7Ffc33qQDTHxh9P7G9vZ2HpNnZNpxSFQf0+ojrx3p1EnYkeXmpbI9J8Pmt/q0YiMA4MzpC4ztF5/+HQCQmWU/z5MSTsqZ1o1vtnfIU1MQBEEQBEEQBCFB9LgHqzMP0JqNNrSsl8n8hpf+aWx3nvJ9AEB60F6mF0qzdNNOY3v9BSdgxVbtTcmxoYhHH8jhOT/fXWFs1VU88+s3M+iGsJXFwN2g1c4opHgz3XU2rGlLDXuosqLWixFqsuXsaLx3Q+gad1EvMnUbqbLhSo8/8mAAQFrAtp+1i1bqkuPB8n7ifm3VDd3uLBhGpm5fzXaGEHV8PSWzSoypUs9Q1a6w7dX7vJaoc6zQhpJc66H3wq+7QS7SAnxfXW9VWHsvXM/Txsp4L6GfZ8r15HsBNMRr1X/we44ucYLcpKbzov/crAxjW1nK3suXt9rUJ5c/9lcA9jkKADvK+DdSdfDhCbzi/klG0M6Ef34DB1raUPuZsV3+3J8BAMuWrDG2rGGex6PzcO5uHXneLjcsdCjM7dcEYADwz8uvAgDMHz7f2IrSbTAAoWu84BVu4LNgQJeddD6zijq/r9k5/NsYk+0EPRjF7SnFDaohdMiORn7OB520A14AnrzUXGN7ZdNyAEB2mr2vngcrzRnvJ2v1RrMzVqhqtuq0/HQ+d1aKPc+6Sh7nnzDBhoL3vGKup9jzYPUk8gQVBEEQBEEQBEFIEPKCJQiCIAiCIAiCkCB6LQ+WL47qYY4OeBEOWxnMziZeMLe+wsbM31FaBgC45JzjjG3LVJs/KV8HV3DdjKdM+TIA4NFPXzG25fUsrREZTAIIWZft+FFagpFlAx0k6/xJrdusFCOpjfRMu22bJdfEnlBdbXO9mSAXDkeW7AcAeHXTp52fyFu87TYFT+7ipnnxkcUgxTmokoNuuAtJs7JZYrHyAysHRi6787dVWhmp0JasZHdRb7z0LxxjKWjIyYPVHIsPatDYYNum6iS/nycLBIBYTKSbA4GWZisHnjqJA9mkOZKb1Ws2AwBO/tcVxpY2ezgAoKjAynVGFnIutHxHwjMUyE3hIEAHFdm8SFd+mfups5/40NiCI/i+hMO2XfgF73JlgzEtpw46csCwlsVnOMEYTiw5ZR+/hTB8BNejO3b0Ala4QZhKcovRGV5d1YVtn1lQxHLBXJ0vUOicnY08PleONLbxY17+48pzy3UAnoAj62yKcP3Vh518Znq7tw0A6hqdZ1oBf05uqm1Tn+n3hU11m4xt+HCuP3dZxRYn12RPIW8XgiAIgiAIgiAICUJesARBEARBEARBEBJEn0oErzvhTFMelTESAPC3VTa3x+uly+OOueWSbwMAakJWTnbaqOmmPDy9CABQnGkjxqysXAWgrWzwpIPmAPDPgyXsGarZStUaG+MjAiqdR4TSrIt4+3abj6QgwPddldmoWJgwO9GXOeiIOfkg2kT70xw4fBYA4JGl78Uf7EYl62yaxd0Wi99MKbbNKJ2Dy4vGBADFeSwVXekeFOSTNjsSJ4HxZIAtUZvjLMORC3o06nw+Xo4swMr83GPr62w7Iy2HbnX6PE8i7UoEW2JWgtHR9bnHDib8osO59EZeRPcaOvs8Ny/Tqg/WAQAKxg4zNi9ylicLBGyUQTeS3dbtLOupaK7el8seFPzu9ae4MCHb2Lw6cO93V78Drw7dKII5+t5Xrd4Zt597Pq+NDcb21RMMS2dJ+manr3Mlah55XUhgd+9kaVn+BJufNS2F+8UA9e1qmoHCrkaO4Ffn1AWmscyyzsnZWK9zeI7Ms0tJGh1poEeTln26UU/dSIDmfM6xXt4671oAIFVLp6POsbsbe76/kxYsCIIgCIIgCIKQIPr0tfzf6+zM+vYKfpv83qHHGNvEnPEAgMuf+Yuxvb11AwDguZfssQfP28+UpxVzxu2Vm+yieu+N9oQDbCbpe158nT9v5nnGNjKDFwq3WQwus0hdQhl2ZiglWc+M7rY5Bnbt5gWNebl2djU11bmvxeP4/x1bjEnV8WwS5dhjhLa0mUX1mXifkc8erBo3GIb2dAVSbNOPhbTX0c1z5Z261ccGALpNJTuLS8P63F6OOQC4bP7xAIAnYHPxIJnrvitvwWDHb6Y6HOOZvajjZXI9Tna/+Nk+v/PVO0EuPM9UVnJW3DFDHT9PQmf4efJcm5dLMcmZw/Q7t1+d+e23qX69KX/5Ds4PWfbOZmO75qYLAADXzvu5sY2+gZ+lVU579PIDucEwvJw1DWFn1nmIsnrtZi4kO8Ep9Cx6NGbrNxjg+u2qC4u5x3hew5HWI72+jgMQTc3dH8LeUZzN3sZ1W6xn0K8NZQYz4mwulTX8nNxWZz0bXkAS5feAFeKIxLituAG4glqh5KkuAGBELteZOwbwAl5EnJxXnufKrU+3TXle+mQnWEZUHxNz+uP1n7E6auq0ccZW7+MxSzTy9iAIgiAIgiAIgpAg5AVLEARBEARBEAQhQfSIRLC7i3Q/+mSjKdfUcdCKCz+409huueibAIBwyAZOeO6VJQCAnHy7CLW6yrojV+g49598amPgZ+m8PI/W2sAYkyZwTgS/haTiDN4zKM8uovbqXm2zcr+RI9g1r1qtyzY56Nz3Rl0vzU4eH5EudUlKig1MAJ9m5uXuKK+qtUYtA4w5OV0Q1vfazaUVYVsg00qJYk479IJktJHI6JxYtU47O7HkZF36Rdy1NjXaYAxDEb++pzrM0tiUJHvfo62xuP09+YO3jW1cDibZbr2hyUoEPTlaG1mglwLNObcna+sqoMVAX4yvlP0O5NOAYj7STG8/v++8N/ehq2M+KHsXAHD0735qbKcfexgA4G/XvmhsfgGaqtZwnpfsyYXG1qbP0HjP6IZIx8FNBgtd/aa94B9ucIoW3e/5yZRSkh2ptfN8856DbjARMy6K2v2e3sh1+LMDRSK4t4zL4WUh4fBqY0t1JLAeXcl/k7WUrazJStma9XgyLZDue4zQluQA9y9lVTbH5ZTxowEADWE7vkvR97qmxY4BknT9uBJAD/edoqHeniei25xbt56kNyfFSuGr9Jikucl+3paAMy7qIQbmk1EQBEEQBEEQBKEf0qdBLmbtV2LKK1azx2n6VLsI7fFlnE19ZLENdJCbx2+l27aVGdvGzTagwrTJYwEABQU2/GNedmabYwEgpGelGiJ2tn24zyTFni5+HurU1umFg1VVxpY+nkPnU0qaseXn2+AIattmLjTZmQkv9DvlFvXQlQ58kpyFnQjFz/p4s7X1dfa+DvsCt7nCfNs+tu0sBwAEnTQGtXqRaqoz493k48GKxhxPmPaANbXY8OvBpPgZc89F3BLq+UWmA42dTdyXZSbbBdmNkaa4/WpCvBA7PWjbVLQ1GrffMKee68Ncp4Vptk1FFddpkOLryQu4AQBpeoH4QPVWdYXXv7seju6m7bjpg98AAH5z09+N7cHbrwMAfGPyuXt8LWtrVpmy57m6/tzTje0nB1zR4bHVIRua2AvUEHS8KCHd5lKctu4FJvIWqA81VlZ9ZMqNVey9yMi3gSjCetG8ex/DEb5Xrc7Muuutiuhw0G5gDJMmxlEKPLF0KQDgZwfa6xmsbaynmJI3HgAQCNj72uKTAiTi0z+6jutqraLaVWG9L2mp8Z4woWM217ACo7XZ3uvsHH52rK+2aXjCMU+VYSvA80aFWtyQ67xfRqYdnOc56rXsFK4f1xPmecBcBcKsGRMAAJtKdxnboQdO24NvtndISxYEQRAEQRAEQUgQ8oIlCIIgCIIgCIKQIHpEIthdOd2WHVbO4Mmd5o4bbWz3PPofLtRb6cLXv3kUAGDTJisLPP/kI035k61sr29w5GbajV80zOZremfJJwCAzGQrBTDXvxffZSjjLkDcbXIqWfds/UaWc6Y60ofMiTYwBmp5sWHz0jXGlHHQMi6MnJjoyx00eDlt+I+Of6crbnrAlL18K3PuPM3YRhRyMIw/nXmJsS28lSVOTc6CUleGSNksx1Bu7qxsdtfX1neRT0cH0GgjcRzCuLK06lCNttn24ycZqo/wPXYlgp4kwpUKNjiLeitbWL4xIafzNkX682IY/IFmvKAV3r3zDRYRKjflZzY9CwD499qlxpaZzPLKacfaQAXn//BGAMC/LrH5Gp848c8dXkdT1ErVv3zbD0350lM5l5WfLDDcaqU0XlCU2rCVN3m56tx2lqyDMiQl2f7C677rw/GyqsGGX1v6/QcP2T90cIu294dtgSSfPGZu4CYnsEIo7OXvsft65WRHnrnqvbVc+G43v4AQR14qP7+277TjydTk+KFtzE8i6Dy+PNnnmnU2QFfJ2BEJusqhgZfLCp/b3Hstc7ifKq2NDyrhjq89uW2SM64h3eYyHalmmzaXxP11Xcj2XV4ft7PB9tuevLey2l7X0eNndOs77QsywhEEQRAEQRAEQUgQPR7korMgEZPG2NmB44+YCwCYnGtnV1cdwQvSvGzaAHDS1EMAABt32CAXDz78sinfcvn5AIBPRm8ztlnDOfDFUWMON7YbAvfzuYM28IUHySLTPcKt2x06RCacBaeNjWwrjNoZ1+BoJ3iFnpHYutbOQE39jD2MOMIu7hba4oYFNjjNzJutTUlKjdvtwXOuNuVjb78SAHDMmOOM7dff+RQA8NC779rzOTPh6z/fztdA1tPSmsHdycWnHNP5hafxb0O8w0xLzIbH3t3E/Vp+ap6x+YVX9wISBJPiPS5pjlcr4Nxjz+vlF5I93OrMAOrAJE0Rm/4i06efHOgQ2d9gAPH3cXtjKQDg7H9fZ2wHjednyXETrbfq0wpevJ2WbmdZixfwc+z5u14xtqMbLgQA/Pes++I+a84fv2HKB8ydYsq3fvHGDq8/SPGP75pwtSnnTeE+Ntnpiz0tiKs6iGq1QXPUZ4Z/CPDUK+/bP9L5nrph2r1+1u3//MY1bcv8f9RRcnjndMcztXl8zytb7HhmWJqj7hC6JCPIARBqy62HJCNPK5MK0/wO8cVrEk21VrWRMS3+2Sl0zP8e/bs2/wO2Hz3uXuuZP3w2B5jYUmc9Sl5wCjeUutfmGlPs2LGu1ipkIjpNSWaK7XtrtQfrgx3bje3WYy8CABz6LfsO0BvIm4QgCIIgCIIgCEKCkBcsQRAEQRAEQRCEBNHjEsHOZEBLV20w5U1a8nfjV79pbPed+HMANucLACwtWw4AOHveoca2cM5sUw4m8Vdastqe+6Fn3wAAXPdt6/o9dRpLDbc0bDK2/fNZpqjclY/CHhH2bp0jjUhP4zpR9TY3VtjJR5AyhqUsOdnWzas+tQEvBH+U+zPVgSMwNS9uv0fWPWHKvziYpYFucJc/fvt8AEC01QaT+eGcywEAl8z6nrGVNe805dMf/gUAYPXS9caWN5oXG2+qcRba+xHla83M7L58Y7Dgyvw8qV5jxMokPMmfKxHc2bQr7timKMsokgM2f1WyT86xsCP7qmiujtuepIM6xHwkgnXOdRWlj+r4Sw1SXt36XwBAVaW9D8sDLDt5fcVaY6vSC6djToP08kwVzB9rbDNGsvTLDUKSfcFBAID95k81thdP+9+9vuayJis18/ICpTi57AIx/s1lOXllPOlaqxpazz0/mV+yvldt7oW+P24eLBXV9yxg9/OTC7ZG42XcATc4UQP3uS9tecmYzp367T37IkOciTlT42xeHjJ3KFcbrovbrw1eXYXs2GVuyZh9vbwhjydbNnUCfzlyWC8vaXHyYGVncw4tN69ZU6OV1JvhprNcIj2DZZ0xJwfdjkY7dulNxIMlCIIgCIIgCIKQIHrcg+XNuvqFR41E7Fvs6rW8EO62/GeMbb8i9mz8a/EHxubNDM7af4Kxrf3MZojesl4vbHPCRycX8Fvwk0uX2c9b9xQA4G+XfN/YjAfLnb2SdfhdoiJ2dsHM/DkLq4M6hLhqtDNIoW3Wm+WFE45E7IzDzvfZszgu4Vc7eGgTpj3Ms0PjxsSHlf3uzAtMuTrEgUTI+WEvHL8QANDohIqO6BDQ7n7jsmwAmt+eeD4A4NVZdoF4kw5zOynPJ7RtgbNYWM8QFhcX+nyroUfIx3tU7wSYKEzj++R6Ppoi7MEanjEs7lh3P3exfm0L128o5rTXpNY2xwK2z/bziA0mIq0RlDVzWo+Df38egLaBDEbrQDw1TtqB6jq+h1UrbZoQ5GjPe6Z9nFIK938ZafZ3/+ku9i5lL7QBMvLn8Qz5skv/tW9fRuMGOKmt4+tuabH13bhR97tBp++o5N/SB3mDL5BJZywpexsAEK10ghqMzAEAtITtLLo3Te4GC/GItcbibIDjzXIdYWaW3TmPDvhz97s2UJd4sPaMjCCrMUxgCwBNLfEpB7bX7+7eCZ0x3/ETD9unaxtq+I33N9eVxu03Kov7Gjc1RIN+ViU7IfY9L5TrPU52PPJR3aZijrqjtob76Lz8bGNricX/Hjp7N0kU4sESBEEQBEEQBEFIEPKCJQiCIAiCIAiCkCB6Pg9WJwEjcnOsS3feXF6oOK+4xNiuf4hlE+mpVmYRyGD/7cuL3rMnSrdfY8I0lly0hOyC/dGjWWJz3yk2988lL97G50uSd8x9xpEIZmnZmgpZiUVZOS9KzM/MMbbUMQWmXLeRM27nF9qF1zu2WYmU0H1qHTmTR3ogw5SjitvFiPRiY4splpQpx80e1i711ICVHLXErJTmiFFHAwC+MuYEY7v2vesBACdNtDaP/Kk2t0v1ZyyVamqOd9sPdSJOoBGPsJZrev8DViKYEbR12xTl+kkN2P4yKcnqXbbUxQe58OSCrkzCuwb3PIOR5KRkDNftYP01iwAAjdF6ZztL/1qVlYE1Rbl9VbbYnH3Lyj8GAKyusAGTyhrj22FQP2vuevjfxjYtb2a3rtWVrXcWOOpLul0CwEUnvQYAmFFohda5qSybyQzaZ29BGgenmVUw19iKfjj4g5o8uvZFLrSJZ6GDV4RtnQdTWZLkBozxIgy59eKWk4xEMH57q7MgP00H+qmosDmchL2jOeQ8TyK6/tKttGxF2VZ0SjB+LDg2W4Jc7Anks6bGey5NnDQ6blvECUSRpMeObnCK1FQ+X0qqlQXGqp1gGXpZQnaKfVZl6/eK6cOsfL42FD+e7ElpoPmMHv8EQRAEQRAEQRCEIULPh2n3eaM1i6hT4j/+tElfM+Vpl3Mgi98vfsrYmpt5Ftd9Gz515gGmnKzDtN//zhvG5oWr/cvHDxvbGTMPBgDsXzAj/po7mSEU4nHDr6frGfNIpQ2YsK6KZzCmRe3sfHKenXlPy+SZYnKCNnysj4+vHcEjww1zXsf3dr/pJXH7tcRsWNOADssdUTZbuuexcIMaNOtjWmJOVnVnxidM3A7LW2y4/R/O5ZDuOSn5cdeQ5mRaRxXPNBZkZ8TtNxSpDduw9usqNwMADh8zz9jydMj2jbWfG1tVC3tIspJtYILqELdDL1UF0DbIhZ9XxatTt+4972W9G9Y4E4Maz1Premz9yE1hz/uoDBt+fWaBfv5M65lrA/yfSV3NwN7+pZt76nIGBctLt3EhzQm/rr1MQWfGPEUvum8TxV4/54IB/yGUFzY6KcWeO+ATJCNZL97fVW69y15/nRZIj9tf6JiD5thw7UuXreNCtr3nVc18XyOOEsAlM529IG4vWZwR73UR9ozK5vi0LWGdxifieHP9PLxevxd2FGlucDxPgeamVfCODzupgmpa+kYRJR4sQRAEQRAEQRCEBCEvWIIgCIIgCIIgCAmixyWCfniL6RsarHRp9TqOlX/UssuN7fozvgEAOHXOgcZ27e8fAACkjLEBE7ZvKzflUaN4YdsnL6w0tvwDeCHz9u12v2ciHwEA3vjRsXHX5ydrFDpG7bZ5DjynbH2plQ2+VM1O94VOzoPQTus2fmkFZ9k+/YfHG9vqt+yCccGfuZPs4vVPJm4EAEwfOTxuP1f2FCRu8pFWK51I00EwXMlRUC/wjzpyCjdYhueQT0uzMpYkLT9sbY3P0n7EwVbsuVRnWj9t2nzf7zWY8ZN17Zc325TPnsb3prRhi7FtrefF2WVNlca2W8v9As75qkMsM5qSa6Uy2Zm2fiqqWPK3rcEu9s5NzQUADE+zucuGpXH+Jy/IgyAMRj7894dccHL0heq1JDpk5UXRnTq4T4YzXGriPi7iSHCrnIAyyNESw1rbf9ZN5raWnGbbVZqWIqalWlt5M8uux2bZXJ9CW1qdgExen5qW7gTl2amFfqm2zj5czrLBuq/GS9YAoLGiwTu5sWUn5yXicocMflLmj3axtL2lxbaFVbs50FXIsdXpvH1RRwJYX89tL7/AjvfdcosOPLOr3i5J8YJkbK61gWNM+WB7XZ4ksSeXBIkHSxAEQRAEQRAEIUH0uAfLm11wQ5gG9CLstT9dFLd/fcS+dXqepJgTJnfBHYcAAApSbZjvFCec8JZ6nvmd/PVfG9uI9NFtrqUrxIO1ZwRmH2HK5+xYDwCILf2PsZ17xhVccMKkhsrtosPTv/tlAEDwqjuN7WanLPhz7zG/d8od75eVnBNnS0PnASb2KfyEj+fjgWP/aP+IdxoPadx+aXLufgCAiTk2YkJTlGfn3BDiU/M/AQAUphcaW7iRZwOHpVrbjV8/25TLGtkDNqtgjrGldDO4gyAMNmqfWgGgrZd+dzOrKVZWWgXM6gp+pv3P/ucZW1E6h7HfVJnZ+qAAACAASURBVL/e2AqcdperA/14bRcAlux+FwAwt9AqcvL1MVEnPUPQCTgj+OM3lrvjKz8w5evSuT8bkWmj81w85wwAwLA0q/K4+kZbp8MzuM7y05x0MtIv7jOXzuX7/uZ2m1oppj2QVc12vL+xmhUYG7ftNraMDL7/eVl2RNLsBKCZWjASADCryKp5Kpr5PDmpNgDU9IJJcdfVG8HsxIMlCIIgCIIgCIKQIOQFSxAEQRAEQRAEIUGQapPcoYudicoBlHa549CkRClV1NcX0R6ps06ROht4SJ0NPKTOBh79ss4AqbdOkDobmPTLepM665Ru1dkevWAJgiAIgiAIgiAIHSMSQUEQBEEQBEEQhAQhL1iCIAiCIAiCIAgJQl6wBEEQBEEQBEEQEoS8YAmCIAiCIAiCICQIecESBEEQBEEQBEFIEPKCJQiCIAiCIAiCkCDkBUsQBEEQBEEQBCFByAuWIAiCIAiCIAhCgpAXLEEQBEEQBEEQhAQhL1iCIAiCIAiCIAgJQl6wBEEQBEEQBEEQEoS8YAmCIAiCIAiCICQIecESBEEQBEEQBEFIEPKCJQiCIAiCIAiCkCDkBUsQBEEQBEEQBCFByAuWIAiCIAiCIAhCgpAXLEEQBEEQBEEQhAQhL1iCIAiCIAiCIAgJQl6wBGGIQkTjiUgRUVD/vZiILurr6xIEQRAEQegOehwzuRv7tRnz9DR99oJFRJuJqJmI6omohojeJaKLiUhe+voQImpw/rXqOvL+Prevr0/wx2lPDUS0m4geJKKsvr4uYe+Q/rF/Iv3j4KddX1pNRM8T0di+vi6hY4joHCJaqutsJxG9SEQL9vGcMuG4jxDRAv3sqiWiKiJ6h4jm9fV19RZ9/bBeqJTKBlAC4BYAVwG4z29HIgr05oUNVZRSWd4/AFvAdeTZHm6/f2/NBHRGf7iGfsJCXW8HAjgYwLV9fD1dIu26U6R/7GdI/zhk8PrSUQB2A/h/fXw9QgcQ0RUA7gDwGwAjAIwDcBeAk/vyuoY6RJQD4Dlw2ykAMBrADQBCfXldvUlfv2ABAJRStUqpZwF8A8B5RDRTz8DfTUQvEFEjgCOJKJWI/kBEW/Qs/V+JKB0AiKiQiJ7Ts71VRPSWN9tLRFcR0XY9G7yOiI7uw687oCGiXxPRY0T0KBHVA/gmEaUR0Z165mg7Ed1GRCl6/4uIaLFzfFC7aMfrv08kojW6brYR0Y+dfU8iohW6Tt8mopnOtm1EdCURrQLQ2Etff0CglNoO4EUAM/Vs7DHeNiK6noge6uocRJRERNcSUSkRlRHR34koV297kYh+0G7/FUR0mi5PJ6JXdDtcR0RnOvvFtesEfe1Bi/SPAwfpHwcXSqkWAE8AmAEARPQ1IlpORHVEtJWIrnf3J6Jv6z6zkoiua9//ColFP5NuBPB9pdSTSqlGpVREKbVIKXWl7hPvIKId+t8dRJSqj83XfWI5safyOSIao7fdDOBwAH8m9or9ue++5YBlKgAopR5VSsWUUs1KqZeVUiuJaBIRvabbSQURPUxEed6But38lIhWEnu/HiOiNGf7lbo/3UFE33E/tKs22pv0ixcsD6XUBwC2gX/YAHAOgJsBZAN4GzyLOxXAXACTwW/Ev9T7/kQfWwSexfgFAEVE0wD8AMA8PRv8VQCbe+HrDGZOBfAIgFwAj4Hr4GAAswEcAOCLAH7ezXM9AOBCXTezAbwBAMRu5HsBXARgGID7ATzjDUw0ZwE4HkAeBAOxnOUEAMv34TTn639HApgIIAuA95B5FMDZzufNAHtZnieiTACvgH8fw8F1dJfex6N9uxa6gfSPAwbpHwcJRJQBnth4X5saAXwbfE+/BuASIjpF7zsD7Dk5F+z5ygW3QaHnOAxAGoCnOth+DYBDwX3iHACHwCo7ksDtqwTs9WqGfsYppa4B8BaAH2jv9A8g7CmfAYgR0f8R0fFElO9sIwC/BVAMYD8AYwFc3+74MwEcB2ACuO87HwCI6DgAPwXwFQBTALSfwOiwjfY2/eoFS7MD7E4EgGeUUu8opVrBbsXvAvixUqpKKVUPdgmfpfeNgDu1Ej2D8ZZSSgGIAUgFMIOIkpVSm5VSG3v1Gw0+3tYzRK1KqWbwA+V6pVS5UqoMPKP0rW6eKwKum2xdr8u0/bsA7lJKfahnP+7Xdle/+yel1DZ9DQLwNBHVgAfbb4Dbx95yLoDblFKfK6UawAPCs4jlRk8BmEtEJc6+TyqlQgBOBLBZKfWAUiqqlFoO4N8AznDObdq1niEWuo/0j/0f6R8HPl5fWgseyP0eAJRSi5VSq3TdrgRPNh2hjzkdwCKl1NtKqTD4xVr1wbUPJYYBqFBKRTvYfi6AG5VSZUqpcrBE7VsAoJSqVEr9WynVpPvLm2HrUthHlFJ1ABaA28C9AMqJ6FkiGqGU2qCUekUpFdL1chvi7/2dSqkdSqkqAIvAL8kAv3g9oJT6RCnViHYvZl200V6lP75gjQZQpctbHXsRgAwAH2lJRA2Al7Qd4A5wA4CXiehzIroaAJRSGwD8CFwJZUT0TyIq7vmvMajZ2u7vYgClzt+l6P7M3akATgKwhXhR6XxtLwFwlVfXur5HtTtv++sY6pyilMpTSpUopS7dx4GVX50GAYzQD6PnYQfvZwPw1p+UAJjfrt7OBTDSOZfU294j/WP/R/rHgc8pSqk8sHfkBwDeIKKRRDSfiF7XsrJaABcDKNTHFMO550qpJgCVvX3hQ4xKAIXU8TpDv7ZXDLB3koj+V0s66wC8CSCPZD1rwlBKrVFKna+UGgNgJvje30FEI/SzZru+9w/BtiOPXU65CayiAdq1M7StX3TRRnuVfvWCpWUPo2FlQ+7sTwXYhbu/HkTmKaVy9UJUKKXqlVI/UUpNBD+QriC9lkAp9YhSagH4oaQA3NpLX2mw0n5Wbgf43nqMA7BdlxvBAz8Pd6ANpdQSpdRJYDnZcwD+qTdtBXCDU9d5SqkMpdTjnVyHEE+n978T/Oo0Cl7wDWiZIBF5Eo3XtX0rgDfa1VuWUuoS51xSb3uB9I8DBukfBwnaO/gk2NO7ACz9fBbAWKVULoC/guVOALATwBjvWOL1j8N694qHHO+BvfcdScD82t4OXf4JgGkA5iulcgB8Sdu9+pT2k0CUUmsBPAh+0foN+P7O0vf+m7D3vSt2giWFHuPabe+sjfYq/eIFi4hyiOhE8MPjIaXUqvb7aBnMvQBuJ6Lh+rjRRPRVXT6RiCYTEYHd+jEArUQ0jYiO0gsbW8CDkNbe+WZDhkcB/JJ4IX0RgOvAMxIAsALAbCKapR84v/IOIqJ04vCqOUqpCIB62Lq5F8D3iWgeMVlEtFCv8RG6z8dgaV8yER0MlrF0h0cB/JiIJhCHe/8NgMccKcYL4AfXjdru1dtzAKYS0bf0ZybrOtwvcV9paCH944BH+scBir63JwPIB7AGvN6xSinVQkSHgNdBejwBYCERfYF4Ldz16KOB3VBBKVULlmL+hYhO0V6pZOI1P78Dt71riaiIiAr1vl7bywb3dzVEVACn7Wl2g9cfC3sBcbCrn5ANHDIWrHZ5H3zvGwDUEtFoAFfuwakfB3A+Ec0gXiPZvt46a6O9Sl+/YC0ijrS0FbwY8TYAF3Sy/1Vgmcv72q34KngGAuDFbq+CK+09sD79dfD6glvAM7y7wDOB3V1gLHSPG8ADhU8ArASwBLyAEUqpT8GD88UA1oHd8C7nAfBc9BeCZzKglHofwCUA7gZQDV4w+c0e/h6DkesATALfwxvAszvd4X4A/wDX1ybw4Psyb6Pi9VZPgheYPuLY6wEcC5YP7gC3uVvB7VDYM6R/HBxI/zjwWEREDQDqwGtzzlNKrQZwKYAbdbv8JXiwBwDQ2y8DT4TsBLe1MgyhsNR9gVLqjwCuAAevKAf3lz8A8DSAXwNYCm53qwAs0zaAQ7ung/u+98GSapc/ATidOMLgnT38NQYj9QDmA1hCHOn2fXAf+BNwn3ggeLLvefBYolsopV4E191r4Ofda+126bCN9jbE65wFQRAEQRCERKA9/zUApiilNvX19QiC0Lv0tQdLEARBEARhwKNlmhlaqvkHsNdkc99elSAIfYG8YAmCIAiCIOw7J4Ol0TvAstyzlMiEBGFIIhJBQRAEQRAEQRCEBCEeLEEQBEEQBEEQhATRUXI2XwoLC1XJ+PYh5/ce13lGnQQzLW+uMOWtu8u4ELDvhinJ9mvMHDm5k8+zH0idfeBesOyj5RVKqaKu9+xdEl1nfizb/KkpU5DrJRi0dRLUdeXe81anLlpjrXHbI1GOBj539DT0FEOxzrz73hJtMrZQKwe5irTG7H6t8ZG6o8puj+ntwSTbDvPT8gAAGcEM9BT9t86GqfHjerad+aF22ByLVeX1AICA07W5+oTcnDQAQNL4jvvInuCj5R/30zrruXa2vWEnACCmbDtKD3IgzSSnn0tJSgYA1IUbjU05tUY6ynfUaZseY7NtPugkSuxcaX9tZ0DvPNMGIqWbt6CioqJfhoX3qzO/8V93x4QuLbEWAEAoaoM1NkS4PTVHo8aWm5oOAAjHrK0hZI9pCYUBAFOGm1RmaNXtNys5C+1J1PX317Ym7axjultne/SCVTJ+HN5Z8nbXO3aT7r7w/O3Te035sjvuBgAE9WABAEaNtLn83vnpog7PE2u1DSuQtEdfvUvSg5mlXe/V+yS6zvxI/58DTTmlgAfXw4flGVtBQTYAIBCwCdLD4Ygp19XxYD89LcXYtu/il+p3bn6jB66YGYp1Fm7lh8jqqo+N7fM6DnBV3lRlbPXhJrSnuqXOKfNDrTDDvkydPuVrAIA5ww5O4BW3pb/W2fhx47D07cW9/rnRX11kyo/cw5+f7bYz50V54VemAwDS73vG2Cip50UMlJnXL+usJ9vZr96/EQBQE2oxtllFEwAAGcn22TU6cxQA4LUt7xpb2HmZSkniuixrsi9gHrd/yaZ/SUvwpEZ/bWdA7zzTBiJfnL+gry+hQ/zqzG/8tzeT4Bvq1gIA1tesN7Z3dywDAHxSVmZsJ0yeDQDYVrfb2N7Y+Lkpf7Z+KwDg75f/3tgaIg0AgMNGfAntSdT199e2Ju2sY7pbZyIRFARBEARBEARBSBCJdePsIX5v+E1RO1N3/6cPAAD+/PJ/4vaLltv9ajLsjKA3c/iLeT8zttQAb3e9Vt5MQ6KlgkOJD8r0rOvWBmPLHFPApi27jC03NxMAsG7DNmMLOhLPgrwcAEBDY7OxNawtBwAsKbMzKPOH998Zuv6C3wxaS8ze1/1/dxoAoLi4MO7Y8vIaU25uZulEWYW1ZWfbWfIpk1hGMWPsKGO7Zck/AAAPHTfX2Lw215Py3KFCw5nHmvKit9nrOD7V5m8erqXStVHrASlMTjblT9/cDACITJptbCMLWTYz4cMPE3/BQwy3nT28+H0AQFllrbGVjGYpdX2D3S8vj6VH655bZW3zrUTJ2zdW7+SqbWDv/2UHnGNMM/Ln7PP1C0Jv4j4H/MZjfgHYvO0H3nWGsWVkcB943iGHG9uuBh6TXHvYt4xtwW9+CAC45pxTjO3O4y8z5ZtyHwQApAfSje2Q87iN/eeevxjbl0YdDQCIOZL5IPXpUFrop4gHSxAEQRAEQRAEIUH0m9fuH795DQDg0VffM7aA9nJEnRnZ/OJ8AEAkYtdTNbfY2b37Xn4LAHDPi4uN7ZQj5gEA7j7qVmPbF82swPxl+RNcyLNrp7zgCBMnjja2JL3Ow13cnewEJrn02GMAAM+uWWlsXl1Utth1QcLe0RCxs+j/n73zDrOzqP74d/beu71nW7LpvRFKCCHUIEpHgxRBEFBRQNSfigUUEbCgIkVFsdB7lyZNSgIJJZBKQnrbJJts7+2WfX9/nJk5s7l3S5Ibtp3P8+TJ7HnLfe87d+add86Z7xkzlhbGL3rqA2v75lVnAgBmzT7B2u5b8g4A4Lunn2xtp405Mercu5s5nv31rYsAAAnKF7VfR4GTdr2fzO/sDeuW7rJl47kqHMLe+7Fp5K3aXcbr5/Kc7W1t1I+WV/O6oPIq8pCMOQDXO9hYWbXMlo231+/ntlBdR7PquVm8YD6in23pM9kTnJPpbNcCQCMnjLC2ujqK3mgOR6+TFIT+SKyxlxF7cZ8TtUEaD9TWctTM4xfeAADISy6wtvd2/B4A8It37rW2Uz9H48Df3veMtW2axwJqPzniAnMx1uabSOPN7z3FHqyFV9Ia44xAlrXJM02IhfwaBEEQBEEQBEEQ4oS8YAmCIAiCIAiCIMSJXg0R3Fy/3pbvfWk+AGDEUJaW9wcovCLihAgaV3J7O4f2BZ1wwdSUJL2d5Ykf+i+FOx0z/EFru3DixXRuWai4z6zcWEKFDA4RNPUTcups1y5ywzc3c2hSSgovzr/77bcBdMwhkZdH7vdHV79lbaeN/GKcrnzgEivUIi+5KMpmwgIB4IN1JFV7z984xcHuRynUtqRxq7VtqeeyCYVwQzin54/t9BrcUFwJo9g3hg1Ns+WSnRQi47aZ2joKla5r5f4wtJvDyNLSqH9zc9CNGZ5xQK51MPJmybu2bEKgC4tyra2qkkJ1W5o5pH1oMYnNNLc4IhYOkydSHpq0dF5436iFL/6xnEOd7v7CnP26dkHoa0Q86scSFI8vPqlaAQBIT+PQ5xWVtLSgrKnK2h5/ksYNR3+BU8iMyqcxxYRJHG77+AucBuadJSRCU7pgk7UZwZnjZnA+zjOfILGMp86+2dryUyjEt93JeyfPOUF+AYIgCIIgCIIgCHGiV102965+1Jb9vuiF8cE2kqP1OZLeiUm0kNv1YIUj7C0xghjuMdl6UfHTaz+0NuPB8sc54fBgYtrY4VG2kh2U2C8znSW9c7Jpltws8gaAYU5y6PLyGgAd68xIto8vLozjFQ9Oqlo52eKiBTQD+O2rf2Rto7LIa7xqDNfnc5ufAwAk+Xn2sCHIqREqmqnOspLYA7K2imT4vzo+OqF3d5K8QveEwjw7arq/cIRtxjFlFocDHdZrIyEh+n5LFcSPeic598zxowAAJ4xi+fTt9ZS64sXVLOaz8F1qj8nOjPyc2dNseUgKea4yErkdlqWS13h7HSf+FoT+Rixvj2sLJCRGHXPzB08AAM6afai1ba6lBMH3vsUe5OmzJgIADhnG4jFPzV8MACgu5iip9CyOCijdQoJNk844yNqevvi3AIA/L33A2nbtIk/Z7z6609puP472M143+k7R1y8MLsSDJQiCIAiCIAiCECfkBUsQBEEQBEEQBCFO9Gp83OufrLXlZp3LqrUtaG3pemGvK3JhQgBNbiWgY7hgQoBiXmqdcDSTM2vbDg6VEvafkgoKVSmrqLG25gYKk/FyOUdEpnbDp6fxQu1PVm+25aICWgiel5dtbREd9jklT0IE95WH1t8PAFi6e4O1XXE+5bXaUrvD2tITqX7mFE+wtpYwtcfKllpry0nOtOURmdHCGRNyKRzju/N/YW0/nEmhuBOzOOxJQgP3DTePXFiHAbp9X6z93Hvt0yGCEWdfqYv40Rbm8KBjhtPvPTuR+8H5NRQOuGVLqbWlZ1Io9agR3M+NzeZ+cNZQCnVy62lzDfW3TVrsQhD6I64IhAkbjyUMccz9F9lySiqF0la38m9/6W7KDzh6DIcDNjXSOOT9jVutbdp0EmFav67E2q4778u2fProkwAAG+o2Wtu171D+q4Y2FqG56HgSlMlK5nx1BjesUXJjCVLzgiAIgiAIgiAIcaJXPVhGyhYAUEkS3rsT2BsyIYNm9xqcmboM7dUKO/LqoRgy7RU1ddbm99HnuNm/hf0nGCQRkvRU9kyBVIcxfARnVS/fTYtC63azN2TCtFG2bMQvXCnvdC2SsaOefw9C92xv3GLLL29cBgA4b8ox1ramiiRoUwK8qN54porTeAawspXqzNfqerB4Nt7MyqX6ue6TfDR7l+JnCf7nN70KAPi/Q9g7lhhj8bLQPcGgk1IC5NFwhSuCbVrgxznGbVNGJCPi2Nztwv5RnMHCPSl+al+hdn42jc8lr299Ez/PWjdSFMBOP9daYCq3lYCPRJ1M2wKArGQ6txvFMdhZWb3ElhuD9DzxJfA9jfU776n3NpBAddCdIFZSAvd7xnsRdkQPDG5qmLD+fYSd30my/u3E8ny4+5nPODy/f0r0u3USqy5uXEzCEZlZ7CnavGknAOD9D1dbW3ERDTpyc1lwKZZ314hozZg2lm2KfyMrqkh85t/L3rS2UIjqamoRj2fe2UrRN270wK7GXwEAbj7qRmsTz5UgvwBBEARBEARBEIQ4IS9YgiAIgiAIgiAIcaJXQwTrHSEKJJOrNtLEIhcVVRTm19rKCwyNWzkrMy3KBgCbSyjXSHYmu5VNKEVVLecNqWylnAd5ySKisK9k6fxWK95nsZIho8hdv8oRsZgwrhgAMGwM3+vSMs66bgROqnawbeqh4wEAuSlO+KHQLYt2L7LlovToRbjpiRR6OW0IZ6avbaMwwLIWFoEZkkzhTnnJQxCL2iC1ze0NvGA/GKGQ0XHZHP65qX0bAGBz/Tprm5zNeUaEnuOGpDS1U+hKgZM7ztNRZM3N3If6nNCb1lY6prWdc80EQ1wW9o/xOfy7L22k54srDJOoQ80KHTGfbbvomZSZzs+z7GTOIZifQu2vPthgbVWNlI9uYn5e3K69v7K7mcR6FpVyjku/Dg1sDrVaW5vum/xO2KAJZXbDLw2mLwOARB2mGfBFD5cSnDnqZCc0ujlMIWoBJ6ww2Uehf26IoCm7+Z/Mfi5me7Cd23ZZEz0vp+ccHHWO/kCHfH065PmdXRyeZ+on4uT6O2jyaADAOUfPtLaDC+hZdtCQ6dZ243t3AwCyk/leLlxJz6AdOyqszRWUeXnTKgDAlTNPtrZD8yjf1rLKZda26NPHAQCXH3+itb1bQmOgf3/6T2v71tTL6frbo/NCCoMD8WAJgiAIgiAIgiDEiV55nTazMDX1Tdbmy9SzFc7sqvFcpSbzzFCbFrTY7UiDpyTxDFSohY6ZdczB1rZGy3JWbeGZi7W1awAAxxSJB2tfOWsyze6888pH1pacSLN9bY7c/tr1dP+/eMIR1vbYX1+y5WfvvAUAsKaa5VFveORpAMC8mYfE+7IHNFUtLO5Sp6Vlk3zcfsZnjwYA/OT5u61tzWs0c7fqoefYVkPtw51tbYuwJ/kwPbPXlsW2bQ1Uz+7C/opmaqdlzWXWJh6sfSM3l2djN1ZS3+l6781Mb4vTh6b73IX+9H+og8jFAbnUQUlWInurPmlZT7YkXnifmUReqrJKFo4ZddBIAMCE8cOtrbSB27ARhHG9E22t1LeOyortXR5MmLFEZXN0OomIc8+MRyrSzv2Z8ShGElzRiUiH/QGgLUKf4QoipGqRIJ8jZNDq6FnUtUYLasWW9Y4eglVrYSG37zWf7XrR6tuoD2iJkCR5f/NguSIQQf1sOfknP7S2v1/3fwA6iphlZ5PQ0rWzfmxt1ywkMYw/vfWCtaVpMbT7T/6Dtf0x/TYAwJPvLba2lEDAlofoaJm7lrxmbSeO2QoAaA6zN/ToqRRdM7eYxaOWl5G41CPL3rc248ESr1U0XYkruYInpn27wlg1bZW2vLmexozrajkVzfZ6ku2vbGGv/8rdNP4YncMey4ladGh4Br8D5CTR9k8qOeLmnAlfAgCMSh/X9ZeKgXiwBEEQBEEQBEEQ4oS8YAmCIAiCIAiCIMSJXvFdVrSQC6+qhkUnhhXkAgC+dPRh1nbXQ68AAPxD+TIz0siN63MWd7suZLSQW/2UcbzgcVuJDk9q4f3eLCExgGOK5u7z9xjs7GrUIZfV7D5P0iGCN1/I2dcfXkr3+txJx1vbY5EXbfmvS/4LAPjOYadYW2KAQiLSEkXkoieYxd4ba1h0YnwOLYKvD3I7u2M+3evN23ZZ289/8TUAQFUri4yYcMDGIIfxHld8rC1PPfd0KozlsKiyO94AANz76f3WNmnIaACcV0vYd3yJ0d11U7O7gJpCKyJO9EV7h1wz0edMDMgcW7zITc615d2NFOY3NptD/0yYV2sT95fFh1B+nWNGjLG2tVUcTmtCZNyQtVYdIjg2e0Tcrr2/YsLMWsIcqpzWTvcq1c8htdk6VNMVvjAheG3O8MGE/hnRBYBDBM3/AIeMZSSyIEm6UzZhiu3gsL12Hbpb28ahS+Y3EWzn+jXX7X6eEdpwbeY7N4TqO3yf/sjOZgovHzFjpLUdWTgLAPBUMi9B+MZBZwIAmkMN2JNmJ7/cxBEU/hVwQsvatajGOUfNsrYEp57rdUj9KEf44tlllF/txpMutDYT8nfbkgejjq2u5PBeoXtcoRPTlt3wQRMaWNvG44cpvz3Plp/+zvUAgD/Pf9naVq2lcM12J2/kiBEUBliWwucZPpvq2YQFAize5YrhBJ2lEXuLPF0FQRAEQRAEQRDiRK94sFZUraBCDb8ZFh5Es3+HFI7nHfX2tLG8SL9Bz1IkJPDMQ3YGS9yijd5a3RktiyNzvLayPHq7sFdYCeI2nqXLyqaFvE2hZmvbsYPu9akjz+SD26+2xaXLaEH4f7OyrC0UpnqckTclvhc9QDGzP1lJPGt79LDDAQDfeOBWa7vh7K8AAI75ytHWZmRktzWWWFt6gNpUip89iNWOF+qya84GAKzczh6zCp36wF0QnJ9MXrSShh17/6WEDtRWt0TZIo67qrktega7Jsy2zBSaBQ+LsMUBYUQay7QbgRnX4xA24i9OnR08jGbaJ+SMtra3trDYj5H7rmllL3RtLQkozCmaE6cr778kJdDYIMWRSDfiFWFH0MLMlMcSjnBtxrvkHmtmszvMaofI41Tb6sjnOwJDpt7NtQC8eL+6hQUwclPSO+wPALvC1QCA/FR+HmYkpnW4PgAob6LoAr+iYZzrdetvPL2BBCruuvB71ra47GMAwOZNO63t6hqSCxM4yAAAIABJREFUQb/8KJZIv/XYGwAA706Yb22TsycDAP607DZrK0ojUZhpQyZb24e7ltpyRiJ5S5pD7E0sys8BAPxh0bPWtm0rRX+MGj3U2vx++m3k5HJER1UrjXuGJBdEf+FBjuu52hNX5MJ4rv645C/W9txVN9rykYUUVfPht+Z2+XmbdJqYcZmTutzvzZ0kcLK6gvvg/fEMiwdLEARBEARBEAQhTsgLliAIgiAIgiAIQpzolRDBknrt8q1nt/jkEUOjd4zx+mfyLLkiF80tTjhgBm1fV8WL+M+eTVm/f7eIte13VctixP3liCLKhQQ/u3TLyii84Zo/cJ6leRd9Lvrg0ZwfxtTpuyu4foI7KCSmLij11BMyEymUIdvJu9MQolCU0k84PK/9LArnNHmuACCkF1i7eV5MaGCC4x6vbqu25SsOplDD3CM4F899nz4CALjnfwusbc7FJFrjLuI2IYmSH2Tv2FXOYbcTCyi0qHBSvrVtX0UhmnU1vGp/fB6HT48+eRoAoOFxDotxQwyF/SMtwOFBjUF6trmiCukBHW5bzqGeZ034PAAgI5FzJNVUczhgwORqctqhWQSelyShR359f4w4BdmoH3PDBiMxckQl+SgkzA3PawhSG3NFRZJ8pg6iz2HD5PegsoVyWRmxEwAoSqeQv/xUPqZW57Ials79aFskWqTD4ObdGpKaGrW9v/Lxrm0AOo7b0nTIXruztMOMLx5YttDaxmWPBQD85ePnre3h044EAPz6UQ7te+XHvwMA/O79x61t9y4Oe09Konr+xhwW42oLU11c++Cj1nbUkSSg1uqMOzNTqa4iEW6n2xpJbGGghwi6+ddMmKob5hcr55WbA81g+rjXtzuCFZW0fORXs6+1tiRfdLtwr6Fdn8fvhOfGCg00x7jXMjOPllVEnFyejaHonHY9RTxYgiAIgiAIgiAIcaKXPFi7qeAsyk7106WsrdrKO2bQDIb7AmykTl0PlrEBQHIWzersbuS3zoumngoA+F34EWurq9v3t1KBqG6roUIq/4zS9EwOHPnnM8bPjDp2znEH2/IHH60GABQX82x8+hgSPRmXNTZu1zuQqWihNpXszNqWN1PG8+EHs/RtY4hmz7Mdj5KZJXdnR80skDu7G3A8TtsaSBCjtIlFLkZk0oL9/HyWPd2ht7vesZYIzRKnJ8Se/RU64oVopnRjC3tDpo0k2VnlSLcH/NHzZYlJfN+NTntBLs8ArtpBM+zDIewvAcUzpok+LcnuiC1ZD5bz3JuQNQFAxxnYZkfG3cyk1rbx8yo9nc6T7B84Hox9xcw+72xgT8TYbIqG2d5QFrW/258ZD5br6apqIe9heiB6lrysqcaWU/zRsumuMIbB/A7cfY2kt7vd9XTGOk9lC312U8iRaddiDD7tsVOx8jD0YcLOM+iFx+YDAOacfri1mXFdVhZ74Zsa6flVW8NiHxf+mzxTduwB4Mwn/g8AcPB0Hj80h8hbuHUzP7Oeu+xmW/7L0ocAABdPusTajBjDkzMWW5vxXLn329Rj2BEVWlG5CgBwWN5sDBS8Dmk/6Pu7HiDjhfLBF7WfS0OInjtLKz5ybNTHHVFwhLV1EEbTuL8b46VyryGWd8wIDLnjkFj7vV/2HgBgSdkqaztnwhkAgLZIa9T+3SEeLEEQBEEQBEEQhDghL1iCIAiCIAiCIAhxoldCBN/6lBauIZHf7+ZNmAsA+PXbj1mbP4dCIdwQwNYguQfD7W6GdHZbGjfxx8vXW1vSHB0CkMJft66uaX++ggAgzYSohJwQzRR9r6s5DCItEB3K8sUpM2zZhAg2OZnYG2uofoanjYTQPcH2YJTNhPxdcRLnDNlSS4uIh2cUWVt7jMXbhlhudIDDBRMcl7uxff/406xtRfkGAMDBBROsLRTjWoXO8apIFCjLHx3ul+DYGpuob3R1K5qbebFuu25fqU5Ir+k6vUYOf1LpOfG58EGGGwoTSKB2k5/K99KG1zg5HHP1AvjWMAuYtAUdQRjdNlvD3GZSU6PD1wYrTTqsqDiDRSIOKzgIAFDrCCSZUEtXqMI8l0LOgvYZ+dQ2GoIckvnWtqV6Pz62QdHzbXEp52gqTONQNp/+LfgSuP80oYGHDx1nbbkpJHxR5+S3MmHeQ5JznfPReUoa+PN2NpTra63X33Hf8/X0BiZMDABuu+YKAMDEHL43ZixYsoNzlh43mwQm3vmQQ7jyc+keZmTyOKO+nsYPJpwWAJ5ZT+JLeU4I+ytb37DlW469HgDw6vb/WtvYzDEAgAfPut7avvXK7wEAoSD/biob6PMSnPr+7XPPAAC+fs03MVDoLgzVDcEztOi+7aOK963N5G47LH+WtWUEsrAnps90RX6UMyYx27sT1fB3IahVH6y15U+raLxiwocBYEn5MgDA2IyJnZ6jM8SDJQiCIAiCIAiCECd6xYPV0qy9Gy2uyAXNNKzfuN3aUpJ1Zu1W9oZkZdAskStyUdfA3qhELZaxa0eFtVW0UNlXwDMcLXo2yZ1NDyTwW6vQPUPTtLR+0PEwGunSLL6XsYQqThhxjC0H/E8B6DgjhDqqF3dBo9A5Ec9InzvtQs/CzhnKIiP3rXopxrF7P/NpZqDCHteZkXbPT86ztne300xjyJE9bg5Te81J4v2EzvE+fhsAkJrgLBw2/Z/TDxrJ9XbwDF5bW3TdJifzeZL076V94zJr8x0SI62CsE80hdgrb+TD4XMWx+tnjj/Aj+Kg48Eynou0GKILApAWIHn7LbXs5VhT+SIAoCnE97E1TP2UO9OdoWXAXdGJNi2zbcQUAOCmE78GAEjysRhGnu7jOs6s87lT/Wkd/geA1dXUF/5mEUfpTCsgYaeAI4bRFOzcw1/WxGOd3JQU/T1ILMiXEO096C/8+dVXAAC5uSx8lKhl0+tLOD3IqJPIyzHzMJbdPmnMZADAo4s/sLYUHUnjtqvxOSQMNCqLPYPVLexFM/Lf1z33kLXVN5D3Zf3PX7C2b82k/vHv779ubas/JUn2Wc51NWlRIlfyeyClJonlPTJsrucIsuWVywEAnx9+krVlJmZHHWPaUkIMv09XHiigYxROZ1E37jUDfN33rXnA2mYPpbQybRHuE17fuggAMG/M3kfeiAdLEARBEARBEAQhTsgLliAIgiAIgiAIQpzoFX+lddM5nsUt9ZTJu7acXbYFw2jhaq0TAlhaTvkuCnLZxeiuaQvqUADX+GnVRgBAchLnKTGLESUscN/JTtQLuJ1F20ZwJHcCZy+PJVQxIWuKLQfbKJTDXaSaPZ5CMFKcEAuhc0I6lDLiLMRuDFJ4w6iM0daWZPJ1OGELxqUea4Gqi7tA3IhquO74dB2uMyaTQ0JNSEuSn9uZG1YodI9XSjnH0pxwQNPmPCesNtHknuskXUd7C/1GlCOMYc+56VPeUUIE95vWCNWL2z5KGys73d/dz+/Ujwn3DDjhX24I4WAnK5HCvbbV8bhhx05aEuCGLpnQ9dY2vndmrGCWFQBAdR2JTeRmZVjbo2soFOzBe1+1tlGHjgIAtLRwKFFONh9jhLk2vLLa2u67k4QSlq/YYG3bsyl/YTDE7TgSiRYdMt/FHcNccOyRAIDClGIAnM+wv7C2lvuc2877FgAg6OQV+9dyLUBRy7Z3124CABw5cYy1vbj2EwBAYQELyswdRaJKqypYFOSBBe8CAG780gXWdtaYc225rIX2/dcFP7K2N0sW6UvgPGvXPfMoAOC4Qydb2+o1FCJ4WNFQays6lp6HjeF6azO/1/6A53HondKDdbdNxQoNrGyl3/OySg45P3vsV2Kcm/o1zwlnN+OPWCIVrs09xlxfQjfCF7GuubaN6vR/W9Za24WT6Fo/Kuf8XNlJNAZtCrMQTU8RD5YgCIIgCIIgCEKckBcsQRAEQRAEQRCEONG7kiZp7NK26mdOTqVYLr7MdAojs6GA6Og+TE7U53S8jMal6J4vKdC/3Ol9kcYwqdQlTmK39+4KUvxp2sTKP2mBTOxJJIY6YHIyqzRNHD9Cl6LdxUI0TaHmKFt6IrWVylZW1LznD88CAC564HRr21y/lQpOb2DCTVzXu6vUY8pDUzmf1jFXUr6PFfc8aW0mJNHNNeOGJwo9oJraUkqioyKo+zLPCSfy6xDBBMTOVeKFIx2OBQC/OU9FWRwvWGjSYXyJPn7OVLfoUPesrsPSW9o4JKolTGp2G6pZJW/M8MJ4XeaA4ZAi7oeMup4bLm1U+mpbOX62soZCtxKTuD4Kda64zKx0a5uYS+c2YesAUFhIzzw3d6Mb2meV0Mbys68olept8kQOmS/Ioe0NjpJhYTp99u4GzsUV1m03K43zOh2Uv/d5efoSKys5RPCut/8HAHjoq7+wNqPyiAL+zkU6DPCtZXzsvCMP1fvzcoJ73poPAMhxVAkPnUJhhbMKOPfSh+ULbfmmRY8AAB4+7dd8jan0OXeuuNvaCgpoeUqdU2cjimlJRH4qj4UWbaNlL6VNO6ytP4UIKtW1Ip9R/XOXFjy89nEAwFcnndfNuXXIIaLzV3WXa8s9pqvr647L/vcrAMCb/3jT2lbMmgcAyErk301JPT1/G0ON2FvEgyUIgiAIgiAIghAnesWDZYQQsqbyTNzGGp3/ynP3oxmhpESeBTTOqpCzKNR94zUzPS5vbiZNfjfLdiTSv7Ke90V2Ne0CAAR38CLOsUdTHojaNBasSIwlJOLOUugF+7t380LSXeU0axA8pw1C9zSEOl+AOT6Tc3McceEcAMCu5t3WlqDrwvVQ9TQ3Vm2QF5fffB0tVE7zp0ftF4pwe22LdKLCIMRGL+B381dZkQunvzMz6F3P/zk5tAAkGIGakAgnxJPiDBI8eHPLJ9a2s4bqMWfUkC6PLchjAad11TQLXtHMHupZw0ZEHTPYKXfyQxnPR04Kez6C+nnf6OSYatOCF9mOt2qkFs96dREv0r/puIsBAC9PYcGKVJ2jc9gQrqtWJ6rmjXfo+O9feJq1ba6jukxJ5UiNwjTyuuQ612rOk+qMe5JTaXuaE3nT30Qt9mRqLj+X1q34FwDg7oOetraX3/4YADByYrG1PXPmXwAAV797vbVNzCXBke31/Ez707mXAQBufI1zjvn1+O97b/7J2oZlsDBJir63L5e8bG3PraN6zEziOnvlq3cCAM554afWNnPiaADABzs3Wtshw1jwoj/S7rXbZ7XxGvkT3LF4tFjd+JzRAIDsfchx2Z3nKhZmnOJGsdUGSUyotJkFTswYdGdTqbVddegXAQBPvPJna4s1Nkk9mMayjSJyIQiCIAiCIAiC0HvIC5YgCIIgCIIgCEKc6JUQQbO4tG4xL/6rO4lCIJLyeKFiMBzt/mszi4cDfOmua9GEFWbm8yK1tlYKCyjK5zwJ618ld7/J5wN0EsomdEqST7vNU7guxo8it/hLr7/R5bGRdjfEk/73OSGcwdXk5m0Kc+hH/n5d7cDGLIZ3c1Uland+a4QXYk8tLtL7syvcuNk75OKJ0TW4YYNmYWvYESsZlUWhHE3hRmc/FXVsKIbAidAFOjwlLZXDM9pbdU6rQNe5yxK6iboI+PUO/t7VOxpotOmQtPeXr7M2I17hhgDGYtQIDp1/cekKABxWDwBpifKcMpiw5mTn92vKqf5ka2vVfdKEXBYZyE+l0J+IM74obaAwoKlTOM/SdfPvBwD89OizrO3if90KACh06nJTyS5bvui04wAAl049x9quX/RvAMDwTB6blDbSdR1WxGFw1S1kG5mVFfV9g87ShmTn+/VHhqUNs+VRk+j7j8zk0LKkRKpHs1wAAH6/5BYAwKuLOfT2iC9RPqq0AIdZLi2j8V1xEYfjZifT/Qq3u2JNXPep+ndzz0fzrW36MHpefrRxm7X9/L0/AACWLOX8SQ1alOuGL3zV2jbpkNCQ1z+fd62RVqyro/v4/MbXora3hGn5Rr0j9jElj+7Dc1uejtrfr7iNmjFATSsvL9nRQEJLVS08Xlmxld4RZo5lYRj3fcCM/d06rdTh1G6+rEbd9zY38bhn2nAaqy4tX2VtwzMKO1wLfT9qj7844pqo79Qd4sESBEEQBEEQBEGIE70ybbnmFyTjnOMshPvyi98FEDuLuZt93XihXCnbpmZ+K03Sni2fs5B761aaWdp6nfMW/v19vnxBk+SjmdRALgtaLF+9mQrh6Hp0cWcXvDCVk1N4IWlgKv02+vtC3s+KtgjNIrmeoiEpNAO6tWGztZmZHnc/4/WF4wwxUuptXmyRETNznOnImVa2aIn+EHsdE/WsYNARuXC3Cz1Ae7Da2pw6a6E+0Z0hM85LN7GB4/iA8lMFu9Ludvs+LDAWOsekJ2hwZLxNee7sg7o8NtHHDbGykoQxQo7nIjMrLeqYwYrxuqfFSLuyu4kFeKr0rLYrVmC8QdvreBZ9WgHFSdQ4cu6LtBdy7aRN1rbjRhpLvFrykrXNHfY5W07VQj9z7r6Izz2avDQHFUSLlDSH+POKM8jr4k/g34F51tYHue8cltq/RRQ+2P2hLX9pDkmtnzDiaGt7fvJyAMBHH7On6J7XFwAAMjN4zHHZH2+nQgZ7dmdMHUv7OW3lmGnHAgAW7lhpbbsbOdrCSPjfdvKV1pbmp+N/F7zX2laUkHjCqBGcGqBZj0GXlbMQSkEa1eOS8uV8Xbkz0V9I9afa650+i+qnyRF6qAvWAAA21bGwR4OWMt9WzwITFc1asMwZA4T0mCMrievReI+mDOE6+9pUEolJT2QhmlQfH5MWIHuyj72XRojDHeOUNpGI3gbnWjfWkIdx4XZu120REsQLONFUAf0usS8RbuLBEgRBEARBEARBiBPygiUIgiAIgiAIghAneiVEMCeGRv6mLaRP7wpWmBwtbrhfaTnlSkpL4QWeruBFUOeQSHFCAXZ9Su5KN8/P/mSAFgizUNFddJiWSvUy7cyDuzw2yXHpJiaTS7d0d6W1jR9DC2D9CbL4vieYunDzTeWnULiLm4G8OINC+trb3ZxXVG6LcNitEbHoLB9WQNeLK1hhRDXqgxxyYxaSx7pWoYfo8KfmZr5vbpszBENUj0FnWyTC5YRkqrOOubP09gTpD+NJg863FHTyNQZihMvGwl2wXdeoF2y7Qk+twahjBhM1bTV4djMtM1iwncKvap2Qvh0631jQWUZgws8rmjifmBlqBIPcrj7cRGFDuTmcH2nIEOozPynfbm3/XEV5m1IDPA657v0/2nJ+Kh2fO4RDqE0OrrImFm1I9NFvoinE19qic9KlOGGPaQEKT3JFjEx4VH/lg9I1tvzJDlrGceUMFqX46HnKgzX189Ot7ZELfgkA+N7rnLvogQuvpf9XP2dtj7/5PgBgRs54a7ttwYsAgIIhLB7id/q97x1+OgBgeQULaFz76CMAOi5DOfxQyt+VlsZ1b3KsPrn4Y2trbKSQ4B+ffgb6O2a8nBHge2fKw9NG98Yl7RXZiSRuMzXHGZeOpv+uPvTAfa48VQVBEARBEARBEOJEn3EPlFfVAgACfl7YabxZISdDen4OvTW7M/CtzgyUiuGZyhpLHrN6vSgPALKTaKZEvFr7jpFpT3C0oHdX0D2u21Xb5bGpfl7ImJFOXo6UJF5EuGYBzW7lX9m/F/J+VrSFaQY0M4nva1lzOQDgRw/dZ223XHQxAKApyIvvE300U+q2qVhTL+72Zp3x3BUhCWrP1J1Ln7e2Q7X8cF0bL45tjZEtXeiCdJqpbnJELlwvlCEUMQIm0d4tAFC+6EoN6mOUr2u5d2HvaA1He6lCLSQY09jWtQeqqpbbSkh7wCJO20tLT4k6ZjDRGm7DuuotAICcZLoX6yo5+iEpifqkzFT2MBSkUb+4ciunhsnTnow28PhhmBbRqm3m/vG4yeQF8TnRNU+t+AgAMHkYS+o3BZ2UL7o9HT9qnGOj6ypv5mdjoRZCGJISLd3vRhQYkQu3H11VTfLSI9PHRh3bH1hfWWXLTVoAZk0Ne7WQRPfw0+dZJOKF2SQucvwYvq/razcAAG4/7rfWtmLnNwAAYaefPHT0cADAok9Z6CDB8WA95n8bAHDB1BOszYiZ/G3l363txbXk4Urw+Ngd2+lZm+GIb5w0izxv2UnsxRQGF/JGIQiCIAiCIAiCECfkBUsQBEEQBEEQBCFO9JkQwdwsWhRqQgUBXtib7GSub26lMIuAI2yRmMhhSiaMyQ1bMwsUK9sqrE1CBPefYankck9zQjHycynsoq6uMeYxBlc8oVXXaVFBjrWVj6LzhF0RBR8LlwgdaQxRiIV7X43oxOfnzLA2I16R4o++lwEft6NQhO570Ln/aQEOf0hJiA4py0uhhaTHjpxgbSV1FDqRm9K/F2T3JqqAwmSbnPxVra1Uz+kZTj45/b+bgc7n436wPRQdVlinQ2i89q7z1gl7h8md0u4mItN1FugmHLOlhXPP2eeTk1cwJy1aOGYwMTStCNce/jMAPEaoPYTDzQI6X42bsycrQM+Wtya8YW0z8ynHT20bLx0wvLTldVu++tAfRV/EUft69YJhqs45BgBL9Bgtxc9jiRGHjALQUfjswQULAQCblm/hE2XRs+z+E96xposOoQra3lBmbW+vp1DC+87/mbV9uHuJLV//+BMAgPXbd1vbL8MPAwCOmsIhiZceRvm07lvCn2fGpfn5HOq5sdrkf1pmbeeOuwDC4EHeKARBEARBEARBEOJEn/FgNWg5WnfRoVmg6Hqr6hspk3lOVgZi0WHG0JxHZ2xfUbnC2sZnTqbPE6/VPmPunSsh3KxnX4uHRkvxuxhPCgC06EXfW0t45sh4NEOe48GCeLA6w6frwuf8no1X67TxnD0+O4k8g1WtLBVsvL6tYZ45N+dJdjxdxqvl7utuN96zERksTLJ452YAQGEaeycbQ0178c0E5NNC+uZ29kC1tOh0FC1cJ6EY4hZufxhpaova3qj7RjR27XEW9g5fjL4RWkY/yd+1B8uINACAp71ecDyRuSmDW+TCxXg3YqV+SQ9EiwucNvKLUbbClOIo26RDp0fZhPhS2cyS+cZru2DHYmvbvosijvyOx7cwjzxEt1z9LWsrSKPIiU8qNlhbTSulCilKY9n32tqlAIAn1r1kbTcfdaMtZ11CURa/felpa8vIJHGUZ+bzdW2cQc/Oz0+YaG2frNoEAKh3InfMuDU1j9uzMLiQtwtBEARBEARBEIQ4IS9YgiAIgiAIgiAIcaJXQwSD7ZznwWSsT0nmkCMTXtHsLPr1dJiFyQ8CAEGnnJ2RFrXdrJF8ZzuHCJ499iu0DRx6IewdqX5yqdc3sqt/aCG55N3QGBM65oYFupj8V0lOHqyRIyksKs0v4gg9oUmHA7o5Vs4YS/k8bnznYWsz9/oHs+ZZ2+qqdQBYFANgcQs395UrgmFCoAI+7kLMvm5urIwkas8l9ZynpjijYC++mYBcCrlsccL9Qlr0wM2HZfJfhZ221xri+ovU6TDsVG5nTaZ+O8mdJewbgYQYIYJp1C6yk5JjHWIxYUkAgKCu30TuO4dnROdMEoT+RlUL5xoLttHzZkQG5xXL0mO5sJNTzrSnBz9YaG3NTSSQsaucw979Ogz371+/wtrOmX04AOCFZTwOLDt0py2fPfY8AEDJcbxU4aVVKwEAw4exIEd5GYmiLHTEN0YU0zOt1RmrmrDHsAgIDVrEgyUIgiAIgiAIghAnetWDta2BM2qbGYysdJagbQ1GS66bmVZXujPiyBe3heg8KUnsCTPl+rboRd7ueYS9I8lHM7EFuTyjGtaeww71040HqzCPBBAqquusbf3G7fG92AHOpNyxAIC1VYusbcaQgwEAi+673NmR6uqGoy+xJiOlnpXEbc+VZze4Hq5E7blyhTF2NJCX6uBCnrc5rIiu6/2dvAD54LyDevSdBCJh6BgAQKszExpsozYVDLItVk/mdm/treGo7a3aK6aGdC1KI+wdBWk0++6mATEMzYgt0GQYl8OCMAsyydtoxS4AjM0eHo9LFIRe5fiRY235dT3+C7VzH2UELdxxgRHESkzkoWtVFT2DhjvCWpPHURtpDrOX7B+vvAUAOGg6f25ZC3urXt72KgBgQzVLu18x5wsAgHuWzLe26UPJy/bSeyy/XlQUHbljvFlnjDsawuBEPFiCIAiCIAiCIAhxQl6wBEEQBEEQBEEQ4kSvhghuqXeycVfSQsVqJ0eIz0fvf24IIBrIlezP5/3CrSyW0aKPcUUumhtocffmMl5ob3BduhIuuG8UFeXackszucWnjh9hbYkJiVHHtEbYdd8WpDr90txZ1paRGH2M0D3b6zicwoQnXXbN2da2oaoKAFCQwouJ546kxb9Jvuh7nuCEdbZFOBwwpEMIMwMc7jSzkEIID83jvFvXLroZAFBaX29tlS26HXIklNAVaZS7bE0zh21OSKaQsdRGtgV0/7W9jfu+6hCHlmXtoPoZkssiC0sbqU6/mcLhocL+U1JP7dBz6gc6rHNVeXmXxy7ftsOW7eOphet0d1P0c0wQ+hs/m/lTpxy9/fJpJFAx8qYvWJsJEWyoZ2Gt0o0U5vfzy8+1toUlWwEAm2tZxOLQGeMBAGdN4g8blc7hgj99+58AgCVL11nbjpn03Nq4gZcsmGFiWir3o4u+zkJSgmAQD5YgCIIgCIIgCEKc6FUP1kkjTrfl/91Ki4KfWPuata0oodmH0lKesavUHq70VCebPStooqiAvCmTRg+ztq9NOxEAcNzQuVHXIF6r/ScpOdrzcfakOV0ek+zj+isupgp866NV1vbD00+POkbonIO1oMW3DmUvU8SjWe+/zr25y2NHpI85YNd16lj6HcwpZs/a2MxxB+zzBiJKi49cMnqItTU3U91mZLDwyI4qmtU9MoPb1iHTWRI/IYm6+1Ade48vL6b+MuGUi+J92YOab8w4CQBQXs2e2wQt3f6TI87r8tg7Tr/Kln+Rfp8+lp9TXx5/ZtyuUxCw/nfHAAAgAElEQVT6OhMmjrTlPC3dnumImKWlU383o2CStf3leRpHLl/B4krfPn0uAGBZ2SZrq2j+ty1v2bwLADB18mhrM4Izajq3v2ItUvPruSwUJQixEA+WIAiCIAiCIAhCnJAXLEEQBEEQBEEQhDihOmSa725npSoAbDtwl9OvGeV5Xn73u322SJ11idRZ/0PqrP8hddb/6JN1Bki9dYHUWf+kT9ab1FmX9KjO9uoFSxAEQRAEQRAEQegcCREUBEEQBEEQBEGIE/KCJQiCIAiCIAiCECfkBUsQBEEQBEEQBCFOyAuWIAiCIAiCIAhCnJAXLEEQBEEQBEEQhDghL1iCIAiCIAiCIAhxQl6wBEEQBEEQBEEQ4oS8YAmCIAiCIAiCIMQJecESBEEQBEEQBEGIE/KCJQiCIAiCIAiCECfkBUsQBEEQBEEQBCFOyAuWIAiCIAiCIAhCnJAXLEEQBEEQBEEQhDghL1iCIAiCIAiCIAhxQl6wBEEQBEEQBEEQ4oS8YAmCIAiCIAiCIMQJecESBEEQBEEQBEGIE/KCJQiCIAiCIAiCECfkBUvYb5RSo5VSnlLKr/+er5S6rLevSziwKKW2KqU+39vXIQgDHd2/ju/Bfh36YkEYiHTVHnraVmIcd6lSauH+X53QHUqphUqpSzvZNlYp1fgZX9IBoddesPTgrEUp1aCUqlVKvaeUukIpJS99vYhTL41KqTKl1P1KqfTevi6ha5RSx+g2VKeUqlZKLVJKzert6xL2Dekf+wfS7vo30s56Fz0ZW6OUSurtazlQKKXmKqV29PZ17C96TGj+tTvjxEal1IXx+hzP8zZ7ntflmLOzFzSl1LFKqXeUUn79oj06Xte1L/R2J3Km53kZAEYB+D2AnwG4J9aOSinfZ3lhg5wz9Q/8MACHA7iul6+nWwbz70MplQngJQB/BZALoBjAjQDaevO6eorMtneK9I99mP7e7gSLtLNeQA9+jwXgAfhir16M0C2e56WbfwBKoMeJ+t8jn8U1KKUSupn8OB3Ay5/FtfSE3n7BAgB4nlfned4LAL4C4BKl1HTtOblLKfWyUqoJwAlKqSSl1J+UUiXau/IPpVQKACil8pRSL+lZqGql1LumIpRSP1NK7dSzVOuUUif24tftN3ietxPAKwCm7xkOppS6QSn1cHfn0A3iOqXUNqVUuVLqQaVUlt72ilLqu3vsv0Ip9WVdnqyU+p+uz3VKqfOc/aJ+H3H62v2RiQDged5jnudFPM9r8Tzvdc/zVpqwB91uapRSW5RSp5oDlVJZSql7lFK7dBv5jRlEKKXGKaXeUkpVKaUqlVKPKKWyY12AUmqKPvcF+u9hSqlnlFIV2v59Z98blFJPK6UeVkrVA7j0QN6c/o70j32Wrtpdl21H96c/VkqtVOT9ekIplexs/4luk6VKqW+4H6qUOl0ptUwpVa+U2q6UuuEz+8YDGGlnnzkXA/gAwP0ALnE36Pv+N6XUf/X9+lApNS7WSRR5kbcrpebG2NZpXXWCUkrdqdvkWreO9DPtBV2vG5VS39rjc+7Q7bVUl5OUUmmgMdQwxd6eYXtzk/orSqlUpdSjug+sVUotVkrlObuMUeQxblBKvaqUytXHjVdKec55Fiqlfq2Ueh9AE4DHAMwB8A99P+9wznka6AXrHf33ar3P2fpcV+i6q1JKPaeUGqrtxuP1PUXjlUql1O/V/nqyPc/rlX8AtgL4fAx7CYArQY2uDsDRoBfBZAC3A3gBNFuYAeBFADfr424G8A8AAf3vWAAKwCQA2wEM0/uNBjCut753X//n1guAEQBWA/j1nvUF4AYADzv31APg13/PB3CZLn8DwEYAYwGkA3gWwEN628UAFjnnnAqgFkASgDRdb18H4AdwKIBKAFP1vlG/j96+d71YZ5kAqgA8AOBUADnOtksBhAB8C4BPt61SAEpv/w+Af+r7XQBgMYDL9bbxAL6g6yMf1GndsedvBeTpLAFwhrYnAFgC4HoAibruNwM42fnthADM0/um9PY97Gv/9mxvjl36xz7yr5t215O2sxjAMF1fawBcobedAqAMwHTdLh8F9a/j9fa5AA7S9T5D7zvPqT/bF8u/butQ2lnv3fuNAL4DYKZ+HhQ62+7XbesI0PP/EQCPO9s93cZO0ff1iD236XKndRXjei4FEAbwQ113X9F1n6u3vwPg7/o3cAiACgCf09tuAr0sFuj2/h6AX+ttcwHs6O37Hee6i9lu9tjnKgDPAUgBjT0OB5Cuty0EsAHABACpAN4F8Bu9bTwAzznPQv15U3S9+LXt0j0+bwSAEl3269/BaGf7SQDKdd0l67p8a4/93wCQA/Jmb9zzM/b2X5/wYO1BKagxAMDznuct8jyvHRR28W0AP/Q8r9rzvAYAvwNwvt43BGAogFGe54U8z3vXozsXAT3kpiqlAp7nbfU8b9Nn+o36H88ppWpBP+IFoPu8r1wI4DaP4mobAVwL4HxFYWH/AXCIUmqUs++znue1ATgDwFbP8+7zPC/sed4yAM8AONc5t/19eJ7Xuh/X2K/xPK8ewDGgDuLfACr0TFuh3mWb53n/9jwvAhoMDgVQqLefBuAHnuc1eZ5XDnogna/Pu9HzvP95ntfmeV4FgNsAHL/Hxx8LeoBd7HneS9o2C0C+53k3eZ4X9Dxvs76u853j3vc87zlddy3xvSMDGukf+whdtbsetp2/eJ5X6nleNWjgd4i2nwfgPs/zVnme1wSakHA/d77neZ/otrMSNKO757mF/UPa2QFEKXUMaBD7pOd5SwBsAvDVPXb7j+d5iz3PC4NesA7ZY/u5oMnBUz3PWxzjMxS6rqtYlIMmQkKe5z0BYB2A05VSI0Av2T/zPK/V87zlAO4GTRIDNHa5yfO8ct3ebwTwtZ7djQFLCEAe6GU34nnex3oMaLjH87wNnuc1A3gK0fXrcq/neWt0vYQ72ec0kLewMy4EcLfnecv1ePEaAMcrpYY7+/ze87waz/O2AfgLgAu6+Y5d0hdfsIoBVOvydseeD3rTXaLdjbUAXtV2ALgF9Mb5ulJqs1LqGoAGiQB+AHpIlSulHh8sLtr9YJ7nedme543yPO87+zkAHgZgm/P3NtBsQaHu8P4L7vAuAHWkAHW+s01d6/q+EECRcy739zGo0Z3PpZ7nDQfNfA8DYFznu539mnUxHXSPAwB2Off4n6BZOCilCnV72akolO9hUIfpcgWA9zzPm+/YRoFCIty6+zmAQmcfqbt9Q/rHPkRn7a6HbWe3U24GtUnoc7h16/afUErNVkq9rSj8tg7UBvc8t7B/SDs7sFwC4HXP8yr1349ijzBBdN4+DD8AvaCt6uQzuqurWOzUL8SGbaD2OAyAeUlztxXrcqxxzqCpX6WUT3UUwRgG8kK+AeBJ3Q/+XnVcb91d/br0ZLxgwgM7o0Md6QmyGnAd7vk5+12HfeoFS5H6UjHIcwLQzKChEkALgGl68J/teV6Wp9VGPM9r8Dzvas/zxoIWTP7IxM96nveo53lmxsQD8IfP6CsNJJpAnZWhqLMd96AUdN8NI0Fu+DL992MALlBKzQG5bd/W9u0AFjh1ne3RYsornXO5vw9B43neWlDnNr2bXbeDZmTznHuc6XneNL39d6B7fJDneZkALgKFu7hcAWCkUur2Pc67ZY+6y/A87zT3Mvft2w1epH/s2+zR7nrSdjpjFyjcxTByj+2PgrzGIzzPywKFpPX03EI3SDs7sOg1UOeBvAe7lVK7QWF5ByulDt6LU50LYJ5S6v862d5lXXVCsfZ8GUaCxjClAHKVUhl7bNupy7HGOaW6POCfddpDle78K/UoeuUGz/OmgDz9Z4EmyffpI7r6WymVqD/jjU72B/aoI12XOeA6BKL73VLsB33iBUsplamUOgPA46B1PZ/suY92z/8bwO1KKTPDXqyUOlmXz9CL4xQobjYCoF0pNUkp9TlFMqCtoAbX/tl8swHFclBoX0ApdTiAc3p43GMAfqiUGqNI7v13AJ5w3Lwvg370N2m7qZuXAExUSn1Nf2ZAKTVLKTUlfl9pYKBIDORq4+rW4QwXgGLCO8XzvF0AXgdwq26DCYoW55twowwAjQDqlFLFAH4S4zQNoDj445RSv9e2xQAaFC3qTtGzW9OVyFfvE9I/9k26aXc9aTud8SSAS5VSU5VSqQB+tcf2DNBseqtS6ghEh1YJ+4C0s8+MeaD7MhUUFnYIaH3Nu+CQu55QCuBEAP+nlLpyz43d1VUnFAD4vh5vnKuv62XP87aD1lXdrJRKVkrNAPBNkGcaoHHOdUqpfEVCDtc728oADFFa3GuwoH/v0xUJRdSDQgbj9ZsvA63tNhwPYIlHIdXwaDlE1R77PAbgm0qpGbod3gzgXc/zXAn9nyqlspVSIwF8H8AT+3ORvf2C9aJSqgE04/0LUJz617vY/2cg9/sHOuziDdDiUYAWy70Beqi9D+Dvnue9DYp7/j1oNmM3qAFdG/+vMuD5JYBxIJfqjaBZ1J5wL4CHQAtEt4AeLt8zGz1ab/UsSCzhUcfeAFqUeD6oI90NmvEbsPky9oMGALMBfKhI6eoDAKsAXN2DYy8GCVF8Cqrbp0FrCACq58NAA4X/guopCs/zakEL+k9VSv1ad25ngB6cW0Bt724Ag+oBEwekf+zbdNXuetR2YuF53iug8N63QPX51h67fAfATfq3cT3ohUzYd6SdfbZcAlpjWOJ53m7zD8CdAC5Ue5G2w/O8EtBL1jVKqcti7NJVXcXiQ1AdVgL4LYBzPM+r0tsuAImTlILWj//K8zzjMfkNgI8BrATwCYCl2mY8248B2KxDFQdL6OAwUL9XDxJLewM9Hzd2xx2gyKdapdRtiC3P/isAj+p9vux53qugifz/gKIERiLao/YiyJmwTO93//5cpFESEwRBEARBEARB6DcopdaDVIzX7+PxfpCHbYzneVvjdV297cESBEEQBEEQBEHYKxTlD7xnX1+uDiTiwRIEQRAEQRAEYdBxoDxY8oIlCIIgCIIgCIIQJyREUBAEQRAEQRAEIU7IC5YgCIIgCIIgCEKc6LEcJgDk5eV5o0bvmfMwvrR7LJNf1UrqmPkpnHg7VkSjmxYu1B7U5+Edk3xJUceqOKdlXLpkWaXneV1lCO8V8vKGeKNHHtg6668sWba8j9bZgW9n/ZW+284+2zoLtYcAAE2hJmsLJAQAAAlO5xZuj9iyp3MvZiZmsk33ifHuD136bp25faN5OPTwRkTCXDY3z7F5pZRaReU5XzuN7/ve4lU6+S4j9IxUhcPdPczF7PNnuPTVvhHYv7bW3Rgg3E51uKupzNqGpRUBAHwJvh5/Tku4BQDQHG62tiHJQ/b5unrCtq0lqKys7JMJpw9k/xirDzP9Xotz/03+YH8CD3v9jiJ8xIt0+B8AmkJ8vCHFnwwAqGmtt7b8lBwAHcevTfqzU/wp1pYeiM5x3D/6x/2gqQ4A4NVWW5Mq0Er1/gDv10j7xRzku3mD3e2BpCibV1mhP6OA90tx80PvPz3tH/fqBWvU6JFY9OHC7nfcD1ojLbb8wNoHAACXT7vC2twfsCFBsSNud/MOfZ5WaxudMT7qWPeYeJDiT9sW1xPGidEjR+LjhfMP6Ge46/jUgRypxRmVlt0n6+yzaGf9lb7azj7rOitroeTzH5d/bG2FqfRASfYlW1t1Gz/UInrQcULxSdZm2u6BbLd9tc7cvtHT90Z1M4i2fV1DFRv1gM1zbMEbKa9w4JvftjbfrFP2+VrDd9/If9TTwM7/o1v5unp4/T2lr/aNwP61te6eVVWt5QCA3y7+s7XdeCTVZUZido8/Z03NSgDAxxVLre1rEy/d5+vqCUfPPmafjvssOJD9Y6w+rC5YAwBYWbXc2gK6neY5E/Z5SVyu1cfUh+qsbfFurj/D9CGTAQDPbHjd2i6b/hUAHV+oF5fRsTPyplrbnMLjos7XH/pHg9fOY2iV0LMxdOSDF+nYF562toTvXkfnyONJovb3/0uFUDD6JO64v5XfETBiXNQxoX//EwAQ+O4PrM034/geXWtP6Wn/KCGCgiAIgiAIgiAIcWKvPFifBUkJPPta39YUtV11EwJR0lgCAAi28xut8WAJ+46dYfPcGQyaLY014/bYsAm2PO80msFJ/uNd1nbliCNs+dazZgAA0h7eMxH3HtdgZ0+c2b44zdgKQn9i9q3fAAAMHcphR3OnUJvLSOSQlIrmBlt+7aNPAAB/O5/P43qzBjVdRDR44RCXS1ZTIczhgCqfZmFV7lBrC5xxOgDgqrmXWdvlxbm0zc+f9UktPeMqQhyW9KVxeba8dAfNpleF+PO+/sb9dC1BjtLwqimE0Gvk2XdVOIr+z8iN/k79NOpgf3G/a0SHA5705OXWtmE9jR8qVnJI5l3/pBl4pPJwKZBNbSzUxr8N+Jz7WB+Mst115P8AABcfwZ6mK6ZfCQBod8LSfKrPDcv6NCb02R0bflj2HgDgh0/9y9rS0qnOhhZye3j9iXf5RNVtAIApXzzYmnaXUwTAiGION7twNnlQFny6wdrOGLsbAJCXwm13XdV2AMDYLA6za9ORVUlOlEF/ojuvVfjPPwUA/Ou3z1jb6CQKA3QD/0b+5xwAwNS7fmFtvrnn7fX1ePWVAIDmyy+ytgULt9L5XuXIt+VNdN8vmVZobUXvfLDXn7e3iAdLEARBEARBEAQhTvS5qRJ3hukfr70BADhhxFHWdnj+nC6Pv/3jJwAA9510s7VJrq/9x9aLivYYRd5+wparbrwDAHDuVV+wtr/c/ioA4EpcaW13Xv9lPkFiIp3n+X9ak+9LPKtor6GHMb+CMNCZNJm8E1s280z7O+s2AQB8Pm4nIcfzYeytkbbP4hIHDN7mFfxHJs1+q3THK2QiLZp50bvvjG8CAO6qu9jaIrdeDQBofHuZtb1SRh6nKalJ1paVzeUzL/sqAMB/2a+ir6t6ly3b60lK5R2CNNPueuCUXlQ+mLxWnVHStAUA8N57n1jbOacdDQB4I8IepXNOmA0AmJo3wtpueOIpAMBRR06ztqtnz7Pl6197GAAQDvN5DHe8ypEaxoPlS+hzQ7F+Q6z19I98+iYAIC+f180dO34MAGDh5q3WNvbwsbZ8/RfJg7K+mpfXrKuiNXlfmcJrp0qbyDZ8KHurhqaR93p19afWVtVC7W9b/U6+1mEDbwzT9t1zbPk/z1JfeWgaR1EkaY99ezuPw6taqE/653nXWtuwxF8CAKbmsxDIsAkUodHexs+xLet4retHNY0AgDTnmTcxlbyDbh93YoDa18JNvCb5+M/Re0X+W+91+x33lYFX24IgCIIgCIIgCL2EvGAJgiAIgiAIgiDEiT7tlzbhLV9/5A/W9uQlNwEAWhw599+8/5AtvzafZItbTmS5zGQ/hU3EkngXiO4WPXsN5Fptu/qb1rbg1bUAgMMn5FhbWRnd99xsds3PTCeX7cZFW61tvOMujjTSAsT5t71kbcfdR2GHC5awe/3U82cCAHzXsjyxu7BcEAYybv+1ayfl+khJTuTtWgQmGOSQsECAu3jTxG99/zlrO3XkmQfkWgcCZgG1CQsEAJVM4Ste+Va25etF7E54nj02nftG/8/+AgDI/hl/xk96ei2tjfyHCYlyzm1k470mDlNU2SRB7VVuZ1sRh0QNdpZVUKjmMEcoZmYRhd7+p5EXwK8ooWdQTQuPOZqa6Zm18pNN1vZg2v9sefmzSwAAs74y29pOmEhiW08t4tQKwoGhWtdVWxuLnX20k8KpZzv5uFInsBjXrkbqU19YxiHB+QXUxv625FVry0iiEN7cZBaq2FhHv4PSxnJr21FD4b9JYzjXU3cibf0J06+8+fwqaxufQvck4ownIzpvX8ixZWvhi+NS+fnV2Erj/Y2VLG63vJxEmlxPUI6fn2mHpFOfm5TIe7S2mbBc/jzz5JycxX30RxtoTHvy0jeszXfY5+nIfZCjj4V4sARBEARBEARBEOJEn/Ng/W8HLwCtWE/Z1Csy+S33sB/pRcNpzqW38kJSpfe98OXrrO3ls/5xIC51QBHLaxX++SW2XPHuOgBA9gSWK509lRZ5Zr/KUqf+M+YCALbfz7N5R3yOZu4Sjz7c2nbezd6q4n+RR+qUJ+/j8/z6XgDAqXdxPWILLUpu38IzJignWV3fZJ4pFISBiCvlnKBn1VxvVZsrGa0JhVjK28y6jxkSLds92Inpta+lGW0kO8IROqGvV7Wbj80dRoWwkyDTr59Zjky+ZzyQ7qJ8Uz++bh7F7jGJ0RLPXoiESzoIX2gPFpxUFp9FYun+wr0r3wYAlK5gD99f8RoAILKWF8MPOT4DAJDteCwin5LHcMJXJ1rb+VPm2vLTY+iZuGYdCyZs20a/mfIVHJWxpYGkvsdksCdF6J5YETeNIfbevrGAkvw+/YOfW9uGGho/PPwBixqsduqnuJA8mTt3sBfqF5ecDQDwOe0vM4m82CeNPMHaLnry1wCAn514lrXdftJ3AACfVq+xtoEkwR95iJJxh526iCUoZ3xBATdFgvFqhXh/v95enMYiP74EFXXeiBOIFg7TH+y1AhLsMc5F6D+CIT7YfF7bHbdbW+qD5MGKl6CaeLAEQRAEQRAEQRDihLxgCYIgCIIgCIIgxIk+56+8c8lLUbbEdHYZhpIp3MF1/6Vnpdlyow6DGZbOWvoGX4wcTkLnBHdyvoGh79KiX88JgwmddXKU7br5tNjztm8fbW0qg+rizz+739ouP2Uyf1AVhbV897bXrenOkTcAABqefdvaWnUoaOFVw/gabqH8MOq6P1pbgizkFgYg/gReLJ2oFwlv3VFmbXk5mQA4/GJPmlqob7zmiMsO1CUOLIImfM8JsTMFJ+wOYZ1XLMCh7Dakz43Ei5Gvx4YSurghgL5A9PYWHXaYlsWn1uIbHYQv9ELtDuEuTXV6PxYhGqw0t1C9BUbwfczMpLFE2klTre1HsyjPz8gMFke4ZzzlWfryjMOs7agifuZNnUbPIDe0qcS01RQedm1r2ApAQgTjwSsl/7Xl8089BgBwdNEx1rauZjMAICc309oKcrnuJ0ykPGdFRRxCnZNM+04fMsnaArofvm3JA9b2m1O/BgB4dv0Cazti9hEAgGFpLMQ1kEJzIxsp5NLvfCfz/dycV369ucNTqb3zUOVgMDp3XHf3zc39aJ5/7jHmclqdvHTp+pi33mahmjO6/JS9RzxYgiAIgiAIgiAIcaLPebD+NPe7tjzjsXcAAKFwOHrHML8Ph90ZW73Y7cezLtnziA4yx7GyfwtE+0aSr926lBfjjtPZule/tt7a/lVKC4H/pvcHgGOzKIN3wimn8wlrab+iRJ7dSTpovC0nHEVS0efn32Btvq98DwBQcut/rK2ihTxlqVddZW3VZSTpOSrkLDAXhAHOV2bR7Ogv126xNp49jO3BStMSusNSRxzgqxsYGM+8AkdIeEZgx035kUh9nvV4ASzZHr3muyPG+++KXLhiGeZzEpzt5twR57lohDgc75cXbIner508WEo8WKipJlGE009g8aVdWlr7w2cXW9tJm0lX3+d3vJaNJChzzW33WtOvip6y5bYVJJSQdliRtc06fAoAYGPWDmvb3cweaGH/eHINi1f8aNa5AIB7PmUv012vkRx3cXG+tfl80QIwu3Zx5E4oQvWcmcher9P+eg0AICuD+4UfH/4NAMBbS+6ytqOGzwcAHJ7PXs6BxCev0lgwyfGQG6eRK8memkR9VzjcszRJrucphmbGHvt2fnwgwNfV0kZ9oCsfn6KvOynBEd9Y8z4AwDdlTo+utTvkLUMQBEEQBEEQBCFOyAuWIAiCIAiCIAhCnOhzIYITsnhxKerJPetlOyEOidql6+d3Q7+zwM2EDham8MJCw0DKon0g8TauBAC8WFprbT+e92UAwGF3ftXa/vbILQA65qCad/bBADjsDwCQSu71ef/l3Fi+K693PpHqJSuRf44qk3JSTP8jhwMmnEGL8yO3/MDa0rQ7WA0VYQth8HBIwTQAeyzkbY9e3Osusk9MpMXZSb7oPEoC4blhfnWV9H82hxShTIdNJ6ewzYTguWHnJmzGDdc01RIrp1WHnC1O2RyvnPMYgY2Ik/essYYO3fwJ7zbjWLLpHFkAus+3NcBx28Pa5SR6sHV7WfT2IN/vCWOLAQC5eSyI8OHDFI424ZRp1jZnOgtVPLjyOQBAUyP/npYtp5xXdVs4BO0fwyls7fzxF+3L1xm0xBI9yEvlfHVmCcglU3i8MiZrOADgqgc4L6obgrbg5Y8AAOOmj7K2lRUUzvnO9getbeJ4CrG+aOZR1vaPlQ8DAL79ec6NtXD7pwCA2YWzevSd+hvrtWjSiCQW6mnVy3XqIywmkatFQdoTug79i5WjL1ZerY7HRO9n8mAlJ3P4Z20r9ZVBR3zDp6jc5tjafv9bAEDqA9Fie/uCeLAEQRAEQRAEQRDiRJ+bzurwxtoe8zWX/neUHDvMZuhjFu56x5rOHP3leF7igCfhuHkAgKuv49lQFJFEbf2ZPEPz07doRu5vrS3W9v17aJHgDxZ8ztpSU+ln9ruVpdb27fd4+6TDSXb9nzurre3Oay8GAHz3L29Z2w0zaUFx0TsfWNvGw2YCAPLe/ry1Zb/CdS8cGF7aRjO0k3NYbn985uTOdo85EzWQJGs/a7ITs6Js7bH6yw7btYdLPPmd09rI5RQtfe6KRBgp9iKW7LZeobDjUTLCTK5ghdkv4Dx2jaMk5HjO2p2HWyCp47EAYMQrXE9Ycoa+VudYI75R6wgpuN6sQUhzpMmWA9l0f9qCXEfjR9GzaMxRM6zt0hn0zJvi9HWHLqRn45UnfsHa5o3lqI13P78WAPCbs9gz9Yc3SbBp5bpya6upqt/XrzIoMUJlsUTKalu5Da2robHJ3Cu+bW2nXEr1aMR+ACAU4rY97+zjAABLVrFs98JlVE5se7AAACAASURBVI+lZex1jGip78oKjvApHDpEn7vS2m4+jj67vKXC2iZGd9v9Cq+t2ZZrdbTYKM6ihAbd/9Q6wnTBEO3njgG6ckx13K/rZ5oZQ7j7Gad/wIlyq9T1XOXItE9Jpd9BiiPS8fZbGwEAjkTbfiEeLEEQBEEQBEEQhDghL1iCIAiCIAiCIAhxos+FCK6vW81/ZOos9v4YIS3O4uGg4+Y1WdJ/+Pjd1nTmNRQiKCFJPWPbCRRuFw7xPS76kEIiVqzi8IZbTqO8Hr5vsmDFX9esAQAE/vRY1Hn/fNXZtpx4K+enUMkUivPXH19gbf6baVHpneNutLY3bqJzHnkSZ2d/eTst7r7qF1/vwTcTDK5LPVa7CLdTuNOaWg4TXVaxwpbnl1A7rWlh4ZJHTvsjACDVz/lBYn1GLLf/loYN+lheqJyVmAsASPalRO0/2NnasA1Ax1AZc187Lvh1c4FQKFRjqM7aMhIlH5KL18BhylaAoskJ49L59rwPOHTZyy4AAKg0zpVjw/jcfFkm9M+1mfBDNyzQ3R7W7cYNNUyMFimJ/I36YDWBw9i8Rv1d/BzD4zXTd+mu/Q9UdjRuteXhRRTWNW/OodY2JptCBL//b85v9eESChNLS3FioVqovn70r/ut6Y4Rr9hyyZvrAAALDl9ubQ+f90sAwPnhG6ytuxAooXvqgvQ7X72hxNq+MOYgAMBjt95kbYWp1E4/9+z3re3EeZzvaHcttY2CAu4TvzjjEADAkl187qpGCjPduIHzmf1wzhkAgOYwL5d4eeubAIC8FD7fUYUUhthf87C2L3jGlsclU7h0ghNy3qzH5YnOc8csESmr4xDONCf/mGFf2kJXwhhBZ/z6aTP1n+NSAtZmcmKlOtdaEaJxT/jfN1ib/1tc3lv6Zy0LgiAIgiAIgiD0QfqcB+uVrW/wH2aRmqt0m0w2r5Vn/MLOwjV/Er2h7ty0+8Bd5ABn+GW0xG/1rf+xtvVLdgEAspP5J5N63c+jjv34GfJ4HHH6E2xMIa/E0pfXWdMRpzgerlySQb7tPhav+PH5rwEA2leusrZGLQGacdm51vadZUuo0MCz8kaWWAWcGcdBQk/FJGLZTn6aFwTv3E6eSn+AZ5rOmX24LVc102LX7Tt5Ae/x91A2++tOPs/avjSavZZdfXZiAs2GFaYUR20TovnHx+Q5TAxEd+Hub8DnpLBo0rK6/y1hCVqRh+6IV8Gz0qpoNNlWcb+EkeMBAI1/f8ia0jeQ99X3W/Z6oJ7ahedEWqhYEummrjpIvEfP7sLPUshWxt3xdP39T1SnV73ptLdWLejgLDhXibpPbGOxB+gIgsHA2zveteUt71C97Zw+3tqGpWuhkjU11uabQwIiHURkdBeWmcXe+qysaM/9v57l8cw3plMkzdqN7A1pb6O6CbdzHfkT+tywrM8Qy/NjIh1e+MYt1nbj+3cB6CjdnuyPvq8zCgps+fa/kHfm8FPZo/n6BorICYd4jFlaSkIWV556orUNSSZvaIUW1wCAHC08s6DkU2s7e1ydvuacWF+vz+PNfyPKtq6FPVMrmshTlOk8dyak0W/bHZmYIUC3wkzdXI/5lIgrcmF08CLRR69p5kiARH0RyY4Ha1wy9Y8Jc89EPBAPliAIgiAIgiAIQpyQFyxBEARBEARBEIQ40ed80WXN7JqHyfzsvAYGtJs36CTCandCJRL9FCIY7uAy7Dx3ghCNmkULMaf/aYS1eR9Rfqv3Hnjf2q466msAgFtO4YXVD5RTbogxv7rd2jZvbwAAPFjOYXxjbrnHlnNmUIb1La2cR6b19jsAAK/M55wUo7X7dtcdj1rboq20wDXdt9ja/p+9846Ts6r+/+fObO/Z7GbTN5U0QgqG3nsHFUFsYAdFKSLiV34URRAVKQKChSqgKE1AFJDQSyAQkgAJIb0nm+19Z+b+/jj33nM2M7tJYBK2nPfrldc+OU+ZZ+Y+9Z7P/Zzjz/rZNr9jXyPVYM/u+MHzPw3Tb360AgBQXd0QYh9eTJKjP71/e4id92eWQO2/Dw0iXr6KpbgVZTSY9/LHuX2+X3MbAGCvGRNC7JDK3QAA40pGhdh+FfsDAN7d8laItcZJerD3IDY16c/I69zLr8wHABQWsgSm3UnBpOxCmlx4rp/9ZJhWieBWbFobJk3lZACALRscYvaF/wAACqaP4uW+QDX7IGrEpMS3n5ANdjK0CBsUEkF/H0u1XG5hmPz+rRfQRLMw5Cjx8idhAuXlh43iPtuPJIJLa7kWozfPWr6Raxd9eTLJvgbuVxlit535fQDA+GKWEk6/mNr8qjO+GGKnjmV55vgVJAe8+NSTQmxjM9UjSzSJemluIH57gmVWGZH+0x7pZFQht8/qGnoO+duDbEbz9C9+BwC4fwJLfvceyvXO/vjz0QCAP78xO8Rammm4QeXgshBbvpyOoVHFLGdfXEv1kw4edmCIfeffZPrUUM9y3M0tdL/srRLBjKvZnOyoy+h7Jd56OsTOuI+k0ytfXxliS6pouUFCzu4va9uSAG4vndS77hGovZ237s0tXhJGG4dOpDYtffAfvO7A9A5R0DcORVEURVEURVGUNNHjMlibm8TgW/8qGuPX02DJHjViseRpU8SDgqvbaMBxWU5Fune3T3LRgWcBAM4ey702g8rJKnu/s/YLsf2KqSx5xgW/DbFb7rwKABD9+qUh5vt/Z377lBDL+dOjSZ9789iLwrTf5udrN4bYs9MOAQCMyOR+gaOnDQEAFF55yTa+Ve+mU6Vy1+8TEf0jqTJXPuPx39WcsfjTu2QesmQpD+Z/54f/BABsbl0fYvcsvhMA8O3J3w2xb13HJhhjrj4WADBh3PAQW7RkNQBg6KDSEBtYQr3sr8zh8gsvvkbZl6ICHhRuDA1Krq5rDLHWWmekccO/k75bf6Q9zr1vcL3g0ZLkPjJ5rMSkyYI7Rlav3ZS0juIYUM7T3pSija2X2+fRoPfsC/haFRlB2Vlbz5kQU0TXTuMMdwDAOuv2TmeqNzQQJgcwmWLa/RXbQbY7b9p5v8w0spu2L/G5YvOEbbxfbiBdLzuZbyQt1XeZu5ozlNOPIwvukeV8vVpSuwIA0N7OWabfvkz3qoJ8US5iNV2nbnqardmf243NDJo+2gIAeH3tihArz6OsxUFH7Blib79Dxk9q1/7Jaezg7G2Ja6s/XnxeiPnSI+N3Y2WON1cCgNYYnWNNTXxe/fHUHwEAzv3XTSH23WMPAwDUtPLnDcihc+2Xb/wpxA4YRVnQKeWcWVvfTBms7GhyqYXehsmh61D0gM+GmJ8e+/rjIfbY8WSLX1nB37m+hdpC2rn7c0AUrIDP5XeV6fL3NCsy/N42vqqNz+Fjp1A2/0vPvNLtd0o3msFSFEVRFEVRFEVJE/qCpSiKoiiKoiiKkiZ6nERw8bqNycEIixiiLqUYt8LkQoxw82lG287zV7nq7SoR3D5+c6mT8on6Kc/eToNF9wbLIApPPwoAkFjPRhQvX0kGBwdkCzlFC8k+//Y417T66mNsnmDffRsAcP2NPFjywmGUxt9y699C7N1Gkkgd+jkeSApXj2nLxb8IofLZJF/bXsOHnoa14jh21SOkQUsUyXVyvPzh84+zJKKugX6bMRUs9Sx3dUE2FLE877LX6be7er8rQ+yYkUcDAKbewLLOB8/8eZh+/rxbAAD7XccSwmMPJunL4AIepP2/d+h4GTt6aIj5OiKbq9n0JHwPUaeieBBJUDe3pLgm9EM2tYrafg0dSfOzggFQLGkewOdDU3Nryvn9GZtw94tMUW8q7n7HuuoQalpJ0q8cJ7Wjld39p0XI250BhY3x8RwQdY68bBDtLAE0RaJ+n5cpSrOSjtbOnwvAjKdzL3E/X1fNdPpsk0r2KCWH/YjXhFQZDfT7rKtkaeczr75Ls9bWhtgba+bRhJCmo4zubx+9uSyElq0W56erH/jUM2y+tOhDqn+1fjMbjLTOo2vbFW/8OsR+cwDfy5TtR5oA/WJ/krOvaGCzhXvfp+eLF/70fIgdPprNlzKdAcxAZ9YEAFe+QqYO7zzxToj9/sQfAAB+PYfNnPYbPhZA54xFZpSkvseMOC7EWuJ0jVjfLMxWehGdpKzBqULU2XP1+ux8NquKpSj152PiahtkgPIjEu4RrisBbSppbbY79xraRc2rQcly6bCuvI6mMIX6JGgGS1EURVEURVEUJU30uAzWypUbup0fdRWi5UA4tPH/ojm+Uj33ZizcQr3oM8v2Tss+9nUaZ1NvTfE/eaDi4TXnAACa5q8OsXPPowGdv32aBw4+sJkGfk6797EQm/+BG/DbwD3nX3zyP2G63dm3LxU27XYF9Qxu3MjWx+Nyqb/j6d/+K8Teczaq60TG8vpemrnyGCPMWtyATdk7t6ZpBQBgYTVnBNc1Uk/ooc4CHQCaY/R7H115SIgVZVFPzlPlXJH9J5dQNur64dzeG2+mjOWC89mM5PLXOYN16+P/o+0VsE34/EW0Xx9k8WXFZ0uWCTv3eK07DnJFJi7ubOZzed265XTcnH7P5VA6tzda6XiX1epthst6SkMUYWbgp9vrNYOVhM8kRYXBhM9q1WwJoU2b6HpUNpAzsmhymVihtPC9up16RP10JmeoQpY9IzN5OSDYs9tWzo4Zb88uslBhOx0is+n239ZzBi7Vujta4qE3c/Hpx4fpx96kbJXMpE+eNAoAsFCcNz/7Ag3crxS23F+6jMycLjnv9BA7acyRYXq/iyiDcswRs0KszKkHMkT7LtqDDGd+8plzP87X6bfIa5w/bqVxxD7X0PNKdhafV1N3pyzTtFPZZOTWp54J0+efQMqXdWvYBGjQ4IEAgMv+78wQu+3dhwAAcXFP3rNimtsHzsnMHESxpfUfhljUZckKMnqnFX+na4Q3mEj1GrGB7/fT8ul61yaeyb0yR7ZjqizVtqxf/BZjKRasyOS2T5XB8goFI6+9aUYzWIqiKIqiKIqiKGlCX7AURVEURVEURVHSRI+TCG7eXNvt/CxXDbpd1ABBDn8NLyGUbGyqToopnbG1nBa/5KXlAIDLjz0mxD5cTdK/JiFJuuWVewAA0emHcexxkg1GT/x2iB3opCr7XHBGiGXd+GCY9on9Wx75Q4hFP0sp/imnLQixSfeSlM2MHhNi+933BACg8KzPbeMb9k6WOXnBnE08WLq2tQEA0NTB50CLq+FRmMWSvb2HzAAA1LdzvY72BA38PGLEwSH215vJ/OXyxx4IsYqfkMnF7Eu4xtmle3GtsZseJWlFcTFLHQoKaOD3qlVsSrFxnZNXycGoeXS+GjFo3MaSzWnQQdMH7cEDkZeAjVD6G29vFAP0c0hq0hHj3yszM7laSCwWT4qhg5erb6frbVFWSfJy/QkvFxHmPLbGXRMjLGVtb6ffzuTwcW8bnWmBqDvl60xJiWCIpTK+kJhkiWAnqaE3qki1nQph5PShu3ZOYUmUrSNDh0hFJX9cP5AGeq7c5zIxTX9//TZf415ZTdL0kiJu349qSO60poHNMNBIv/3sJUtCqCRbyL7cOSZ/29cW0LILL0iuAal8cmrauH1Gj6Tqm9ee/PUQm7eJhoos3Mz1Hoc7CSAA3PfGawCAQmEA9cfjLgYAnH7//wsxb6p2/MzdQ6wtTvffaeVTkmLL6tkIxUv+B2T3nettKmOI1oXLw3RWxNeqStbxpapvZaUw0HZ/bfJLyktYLJa81URHivtgdOe//mgGS1EURVEURVEUJU3oC5aiKIqiKIqiKEqa6HESQWwS0r8sJ80Qda6ys8mlpVE4B2YUsXtMfi5NNxiWRVW1JNfbUTpjSgaF6RvPIrfF7FseCrHmPT8DABix/+gQs/95BAAQm/NCiN3wU5INnv+LFbzcko8AALfex7URfrD3dWG66cEnAQAXP8NuO7f8gdrs++fcHGI3X/552t4KTj+3NpFUI/rgEyFWcPip9J3Khqf+sj2c5lgzFlRTbbBnVtFvO7SAa9mU5lJ9qDHFI0Msy7kXFWYWhlhDB0kJN7ewdKKxg1zQmjvYSW5WBUkJLzvptBC79CGq8XHUb1kWmJ/H7mcVrlZIQwO7PH6wwEkhNnAs1I6JJKf6be02pFKOn+/3ozD9F/x+u9bpi7y3WTisDiUZi3QJ9I6CUi7R3sE1SjKcfLpgMEvZVjtHyilZ09O9u72LNrrv2DZx/3HSQFvD509OTnINurCOkJx42YyNCVc/7wRYxHXpvNug7eBzodOZku3kStLd0NfniifXQjOVLJ+2c0lWHNmfpd62djP9beBaTCghWWF/kApKN1ZfW/CO5/j+tfLDtTQhVEp/Ec65Aed2+sYjb4bQG7Pf5fnuXHzmhbdDKObcO6vbNodYaXZ5l/uldE2qY/XxFU+G6epqev7b2My/9eJqkvy+/i4/Z6x5leV7p3yX6nr+6qAfhtgjH5GzbunA4hCb9y5JPQcfyOdxdlTUrnO8uZHqp50w+qgQ+9Zj19Jn7TGji2/WN2ipagzTue5aKNvMbvUXABJOQigdATNM9z6C7LLMy3W494UM8Xnx+hZsza643umZrCiKoiiKoiiKkiZ6XgZLDoTzr39i0FoYtC3ePmPtopK0j4se8y3NokddSUl8wUth+i//oJ6Xc37bEGKtbfQbRyax4cB5F1GV8xt//dUQ+8jVsrLLuGfo1UdosPWiFu6ltRt5oGmimeL5crCkq01QkcmHaOTkLwMA3jn+myH2N1dD66BiHpx+fBu1d2/tj83LyMPU0pkAgA9qFgEAMiPcg13flmxy4QeQ5mVyNtebYcQSnO0dkEPZi80d3IN950KqWbbn4HEh9q0jDgEAPPkem4yMqeAeu4kDfa83t9mUgeMBABMG8DFS4swTMiJcHyQ7QvuYm8GGHN3R0KEZaACoa+PaRd7sR/bCRdw1z2fxAaBDZLAi7vySWa11TesAAFMG9PMMlsPkcwbYKyfsZu4FHzo8VT0Vd36J2lKcpRJZppj73SPJWTBERY0YkUUzPoMls1XdDc4eNzVMtj1IZgo581/j+WPdwPyo2Idmd37l952B912RKjskayVN24uuXctW8P3phINJvTG6uDTErr72rwCAz36LsxPHjJkWpr/3xz8CAPacznUJ6+ub3D6kyIKKDBY0g9UlPtMn27EpRtmSW2dzTauj9qW2KMtlE4sX55LJxZwL7g6x/3yO63Fe/QQpdv498r8hdv+c1wEAGRncZjnueCnPGxBiY4uoxtbS+qUhVtVMBkLffZJNVE6eStfZaeWTu/+ivZymJr5eRZBschFJ8XTms1FmG1mrVGSK+2CbO0ZyxTGy/G3KTE9BMqlqqqULPZMVRVEURVEURVHShL5gKYqiKIqiKIqipImeJxHMEO98kWS5X1u7Sz1myVohnOJr9zKMDF5n8Tquy6N0gZCgzG8iqUv7RWeF2O+X00DvWw45PsRuvJ7S5hnfuTLEbskheVL0m1xv5KArSI62z49Z2pdxAafNi39An/3rlx4OseihpwMALhvAKX5TMQoAMP0qrm0x4rZ/AAAGnnN6iEWGsSyjt3Pa2C8B6FzjY1k9mYYsFfU1WpxpRU6U5WGTBw4B0Fle6GtzjC1ms5LPjSU5U2EWy59Ksuh3//EMHrz7cdLnrXFnHiDO0YSrfiEHe9e3k0zp/Zr3Q+yv7z0HADhlt712+HP7IrMffi05KOp7tDnTkJoiYYhQxNLMcG2tZSnbnQuortiRw49L3472Qmyjq78oDJVs1RqaqOXajPkHT0MSrgYdMpIHugdDCgDIcLdbKffz0jC5XKcdo/nSLMOkMr5wRMax1DPqTWkyxTHQ7MyfpBTSm2/0A4lgKgoKWap81JRJAID7a3iQ/lGj6TctzmKjA38ujR3AMrGpA1mAFK+m6960EUNDbFMT/c4dcSEldey4KKp/kkriWd9OzxcvfeeOEItbOp8uefnaECspoTplV8+5McS+P/3MMP2NQ+kemyEkvHvvRvfJDzZyndALT6JnIGkoVd1G9R6fWfFiiM1ZTdcPed+c7GT0zR1NXX7H3oK/p6d6Lqir4+Egme75PZGQUrw07UOKMyfm9kseKWvq6ZxLJRFEJ3luCvn2J0AzWIqiKIqiKIqiKGmi52WwJL7HVdq0uwGGrSImX4fDG6N4KV27VlRgV1ISmchZgpuvITOJjB9y78/5L5PpQqRsWIjdfdl9AICvCHOKc8/7E21j8eIQa1lOvT+3P/cRb2/G5WH6rV/R4NK7NnJP8c0/op71c6/jAac3/8IZLogB2pucrf+AN9/gLzP+WVps5hEpv2tvZEA2G0zsWV7m/u4TYq0xMvbY1MpW3r5XraplS4hZd2I0x3gg/epG6mnzFu4AUO1KG8RF787mZjabyHRtHhHnXqbrUY+KXsaS7EI3jy813nTDG27Q51BskjDIuOfo3wAAMkQG7kx8G/2Vf1718zDte+7q2rgcxfI6GsibKzIp9W3cE5+KMyZ+Np272HvxWagszgB7s4H2jXzcZ5/0+aRVbX01LV5RmbxdaXwRoXPAimyVt3Pv0rgileFBzPUOZ3BmyrrMlMnjc6p9A+13ZpyznCkNNvo52Tn8O976ON076kWbf/MPVCrEyIH57tnkt3c8xusO/B/P76Dr5t//93oI1a2n+9sPZn4uxMpzh7ip/pfDkqqGEBO/A5sedJ/u8MYSR151UYj99cIfAwBeWcCW7EsWrAAAnDCDjWAGhd+f71vXPPpoiM2aRhmnLGGEMiif1B1rGteF2F0LyGDjwBGsnjl3LzKyaBMZy6H59Hkbm/uAqsq3X4r2qWnljLs3L5P263G3blYK63aJ2U6rslTHTYc4vurkNXAXohksRVEURVEURVGUNKEvWIqiKIqiKIqiKGmix0gEG9qdPCwuEoVRlx5sY5lSNBpJXi7B80M6OcqpxYYmrYO1LdrO/1qYPv/eOQCAGz9YEmLvucrc4xfPDbER2SStMLMOElsiiaDZ94AQ+fDhWwFwjSwAMMNZTjNpMkneThVpXHPMyQCAi//9bohFzvgeACDx5F9D7OaVJP/8vKvdBQCHDnO1LfqQRHBb5LiaUiMLxoSYnFZ6P8dXnhym715EA7pLcnjg/aSB1N7ZUZYIxhIsR/PxhJB9TixhuUy/xkvOY0LSV0AGBrF6ltNmlw5BEt4kQsr8/H0oJswrstz8hJTs0f3MiHWlhNBLBE2mMNDwJhlCIpjKJCNrmDNgaOJ6hmbY2KTlrNv/3lo38JOSnc3yr0xfd1EYaxUV0LVVKtrqMuiZIlPUXxwyiOtkLd1Aks3CfJ5vB9MGCrOEwUig//z63ZkjbK8kTPLkstkAgLvOvyDE/jyPDJJy81jy+/ZvqP6VlJNtaF4bpqPO4OCwWWyFcOzYWQA6S+qf+IiegW4//IoQO2QYyQUfX85DGl5eQ88kl8w6N8Re2/AqAKAj0YWpTR+hJsbXuKJcOqficfGc7poglSxQZn22ZYbhZ7eLDfmaWFIUOCaHrp+2jo21THH5VltJP5rBUhRFURRFURRFSRM9JoMVc7aanV4mfS+SeDsNAyOjqd86I75HMJPfHRtX1aZcVmGyfvSzMP3LJT8AAGScc16I7f3uxQAAIwZxHnI99cxEpx0aYjf/9ESKffacEJuxOxlo3PzIPSEWPe4bYbpw6n4AgENXfsDz9zsJADDyzFdDzK5fTvv1LTbIuObvZIZRuN+kEJMW8IrSV3h+3TNh+uePUHmCkZWDQ6yulrLMcvB4fj734A4ooZ7zqi08gP+grx0CACjMFBbU/RDb5nqo1y7l4Abq3V48ny2aZ7psj63lmCkbThPS0CKXfmsbY7ti4zNXwqQn9OZLc42GGp4ucmUqpCW7tHn3iM/h5ZzF+0c80B+7kwmOyc5NXr6fInvWzzvhGADA7U+zYcVNXzobAJAV4YzhiReTicK1Z345xI4aeXiY3v2HVDbk9INmhdgyZ/dfkJkqg9V/2NFyH94ACQCqnInT35c8FGINbXTetYrsc20NZW3vP/2KEFvXRFmmSQMmh5gvDwIAhwzfHwAwoZSVH76MxdCCghC75bBLAQCFWVzWwJcj+ddCVtx8+NFqAMAPZnBZmfYEnbtlOVx+pvfStTGLzGCNd8/ibTE+z7w5ljwS/NaEPx0iKXw0OnmjeMGaCPncoIw1u3M8sWpRiEWnlmNnoxksRVEURVEURVGUNKEvWIqiKIqiKIqiKGmix0gE1/vBhhninS/F65+XAMpBqNIEo7mV0sRZmSypaHNVs30aFwByoiqRkNg1XKOq+EAa5BkZznLAIWdTvZzW/3dxiF34EKXDb178foide83jAIDfLVkdYi/NJtnNI1t4sPXNon1u/uXDAIBFLSxzuemb9wMAfviX13i589YDAOKi7tbipZTi330gf17ehmW0/4PV5EHpO0jpX1kZyVOGDWBp324VJHmob2OpTK44z1qd4UKDqPvT2OEG4/dziWB0CsmU4f8CsE7yt+dRp4WYKRtB85axFAgZdBvtJLtzkj0j60756W3VZJHrBN2MWMeblFgppkmmdTXVv8sScp1stx1TwnX1bKL77fR1EuL7P/T2WwCATUJGe/s7/0leqZba9945r4TQ2xuW8/w8OiaemLsghJYsp2ecr089KsRGF453U/2nDlZtO9WNe3jpwyE2rWx3AMCfFzwSYrOG0G9TkcdSrieX0pCBdnEOXfCZrwAAbph7X4g1NdKz3hWv3hZiMdfOJ45fE2LD8tm0ptbJBWXdqnNn0HPPfoMP7vY7bW4lyXBuHpvRfOfYQwAA86rYgGtNA0kcKwtHdru93kGy1NO20DNeTNyrOpw0MCaOcf8EJ496bz4SlxpA9xGRrk6PFHG/HVmPs8Wf42uEBHzqgV1sNH1oBktRFEVRFEVRFCVN9JgM1gc1bvCZMKdAe3LPWnt7igG+4kXa90ZFRZbDZ8VaYk0hpBmsDwSpVQAAIABJREFUzjTdeHuYnvMOZYoK7zkyxPb8PvW65d7JletvHvEtAED04htC7HN/oMHBubc9EGL7nkaGFbVz2Zo0+tXzw/S333oPANCxmTNcmb++EwDwu9rTeZ1LbwIAJF7gXq4nq2mdDS+vCLETHiEL68g5V6X+sorSC6lpY7OezEzKcjQLG3B/zUuIHsCmds4K+3hHO6+zoZnO9SF5I3bCHvduvDW6EZlw20RtEEwxAJicsqQYMt29q1MGy92oWvk+hCzX4y2zXxnituyyVJ3MMrylu7Rmd5kp28YlSYoff9Ztg4+HTmYaPpYU6V/I82HBB5SFSmzitvzfi+8AAOIbRbsVUWb4nSfeCaF3ytikCXXUXivXsBlKotkbHHD2sD9y0QtXAwDW1NeH2KQDSC0TFW4GD7uSMGdM3jfE9hg0CgBwx6svhNjzgymLuKyqOsQOnjYRAHDN/j8NsbVNq+gzInx+3fv+g2H69TWU2br8ADYuSZW58mUuIiJDsqaR1v3S7ryvL6xcCAD4xpQZvJzLYNW2cYa095KcPkrMpWvO+BzO5OXk0DUwkeDlszL9vUpszU3niutVVlZyDkgm7iPO7K6jQxpo0N/sHG7ntppWWvftObzysWfR3x00XdkRNIOlKIqiKIqiKIqSJvQFS1EURVEURVEUJU30GIngnPUkE+uUdcx28gqR/svIcDGZOmziFL9PQ8ZTDNzd2LI+TA/I7t9p+q3J/85XwvShPvXdyJI9X7slfjVXJTef2Zv+RvkwOuQUGqxqcrnWR97+FPv8oTN5XV87BkDOWZSSz1nPg09NDtWdaN/AqfSsmy+jXfnelSF27jSSNg48YALv6nd5vqL0FdY0bgjT7U7WJCU1m5tJHlZTzdKbvHyWnhXlkTxMDsSubdMagV1hvSGEkPnZBpIhmdyC5BVampJjUu7npEm2ka9pofXMNvo6RY2tsF+Z2UmL2brN/HGDKrvfpgIAKC3mtjzv80cDAP74xOwQ+8IRJPtqE8YKD9xAZk77fmX/EDt58rQw/bN7/gYA+NqxPJB+QyPVqRucx8YKHtOPhJr5WWSys2DhshC7LE41MuW1q62VZJb3xF4OsaFF9FzR3NQaYvVt9LuePeuIENvYRAYvDyzhoQp5GXQtzMng82ZFHV//Dh5FUuDuZIFd0RKn/SnIzA+xJRvoXPzCA1xjdP7z9Jz74C+v6HZ7vZYVSwAANUK+bFyTVnUIOXsrHe9t4jndnwEZ4p4Wa3TP8118nL9qynWy3HReM19T4+69YtF9XFd1d9csO1qXbUfQDJaiKIqiKIqiKEqa6DEZrDzfGydNLvxgtwK2Gq7ZlDw40AzgHol4KpMLN//pVdwrNbFk6ifd5T6FGbdHmLaLaeCuOfgknu+yVE+f//sQGz3wTQDAsH/+K8R++28a6PuzwrNC7Kl7yGp9ZSsblJwtBrhe8FuywT2yJC/EjltBg43veHtdiJ3WSOsPv5grqFdtocHIZZ89g/d/LfWimBETU39ZRemFlGRzVnhgGdmqF2fzta+miTJYn53BmeJH5/Eg/EFF1FPflsXXU6VrOlmse9pdJqmolGPeQj3Ky5viQQAAW8XlIxCjdU05Z+/DAGuRwTIlFTw/k3r7TT5f8xBKlSSbYRiR6VK2jxyRZfRZ4DwxSP/o0bMAAMVZRSH2wGAyc/rC1M+E2AFD9wnTuTlkQb6lmU1HXptL98a5u88NsRMqne1/P7Jpv/FgMrm4cE+2zL74hRsBsL06AFRV0bPe4kUrQ2xdAWWhZk0ZG2JjSuh8ao/z88Ub62jbVx3AipumDsp0vb7hzRAbWczlKX40g423tkYaWshyGZ4ZZWRksbmFTU0eP52+0xMrHw+x6KEnAABGF43u8rN6DSl+B+ue295s4OvQ+Fy6NrUKR4sc50Qh7dz9bBmLuUmZP5QmTlkRnwkT23F/C6PcZmvbKHt20QRx3d4FaAZLURRFURRFURQlTegLlqIoiqIoiqIoSproMRLBhZvcAO56rveB4qyk2JRDJgMA3nuRa05YkR5sczWvkCPkHc4k45XVH4XQD1kRpwBI3HlTmF72HxqImZ39pxAb+e9HAQBHPMw1r7Ce6kqYmTwo9MyPyLAi45d3hdjB8w8FAMRbuR0zruBtX593HgAg9tEqnn8ZmVd87slZITb81TcA8CBvAFhdT4NLd7vvjhAzTt4Rueae5C+qKL2UtjifP1WbaXC2HKDr6/l8fRLXcfnNQyxPyctProHU6GQzyvZhG2po4kOWXmK4kys1sezZrnMD+Deu5eX8wO/iASLm6lcJeSFyeaA8ip0ZU4eog+UMNkwJGzX5Gly2tirEoqXJZgr9HWlW4GVf0rzi0YfdMIL1bFhyxpZfAwBMVAyGX0/Svwtv4/tONPveMB1fRGYoDzW/FmIZro0H5Q5KsWf9x+TCU1nAMr+/H39T0vymDjLZemE9D+14bAkZXkiZ2MtrqN7U8/P4mXBgOUlq39j4RoitrCOTs/mb2EzrmgPPC9PZ0eTrYyoSToQWBZ+zte10XbjwP38IsUN3GwcA2K10VIhd8Fc6XvbZc9J2fVaPJoVEsOnV9wEAtTE+z7Z00PnVLpZf0+aueztBGpvvJNTVhvehPk7T981jo7tzsfPRDJaiKIqiKIqiKEqa6DEZrKsPPAcAsPugwSF2+V7ko7illQcODsxxg4e/y2++18y9NkxfNPPCpG0/ufIxAMCxI09I4x73LTJEtmfcD2mAqMniHh1TOhQAEHV/JbaxJkyPuPQ7SfPzJlJPaqy2OWkeAJhB1KaZk5PTipXPP5e8vBh8fvTSd2lCDO42eUVbr6IovZ7Tx50epl9evRgAkCnMfL62zxcAAOW5nLm45NSTw/SGppqkdQ4ceshO2de+SmTcdACAHcj3KW980akvttVlQAYM5FiTK3tRL6zxnYlFJ9qFUYW/1uWIrJbPcEljjEIavN3JDENJIpUd+sMn3hymm4+ljO5Tq54MMZ85bu5ga/B/u/vOrCEjQmziwDFh2hshHDbs8BAryRbHwlZkRHrMo9guQ5pFpLLKzs8kU5/jRrLZlpz2xC1lQ7bsvTEpVtNWHWLTy8hG/8LpoqTLNn53v49y/yIp8hJ7lO4JAPjSzH152ybaaRsAcOuZ9Jx7sLjuDsWd3e5DjyWFCVDBzy4AAFybxRnJ3DH0fJdoFzbtvlSINKMrLEyKJdZTmyZa2MDEZPD8SK4zAcoW19FMMnGywmDGODMoczCfj7sCzWApiqIoiqIoiqKkCX3BUhRFURRFURRFSRMmlad/lwsbsxnAym0u2D+ptNaWf9o7sTXaZt2ibdb70DbrfWib9T56ZJsB2m7doG3WO+mR7aZt1i3b1WY79IKlKIqiKIqiKIqidI1KBBVFURRFURRFUdKEvmApiqIoiqIoiqKkCX3BUhRFURRFURRFSRP6gqUoiqIoiqIoipIm9AVLURRFURRFURQlTegLlqIoiqIoiqIoSprQFyxFURRFURRFUZQ0oS9YiqIoiqIoiqIoaUJfsBRFURRFURRFUdKEvmApiqIoiqIoiqKkCX3BUhRFURRFURRFSRP6gqUoiqIoiqIoipIm9AVLURRFURRFURQlTegLlqIoiqIoiqIoSprQFyxFURRFURRFUZQ0oS9YiqIoiqIoiqIoaUJfsBRFURRFURRFUdKEvmApO4Qxxhpjxu3ovG1s8yxjzMuffO+UXYkxZoUx5ohPez/6E8aYUe48y3D/f94Y861Pe7+UrtE26/1s6x5ljHnKGHPmrtwnpXu0zZRPmx71gmWM+ZIx5i1jTKMxZr07AQ74hNvUm1kK3O9SY4zJ/rT3ZWdhjDnEGLPm096PXYEx5gBjzKvGmDpjTLUx5hVjzKxPe7+UrnEvqC3uerfRGHOXMabg094vpWu0zfo2H/c6aq091lp7dzfb1U7EnYS2Wc9HXDcbjDG1rr3ONsb0qHeQdNNjvpwx5kIANwC4GkAFgJEAbgVw8qe5X30RY8woAAcCsABO+lR3RvnEGGOKADwB4PcASgEMA3AlgLZPc7+2F9+z30850VpbAGAmgM8AuPRT3p9tYoyJftr78CmjbdYH2VnX0X5+fdupaJv1Kk601hYCqATwKwA/AfCXVAv2letVj3jBMsYUA/g5gO9bax+21jZZazustY9ba39sjMk2xtxgjFnn/t3gMy/GmAHGmCeMMZtdRuYJY8xwN++XoBeJm12P482f3rfsUXwNwOsA7gLQKUXuemRvMcY86Xob3jDGjE21EddztNoYc0iKednGmN8aY1a5nt7bjDG53eyTMcbc7HqhFhljDhczhhpj/uV6pz4yxnx7q89JOjaMMfkAngIw1LV9ozFm6I78SL2I3QDAWvuAtTZurW2x1j5trZ3ve+FcW9QYY5YbY471Kxpjio0xf3EZ47XGmKv8xc0YM9YY85wxZosxpsoYc58xpiTVDhhjJrltn+H+P9QY85A7L5cbY34olr3CGPNPY8xfjTH1AM7amT9Ob8BauxZ0vO5utpJeut/rr9vahjEmYoy51Biz0hizyRhzj7u2ejnMuVst/64x5nNueqIx5hl3ji02xpwmlrvLGPMHY8y/jTFNAA5N09fu1Wib9Tm6vI76Bbq5jgaljLvmvmKMud4YswXA3wHcBmBfdx+q3cXfqy+jbdbLsNbWWWv/BeB0AGcaY3ZPdb0y3TxDGmPKDD3r17rr30vGZcOMMT9xzzIN7rp4eDe7s1PpES9YAPYFkAPgkS7m/wzAPgCmA5gGYC9wr2EEwJ2gt+KRAFoA3AwA1tqfAXgJwLnW2gJr7blQAHrBus/9O9oYU7HV/C+CeoEGAPgIwC+33oAx5hgADwD4vLX2+RSf8SvQxW86gHGgnqXLutmnvQEsBVAG4HIADxtjSt28vwFYA2AogFMBXG2MOczNS3lsWGubABwLYJ1r+wJr7bpuPr838yGAuDHmbmPMscaYAVvN3xvAYtBv+2sAfzHGGDfvLgAxUBvNAHAUAC+pNQCuAf3ukwCMAHDF1h9ujJkJ4L8AfmCtfcBd6B4H8C6o3Q8HcL4x5mix2skA/gmgBHQc9muMMSMAHAfgnU+wmbPcv0MBjAFQAHctBJ2rZ4jPmwy6Zj5pqDPiGQD3AxgEOv9vdct4vgS6DhQCUNkMtM36IJ/kOro1ewNYBlLjfAXA2QBec/ehlJ1UysdC26yXYq2dA3quO9CFtr5edfcM+SO3bjmovf4PgDXGTABwLoBZLlt2NIAVu+DrpKSnvGANBFBlrY11Mf/LAH5urd1krd0Mevj/KgBYa7dYax+y1jZbaxtADXTwLtnrXoihMW2VAB601s4FvdR8aavFHrHWznHtcR/oAJd8AcDtAI51J8nWn2EAfAfABdbaatcuV4MeArpiE4AbXOby76CL4vHuIWZ/AD+x1rZaa+cB+DPoJRHo5tjoL1hr6wEcAJJ8/gnAZkMZP//ivNJa+ydrbRzA3QCGAKhw848DcL7LGm8CcD1cO1lrP7LWPmOtbXO/7e+QfG4dCOBfAL5mrX3CxWYBKLfW/txa226tXeb2S7b/a9baR621CWttS3p/kV7Fo6539GUAL4DOk4/LlwH8zlq7zFrbCOCnAL5oSO7yCIDpxphKsezD1to2ACcAWGGtvdNaG7PWvgPgIdB57nnMWvuKa6/WT7CPfQFtsz7Ix72OdrG5ddba37u26c/Xt52KtlmvZx1I2gmI6xVI4tndM2QHqC0r3TPjS9ZaCyAOIBvAZGNMprV2hbV26S79RoKe8oK1BUCZ6Vr3OhTASvH/lS4GY0yeMeZ2J7GoB/AigBLTRzScO4EzATxtra1y/78fW8kEAWwQ082gXlXJ+aAXtIVdfEY5gDwAc10KtxbAf1y8K9a6E8Tj23goAH+CyXnD3HSXx0Z/wlr7gbX2LGvtcAC7g36DG9zsDWK5ZjdZAHrRzgSwXrTT7aAecRhjKowxf3Pp9noAfwX1BErOBvDqVlnMSpA0s1Zs9//Q+ca2+pN/6z7BKdbaEmttpbX2e5/wxp7qXMgAUOHOnyfBN6gzwJnDSgB7b9VeXwYwWGxL24vRNuujfMzraCr0t99FaJv1aoYBqHbT8vff1jPkb0DqqqeNMcuMMZcA1CkMej69AsAm9/zyqT0P9pQXrNdAb6yndDF/HeiG4hnpYgClCicA2NtaWwTgIBf3aWD50N6vcfrV0wAcbIzZYIzZAOACANOMMdN2YFNfAHCKMea8LuZXgaSaU9yDSIm1ttjSwPCuGLZV6t638ToApcaYwq3mrXXT3R0b/bLtrbWLQNK/3bex6GrQeVcm2qnIWjvFzb8a9BtOdefWV8DnledsACONMddvtd3lYpsl1tpCa+1xcjc/3rfrFzSBbi6ewV0tuBWpzoUYgI3u/w8AOMMY4yXZs118NYAXtmqvAmvtOWJb2l7do23Wx9iB62jK1bfxf2UnoG3WezDk9DgMLF+Wv3e3z5DW2gZr7Y+stWNARm0X+rFW1tr7rbVeqWUBXLuLvlISPeIFy1pbB9JW3mKMOcVlpTKdpvbXoJvMpcaYcmNMmVvWDyAuBDVErRuzc/lWm98I0rYr9AIbBzAZJPubDhpb8xJYcrc9rAONqznPGHPO1jNdivdPAK43xvhsyLCtxuBszSAAP3Tt/gW3X/+21q4G8CqAa4wxOcaYPQB8E9z+3R0bGwEMNG7QeF/F0GD3Hxk2dxkB6u1+vbv1rLXrATwN4DpjTJGhAfdjjTFeBlgIoBFAnTFmGIAfp9hMA4BjABxkjPmVi80B0GBosGmuMSZqaCCr2sZvH/NAMrFMY8xnQOMOt4cHAFxgjBltyDr8agB/tyy9/jfopvNzF0+4+BMAdjPGfNV9ZqYxZpYxZlL6vlKfR9usl/Nxr6PbyUYAw40xWWnYluLQNut9uGeNE0Bj6/9qrV2w9TLbeoY0xpxgjBnnOuXrQM+1CWPMBGPMYYZM8FpB7waJrbe/q+gRL1gAYK29DsCFIPOKzaAeunMBPArgKgBvAZgPYAGAt10MoFRwLuiN93VQGlFyI4BTDbnI3LSTv0ZP50wAd1prV1lrN/h/oEHVX+5GopmEtXYV6CXrEpO6zthPQCnc15287FlQprEr3gAwHtSOvwRwqrV2i5t3BoBRoBe7RwBcbq191s3r8thwvVkPAFjm0sx9VTrYABqg+4YhB57XASwEZXe3xdcAZAF4H0ANyHhiiJt3JciKug4kVXo41QastbUAjgRwrDHmF07vfgLoBX45qE3/DKBPv+imkf8HYCyoPa4EyXi3hzsA3AuSSS8H3WB+4Ge6sTsPAzhCbtNJ0Y4CSdHWgWQ114K07Mr2oW3W+/kk19Ft8RyA9wBsMMZUbWthZbvRNus9PG6MaQA92/8MNKb7690s390z5Hj3/0aQAu5Wa+1s0PXvV6Bnjg2gjvufpv+rbB+m87AXRVEURVEURVEU5ePSYzJYiqIoiqIoiqIovR19wVIURVEURVEURUkT+oKlKIqiKIqiKIqSJvQFS1EURVEURVEUJU3oC5aiKIqiKIqiKEqa2G5bbgAoKyuzlaNGpu3DpYGhLzEbt/EQW1FHtWQ7YhyLuenMTN516YToa9UOKSwNsaKsorTtc1e8PfedKmtt+baX3LWku836EtpmvY/+3GaxRCxMt8VbAQAZkcwQi5po0joJm0iabom3hFheBtXGzY7uPHfvnttmA+2okbvuPGtY8B4AICeT+zUz8t3vnhDt1MbtXN3SAQAonzqZNxRJbud0M/edeT2yzYBd8xwimb/uQwBAVjaXQ8rKoDZoaORzST6HTB/eXUWSncPKFatQVVWV4ht8+uzqcy1QX83T2Tn0NzOHY21NyevkFu7cfdqKnnqu7Yp7mnze9/en1Q0bQqyhic6vihKu8NIa6wjTjc10H6wsHRRiORnUvpmRnVe+bHvvaTv0glU5aiReeePlbS+4ncgf1z8cNHTUhdjX//szAMD6zbUhVlvTAAAYNJhfoGIdfEOKugvfpQd/McSOGH5M2va5K3Iz8lfu9A/5GKS7zfoS2ma9j/7cZjVtXIplSR099A3OGxxiBZn0YBARL1qNHfVhuiXWDABYWP1eiO1ZvicAYGTBzqvF3lPbbNTIkXjr5ec/8Xb8g7VJ9XQueGEUvSSNH84PcOV7jQYAxBtaQ6x1Jbfzg++uBwB8+9knQ8zkbV+HoXUvbSay40IVk1/SI9sMSP+5JjshIib5t6r8xVEAgFGjhoTYsLIBAIDnXpsfYh3iOeSVa15M2/5tL/vvfcAu/8ztJV3nWiq6O//iz3I5OjOKanCb4eNDLPHh3KR1onscnOY97J6eeq7tinta5/sTveye9/y1Ifb8G1SD+PunnBBiH1StC9MvzVsEALjpSz8MsYkl1M6D84bvhD0mtveephJBRVEURVEURVGUNLFDGax0Y5Dc43D4nd8N09ccT0WeDxt6FK+TopeiqaMhTC9v+AgAMOsK3k7LTckZLN9rlarHSuk9+N4rCytiieQF3XGT6phTlJ7C+zXvAgDuWPiPEHv6bco4JRJ8jG+ppZ6/1jaWS+Rkk1xQSp5aWtvCdJaTVcvtlJWS9KKtrT3E9tuTegC/vcdxIXboML4GK4BNsPrCdCPZi93yf2F6YiX91nOWsWwpc9U8AIBoEjTEeduHDC0BANR9nntwix/7L31uVm63+wW9t20XqZ4BHl3+zzA9cdIoAEBctMsjv3+KJopYovvaLXeG6RfWPQsAmDVo3xDLy8hPy/4qnUn1TGi30PAS+/67ckGK1Wzk5V6bzbP32HMn7WH/I9WwHcmxD9Pz+Zw3PwixcWOGAQDeW7SCt+Oe6372iz/xyhl8vpZMJGngF265KsSKCkj2PmAAKwUe/9p1AIAheSOS9nFbyoNPgl6BFUVRFEVRFEVR0sSnksGSb7dbM3xIWZg+eMhhADq/YaZ665QDvTsS1KO758zdQsxnuPIzd+3gRYXwg/MzIny4La1fHKbPf+4GAMDX9zg0xD435rQut5eqd6RTZkp7bpVeQHOsEQBw9H3nhJgfYyqvb9k5NFg3K4uvcwPLKBtSV9cYYkVFyT3kVWL8qt9OdjZvJ8ONWW1v5/Ej7y1ZBQA494NbQiy/4A4AwIvfuCPEcpxBRn8kVdYq/jj3sm741Z8BAI1NnGGsnEUDxgtX8jjjv22mTOSIbL42zsjnQfhDxw8EAGwSWa810ykrMum680MseuxZSfvV3X1WYeS96Lb5fwUAbGpi84NTJ1Nm448vPccruZTjN7/LmcXHlz4Tpo8edQgA4Ko5vw6x3cvHAQCOHH5EiJXn8rguZduZj7CcMDpAwxa3grjvF1Nm47FrHwmhiQMo8zvpX3eF2IO/ejhMf/akJQCA6CH87JHYsIw2XcImCianYFtfo98jFUX+2ezxFfxbv/QKjV2ctvvYEKuqouti2QAeY1qQT1n6jTlswhSLs0JpQBG1RVxIALKz6Fra2sKqjB8+R+fhP074Pe/XTsxcefRJVFEURVEURVEUJU3oC5aiKIqiKIqiKEqa+FRNLlKxx6CKML3XbV8C0FnSsuD95QCAeAuniIvLOKXY5HzxY82cHox+NflrqtnBrkNKA1PxhUl7AQC+/MtrQuyXP6BBqhdOvyBp+W2ldr1RwNK6pSHW0EGSjxMrT9yOPVaUnc/PXqXjvU0YVQwaTJIwOaDeY4UMwtcDLBEDeRsbyIY9Imy5y8pLwrQ/b6SdtCc3lyUYeXkkUcsS190tTr5x5Ry20L1mvyu7+GZ9n/h7r4bppkuonEi0mE0nBk4ZSn/FOrFaugbNOmBUiNmXVgAACqLcZjNOnRamG+eRG/CgcbylSC5JPRt/z6YK2Y88Rn9vuDvEttfOvT+xtondlf++5OGk+V+edBIA4M/zHwqxfQbPAgAc82U2emk/g54vRuSPCrGpvzs1TO83jGSFX59yeojN30KW0/9cyrK1gbl0fp429ks7+E36Jtu6t9sGksra9cs4mJ98nEecpC9HXAv/t5HkuBPuYenzC3Vcx+y07yc/a6CdTILsmiW8D1l0fTRDx/F+Z2RCYVIZx3SIOo67jSUL9eZmLk8xZixdM99+58MQ27hyMwBgwh6jQ2zdxi1huq6R7nmDyvg+1+hq00XFNbWhjdqxrp2l1sVZXOppZ6EZLEVRFEVRFEVRlDTxqWSwUhoTOA4YNitMX3vFvTQxNkUPRS7ven0jD0i1cerl3W0iV6DOiSbb2e6KAW5K19wy754wXZFPA/Zv/fG5Ifa9m/4AAMj/Prfdd6ecDaDzoGS/nXlr14eYz3iOLObq3x2u6OY+FXun5wsoysegPcGZ9beWk5lEnjA1iLvMVCzGvX3heimNfZw5hV8eAAqcPa3MfiUSySULIpHka59czg80l7F8t48vLuasMPZL2kyfJ/7mfwAALb/5XYhlDabrTCQvK2l5I39r97vK5YaV0vVt0WY2K5laz73qEXcti+ZxhtG4ts8ezj2w8QZap+H0k0Ms/7Kf0LqzksuU9De2tG4CANy/mO3XDx9JhXlzonz+tcapR/3Lk7lEgZ8vz92nV/0PAHDEiENC7O3zuajt5la2Avf4ot7y8+ZvIbXF06u5kPRRI47fru/UX7CNbNSTWEWFZSNDOKPh7deRxb+rbaZs1XEruaj63UMnAAB+ct1/Q+zma77Mmyknm3DbzlkV47NjRZxBtq10rtp1H/FyIyftwDfqnzy17M0wvWYdZabkPW23UZTByhFmTuWT6Tm+uYXLjTS1cPtMGEq2661i/tTJdGzMfoUt+r2JU9WRm0NMM1iKoiiKoiiKoii9CH3BUhRFURRFURRFSRM9xuRiWT0NbLv3vadDzEwaAACwzSyXqRhOdbK21DaEmPTcjzdS+vBz+3BV7g/rKE08LI9lg6lqYu2Kys4KIeuMPPbK2wCArx1+QIgdeOjBxUpCAAAgAElEQVQMAMD5v7ktxAZfUQ4A+MrN14XY0YfMBACMH8T10zztQipV20rHhTxWFGVX8171vDDd4mQNXtoHsDQwW9T98JK/RDxZxifxkj55/drWtcwbYsjt+elMIdVocoOJZb2sqtYNAICynMHdfkZfov0PtwIAIvnZyTPFbxj3JkvCmCSjhNrZClnn0Al03RowgLcXFRLCnNE0v31TPX+MOw4yivm4iRbkdJoHAFUXkQlJxQsqEXx+3WwAwJiS4SHW1EHHdEM7P0sMzqNjWcr4qlqrAABRw49Lew6aDoDrbgLAuubVYdoPS5CyQk91Gw/SH11EcqbFtTywv7GD2rogU01KAADtQjJbQZIwpDCVSDz7d/6Pl1XvvlcIffWeyym2x/4hZtey5Ln9iosAAJln81CFyIgJboJzEd48xlquZ2fr6RgxRcnPIQrx3qp1YTo/l86vylF879jihvrIe9bKtSTtLS/l4R5jR3LtuFVrSIo7aUJliFXXk4Rz6CCWAPoakL98g2sV3nHkbz/uV9luNIOlKIqiKIqiKIqSJj6VDNbyBrK8vHD2DSFWU09vr4fvtluI/eosGoB46b3cM5GdTW+i0oYdMe61O+ZkGnk9rmREiP38VXprbRYDx0/ZjTJcX5vw9RDTzFX62FZF9i0t3CtV5iw2X1zG1qun7k7tc9IEtiz+2/svAgAOPoBjr82lQa9yEGTc9eIWCPMAvz8Zh/WYpK3SD5lftTBM++xRizh2vdV65eiCEKuvo/nRaHS7PiNVdksiz0e/rDTG8J/j9wXg7JjMos2romzcEcP7doZEDnpvWUXZh9xR3FMdyaXe9ERrsv29JOHs+KPyuuR+z+xCjnkTCwCIN9Bnd2ozt45czlvAQ5hq5FeQSiOxji2mI0PHd7uPfYm4sIWOmuRzZ3n9CgDA3hVsrJURobZs6eD7k89ctcT4fPCZrmyR6ZKfkem2I+2qfbbLzwOAhKW2LMzk831tE5nfTCjZvZtv1/exHc4ivY1/d5NLx7S3awcAU0iZCrPXERzLyXcTIvN0qDOiaGX1jKmcGKaz/0DW/FacL3Dtgw6+RvttmnzOqtgmymZpBisZf4xPrRwWYv4Zrbaas8dHz5wCAKjazKYm+a5kSOVozlp9uHhVmJ45gzKMGeJa2ORs2mVs6QrKnh03Y8on+So7jGawFEVRFEVRFEVR0oS+YCmKoiiKoiiKoqSJXaaXWtfEab0T//xjAMDZh3NKt7aNUoWtMU7FelnKPd/jCttn/O5amtjCso2Rn+GaCFfsT5K/F9a+GmJ7DRsDABiYw9Web3z+3wCAmlYePHzetPN26DspXSPNJHy9sw3Na0Js+TIe8OgHzktp06uucrqUEla6ulZPv/ROiDXXkXzA5HA6OM8ZBGRnshTDS2ziCZZCKcqu5u2NXDvFH++y4vyy1WQcMWE8S5yrnSmClAj6dbclB5T4c0CuE48n18nytZtiMSkbjCTFltev3O7P7tU0sClBzMnRY9VctwoJkiNFhczPS/skvkZjvInnRZyMRbZCTNTB8m0VyWXjC5NFt+1EC8vkg4RQHEs1y5ycsZ7lVBiatFt9lg7bkRSbXjY9TD+wmCRh7eX8O3pJn5c1AUBuBrVrRkRINy2dBx3CxCIzI58/28kBpVmGj0ljDE9xNsvNNrVQrZ4JJUmL9S/a6Dwwor4V4u63axKmL2F5IWl+fw4AIDLjEF5u+QL628bnF0SbGl/3L5MNZ/yytqGGlysleWinoQ/+2ipraMn97sc0dJB8cvbc90Os3pkm1a3j37Wllc6lTCHt87HZT3MNLelTVtdAcs+SIpbYVlSQOd6mLSw1HDW8AgDw1Dzeh6v2/RhfZgfRDJaiKIqiKIqiKEqa2GUZrBvn/TlML11MdqZDTx6UtFxF6agwnRGh3RtXPDbE9tyTBrXNfXZ+iK3ZwNWZ69rpbXmvihkh1tBB2bGh+dx9VzmU3oj/318fDDHNYKUPObjX84f5d4Rp2RPe7sxHVjtLTgAYPYyOjYG5uSG2cDVlvVraOMuZU0Tzs4WldNkAslGVHUzrN1Evbmtc9F4pO8T/1v43TP/8ufsBADMr2fb4+QWLAQDHz+TB2Vfte0XSds557icAgLvu4e195tCpAIDbT7ooxCYPmIa+xroGUV7CZSdycoXldwudC/EE96D7wbo7kq1Kxfau73tmI5Fkcxq5jarm2qT5fZHEJlZf5JaSNXrdBs5glTq79Eg2X4PiTXSN6mRO4a55iTZu24SL2XaRWU8kt1O8ma95xmWpbAevkzWE0h0y+7VpM00PWcNW1Ji4d4pv2DdJda0vFNbnm5opCyKzTJEUZhhZkaykmEdmuvJEBivmslStcc5otLlpGSvOonaTdu7+eaXf00q/g+0QmdoCyk6Y0ooQ8/OtyNQG8wph524GUZkeO+95/oxcbjMzwhmsRcRjsd+HRXN5uYpK97nC+MJfFxPdG930R5bUkRFZeXlySraukA1HDplJJiRvLl4eYkuX0zPfKSdyCZ8PlrISKtNl8ydW8rP9q+/Q59VuYhv9Ee55cuXqjSHmz7nuzu9PimawFEVRFEVRFEVR0oS+YCmKoiiKoiiKoqSJXSYRfHIOS/rQQOnzVfVsdJCTQTKZP8x5JsQ2baCUb1Mzp9Q3bnGD4spZOpZo47TsN+6+DgDQ0cGxwYMHAgDOmMXyiCpX7bnj/aqP8W2UrvASolS1r/7+Mg9UlAP2MyLJxhPleSS7qW7lts91NREK8rjtG9xg89ZslhEUF1Lav6gojz8jgw71VAOM+xPdtU8q7l9yb5j+5kVX84xM6puZ0zGHY85oZNETfK5fN+JfAICG23i5u259giYauS3eevJtAMDnNl8aYosueny79rE3Ud3IA7F9HSxpcpFdTMd2e4q6VAkhG+yu/bqSAqYyuUi1rN8veQ31+yBlg15i1efZuDpMeqOKjg5ui80fkOxk2MgKsRJdlxLt/Bt6o4pEKx/3naSBjkRHsszIiGPESwjbtrBMMXs41QJaM4/vqcVF9Hl22eJU36rP0xFnCVdWNFkG9PIHZDhz6V5cu6iqdVPSch4pJfRIiWCjkPb5ZaX0z09L+byvnVWSNSDE1jSu7XIf+jpWmFDZemcuUzBAxOh5zRTz8BID97sP5aEkdiPJek2GaHdvXpEpDGMGCteXHDJKSLz6rxCKzDyMJpxRGgDAbVOaWNjNdI1ILOV7X2QyuSj09/qqre48LCpmOeZ7i1YAAEpLCkOsKJvap1XUhTzwQBomIGWB7e18/Rw8lJ7tP3TmUABQkE/30JFjuG0XzKdzfVBFaYh5Ga9KBBVFURRFURRFUXoBuyyDtfS5RfyfcWRJevU/Hw2hhkXOqEL0DCLf7V6u2M1s6vHx5gYA0BHhHr+1G12vh+gd37SMeqXmv8k9edFCelvOmsK9Vw3tNGi7MKu/+6N+fLw9u7dmB7iXvKAgN/U6bv7EsdzjkHCx6mbu8ffGGN66EwDySyhLlSVMLnLcYHNppOGzoHkZnNXqz8jMRaoetiV1ZGf6zR/8goPDuQfKn5P5hdym++xFVdKbRQ/Ua3e/DAAoPHNPXjfL9etE+XOzRtE5FxH74k01Dh929La/UC+hQ/S+pbI+Ly8tTlpne7NV2+opTSR89jJ5fbluyFKJ5JbPnsmE18YmHqDcp4klZ5RyRFmIjZvITGFYBt+nfJaqU+bJW+ILa/xINq3TqR3FOtYt600zACBaQD3nMps499GFAICCHN6HUXu4jFqjsJTvp2S4TFFmit5qmVHyWaY2kf3KjND9RBpkdKTIRvnldgRvfCG3k8oqPpVpVJ+kjg3L7PoVAIDI3lNC7IVxlNHYYxxntUr+eAstv+AN3s5QMqJILHiJY3mu/XLEfUycQ4n//Y2289brvA/Dx9OEsIWPX0Nlg6KX/j7ETOkQtz3xrFrrDBUGDEZ/5u6FTwIAFixcFmLeiEzy2KtUfqe6ln/rjVX0TJ7KcAkAOty9c81aPm4qnZJgw2Y2PZk2ndqxVTw7/u6dmwAAl8766fZ+lR2mn5y1iqIoiqIoiqIoOx99wVIURVEURVEURUkTO10iWNvmJHtC+ufTfQ2bxCDpwSQ1yitkCVfMDfROJJIHZWcIGUU8ztO5OSQB6BCSMb9+qjRj23we1Lq8keqF7FG6Z9Jyysfn3eq3AACtLZyelW3hU8KfHTwzxFqdLMcPuAe4HpBcd/jQcgBAhxhMnpFJh3V7G39erJEkH7n9XCLYnYysk6GFlwaWiYHdMT4Phw+nQcZDh7LEdv/howAA7aIWyGuj3gUAFJWzJGCkW/ej5Twgf7gzovno1SUhtugoGpjalySCjY1cmyc/3w2Eb2PZYIs7ZjPEce/VtqnkgPLa6FeR54zEDw7OzEy+7Mtte+liqzh/MjOSjTZaOvqJYUwVD6D2BhPt4n4Wizn5ZA3XBbPuehQt5uuNN7zo1I6Z9LvG6/i4SGQLGakzxpByTV9PK6uC5aRtS8j8aUiRkMD5Y6Oqfxo5xS1Lb7Oj2Unz/WB6k0J+FxNmC347UgLIEkGWikbFdKp6WqmW85JEWUPLyxljwpApK8X+90mEcURkKtU+SixkmV95AR3fxV8/hdfx0r8xkznmjSxq+fnO5JKJhZceAkDilWf58045iyZKy3k77lnDPsuGS+8+SIZMe7R+J8RalpAcsOjx2SFma7s2TOlPjCmhZ4RxY4aF2LwFdG9vE3X7UEfnwlGnHxhCTz9Fss8JU0aFmLwHjR1Nw0q8lBAAKpyRxcr32JxofSG9h2wSy+118jc+xrfZMTSDpSiKoiiKoiiKkiZ2egZrbtVbSbHQg9fCvUSRwuTBp34xn7kAeEB4TAwUlm+0ftttYjB5pht8LHvvO1JY4a5uICtIzWB9fKwfmCt6BVc3UE+CbBPZi9vcSj2JDW08sHh1PWW1amvY+nbYIOqZGDSQTUh8RkC2bXEJ9VTl5PAxVVhGdqBFmb3TwCQuskKpely9uUhE9Jl0l62aX82V6Q+69jwAQNu7osdtBP2G0ohiaCVb406dPBoAV1oHgNue+h+AzuerX0caOSxcQJniDNE+NfXOMCHOx8WjH9Cg1+9P7fJr9Do6mVw421qZ1WpsoukcYZjgz4BU7uup2nhbdu6ds14Rt+3kjbeLrLCfLZerrusn5gmt3D4t9WRK0CHs1X1G3Qzga0tiKZ1LJpvb0Ru4SBOLdqfikO1kxbkSb6ZrYrSAMxje8CJ3jBjon5PptsO77W3cc/Zia+L+hMxgedMKmT3y50FONNl8SWa8Utk4e7MM+RnSkr0wszhp3QZbnxST62z92Qkkkub1dRIP3RamI5+lDJERNu0jJ1F2KXLyt3kld8ybrBQmWoNG8nS2m58rTC4GcLbKDCSjCpNXwPNz6bkhes5lITR9+AgAgN3CmeG8csrSeBt5AECMn2f6My+tXg4AqK3lZ7mou+9kFXLG8qunHQkAeOat90LMZ66WrWIVQYdQfLS1Jz/Htznlxbhpo0Is3KuaefmWeCt2NprBUhRFURRFURRFSRP6gqUoiqIoiqIoipImdrpEcG2jkxAJ6UJ+LqUFGyOcokvUUjq1pVgYWrhB9R1iXeMkSzlRHnDa2sap9AHFlNLNEBKbOpcejGfw+2TCDUxGJseW1/GgOOXjkWpw7wuraVBoJ8MKIZMZXJYsYYk7KVJpKZsjrFxHtQ7WrGEp22BnjjBsGJst5ObR8bV+Lafr405S6qUbvY1o5OOfqq1xljiN++VJAIAtr67kBYpJspI3g+t1NDdQ/bExYmBqyQCuuv7WO1RTbtz4ESHmB5z+76V3QqywgAb5twnDhEIn4ewQUqgtm93gU1HzbtnStdv+cr0MWSOszOm5mprEddAb8nQqVkV/ZGhbNa9SkUrm5w0vpGTan6ctQrIbzIWE/LO+vp/Uwcph6VFTE8lTYnFpCuLaooXPMy/pk3JAk0PLta1hcydf5ypazJ+Rqm1NlqixVU2/e0wMEC/Ip/thTQ23WUkZSaFMOUt7+xOyjlQqvLRTLlfdSrVzpBlSNMU9zcekRFBuJ26dSZOQc/v5nWSKKfYxK+rkh0IWjq49M/oU5sgv8H/i9P3N4NEhlPf5Y2miQ8i7vMlFC0vQ/BAFGxe/YczdgzKFYYisidVB820zS59NhjuPS/gcanmcjDFyTzs5xCKHnQoASHzAtbgiY/dI+n79kVdfpxp9E8WzQrOrS2rEEIRn55I0UErcN1aReU9HLV/rskv53MzKTDY+W7GKDEcmTxoVYus30Xk9fvfKELv+ZTIuOXnU53f4O20vmsFSFEVRFEVRFEVJEzvf5GKDs10WvXJhULfsqXNvstEId9WYbJO0mBygnQrf+yffaP1bcqeB3N4kQ4Tq2/vJoO00k8o+WjJ/A/UodLZ4lgPoaf3Nzc0hNqWcBp/WiF7hl5cuoAlhkext+RvqeV2fEZC97RVlJV3uX2+gtr06KZYb5Z4cbxtc3842pO/XvA8AOPFXl/JKNbRcxQHcK9juLPFrlooBum0Uax3GmafcPO75K3WV2EPmCUD1ljraXiP3ote7Q8P3NAGcIZHGF6h1n1PKg17XvSWybL2clhgdn/L6FXff35u8ANxTl5DnlLcKlpcvV8KiszlF8nUulWO7nJ9qOz571tTM++XbqriQe3zjsv36MqLNSt3xOe9DPh8HF1PMtohe9RTXmZizYm+p5mtVruuNjVVzNjCjlH9jb2hjW6V1O2WrEqLsRUEBxTbXiGyob59EP2mnrZDZpVQUFuUnxZrceZqqnEeqbFOq7BYAtLkB9NJAwxttFGayEiCWom2ihh7LtrX/fZHIkLFh2ra7Y1lkq5686HYAwIknCItt1y5Wmvu4zLHpVO4i0ml5ALCtIgvv41l8n7PtzkRL7OMHc0hZMeOwjRwsIiVNZNx0jpUO3frr9RukecvpR+0HAHh3uVCIOSXAuKmjQsgbURy5D2f+nniBTPLyy9l4pKyUVUje0Gz5am6Lww6h9ceUsOnQa4/OAQAseW9ziN3+64t35Ct9LDSDpSiKoiiKoiiKkib0BUtRFEVRFEVRFCVN7HSJ4JJqJ6UoZFOKqJNuxRuF7KGSJEdS2sdyGhFLkabvNB7cD8YWqWFfBysnm+tP1MdcalhUvn9j7Sqa+Ey3X0nZim3J7tavpbRsrqh7VCcGyHujhNJcMZi8nVLMy7fUJG0vbwBLO7xpwKBClnT4+leyvtDYsWzW0JuYegNVrP/o/VUc9GYtq4WkNd+dyuJ49rLbPWbuFkJeptkkfpt8QxKnofsPDLEVru7EuoVsNLHufa55VTqOJJwNYjvZbiB+tqht0VZF7Zwo4Vh+Hp3/MSElRElWp32mnSSZYmMHmwL0VtqE0YjHy+5ahPEF8txvGGXpUaoaValqYqVevvs6WBkZXobNy+Vn0rW6SJxTW5z8s7SETWcam3Z+HZEeQQfLXUxGsiSsroHmd6qDtZLktmYQ/15w97bCMVx7J1ZL54c0sZCSRF8Ty8sLASDiamtFsvme6s034ilk8Dbe/6RmXWHFmAAvL0qFN6kAOhtVeHKidD1rijWJdfh3zgS1TaaseRVPrnnlPyeRQg4o96G/YGu43lEwrxDSv01+aIG8rLn2MRni3pfK4CSFRDCVfFbW07LSOGNr6sV9yZlpSFMN4+SFyE6Wm/Z1ZPPcc9d/AQDTDp4cYtkD6Rlu0GA2ONt7yjgAwD+eeS3E2pyRz/iJXM9M3r/mznbDRsT7xdI1JBeMi+MGOXTdnnjQRN6veS8DAL424evb+a12HM1gKYqiKIqiKIqipAl9wVIURVEURVEURUkTO10iWFvjUqyivk3UObzI5Gy8idLn8SwhwfC1quRroJP+JbI4TZiVyelB73cvpQBeItjQxO5NaHGp3AGcVv5gsZBh9TO25QTo58vf1aSQH/l1payrtY3kK1IimJPDTj2DikiqkSfaccF6kgpIpzK/vqyn1eLqK23axFLCEif9qK7mfRgzsiJpX3sqq+rX4tzZlwAAPnr6AwqOFHIWL6MbxW5UxtVzs8Jh0Z8/82cvTP4QUf8Nbe43HsLSyxlTKV0f2Y1T8yEdD6D6fSflEPWAOpxMMWcIy6JKRw50uyxcPd10fb2QXg0mGYWtEzIaV5+rIFPIrHop1W1bAHQ+t3xtNukiOGPa+KR1/Tkg5dN8vnZ9DibH6W9HB59T3mmzUx0st+Aocc5sWb0laXuxWP+QMNk2lkIa54aZKX7jNi9ZEXXDooUsMwrrunWk+58nQ9TB8rWx5LSvqwUA7c5xMKucz4uNW2gfi3L4Ptvi7nGFhb2z9t8nRUr2fB3BmJDdDXCSdCskY34IgnT3kzI/TyRFHaxUpJIXphrmkKqGlnci7FfI38s7Skf5mB6c5Z4RpBzQ10SVv6uPSQmgP2dlTcmUUkJx/ZQ1sxzesbOzRJCecUx0G9vuJ0gXwX2OnQkA2Lie7yHlzgnwg0XsFPzKhnkAgCu/fUaI3fQEyQs3OYk6AJQI98/Buw0BAOw2gZ9TFixcCgAYOYRro8I9a0hnaTlMYmehGSxFURRFURRFUZQ0sdMzWOv9W2sWv8u1+5oeKV7vMuRgX9dJIXtkY24QYYfIbHSqeeV7CcUANz+YXNbYisHtQxP3aA0axIOU+zOpeuV8vY9UWatUfOfZy8L08BFUBV32VshOolyXudrYxAOGh5VQD8eStVzfoHYT9WIUl3OPbGZmRqe/AGeufF0FAFi3Kdkso6cyvHAIrjvoCgDAy+9RHbnFLy7iBQrdidEuerqdWUHIRgGAzwaXce94xGWuEk1sMBNqT7XwufDOi1RV3Q8OBQDkZyZPy0H1LvvUuoZ7m1oHuB5AYWiD9S6TLM1p/EQNZwFmnrYX+gpVrc70QHznUAdMtNnUSjJj2dDIx66/prW382/os7ipDDC2ZTrT2Ugo4f7ydhqdwczRk3lQss9eyk17Q4X2OLdZVjS5x7cv4bNPuaIndEOr660V95yIu4/ZFLXCOmpZSeENK2I1HMssF3WS6igeyeFzz7dfrIF7YEtdtldmhcOx0Utr/31SUtWoiif4GjessDBpfszNz4ikrm+1NdKcIiI+ryPhMhriIpcVpTaSvfu+5lUq+mMdrE6F+3w2SNSqqupIkTX3maKouD+lqv3ms2MJcS/KzOl6OQAmN/kYGX/6vjRRIFQl3ghnO4+bvk6m4bbIz6PfWD6PTXDGZmMHs+HPvCX0fLiilmtVbXFmQeWVnI1auXZTmB7o6nG++DAbYxx1+oEAgGkVXIcs9vXDAAD/+ffrIfatLx61Y1/qY6AZLEVRFEVRFEVRlDShL1iKoiiKoiiKoihpYqdLBL0JgTS5CHqgToMJnXQpVZ0r27XpAtBJmREMNLKF1DCVnKYxw8laxODh6i29v97O1ljL3zuVdMjLEKSUIZW0wlPdxunbuZvfBAA8tuTFEGt2A99Xb+IBjVFX06eogOtBZAqJja9XIOsWlOfRsnIgYlEZpYNLizk1X9dIEprN1SxL63D7INt71RpOK/d0IiaCbFdn5ZWz7wYAfHfspWH+Q0+9ShMxUT/J18bKFm1X6+ZvYPlRwjezNLnwx0UiRXGlmDi5uqm95Hac/lawJHGcqz82bgzXIfN1lj4zZFSIDS4oc7vF0oIXV78LoG/UwWroILMfadAST1Gf6IxJRwIAfv7CA/+fvfMOk6O41v5bu7M5a1craZUzCiAEQiKDSCZHZzDGxgkHgn1tfB2uwQaMwwXbcJ2wDf5MzgZsMDnnLIJyztqcJ+zU98epqnN2Z7SS0Kyk3T2/58Fqn+nu6Z3u6q6u89Z7Qsy3WzlB1xtkSHMKL5OV8ujs7NRbfPq6WuLe2E6T68+cfGKIXZV1Jx2/lGv7Ol5dLOEZiBJBk5Nabypb1GvL8dd9EU++znbPvS5R622zM4apGs+1X5LOAKizXRi+NHF7jbiafzbG5zm7kH5jWQereii1uY2NbIxQWOg+T2O0MBiQEruIe6ZJSV91IU0JMOL32V5ZXrq6VTKWXmZPbTEuJGq9SRHleoMSf16ifH/J820tym3ElNKzw8p7nXs2JlextD5r6gG00CV+13xus8lNJFHLGj01xOyGFfQdJdxmzanOhGHtMt6PP8Z8ISnsGhwmQOmQzwFfQ7GkiPsF86eQidYDb7wbYtPHUx/h/mdfD7FsVz8zvEcAmDVjQlh+5+43AACTjmc5+9r1JCtctYanl/z1U98FADxy7wsh5qdf4Mjt/rN2mMF551UURVEURVEURekD+jyD5UdpjRjxs97aWY6kenOK6Dbe+l2GSr4aytHXLrfvhJhc7EeAu2VwErRecSFPctxc19j7d/dDjBHGHy47KK1j02Wr2l11+n8s+keIPbaCrL43CbvMmqoKAEBpHo9WrKwlm/zOTh5x8CPr0qb9gGk8CjGhgkag/vPhhyG2aMU6AN0zU+0dNCrVXCeqq/tzH+G/Kc+N8EbFMdQMr0z5O/sDRRHK1t18wm9C7LJDaFTuj+/cHGIPv7YAPfG/+7AR/LfXu/MnLewbm+l8t7el2gIXFnH7qBnGo3g+IzWlkvc9rmw4AKCqoCLESnNpRK+uk01G1rbQyNIr61eE2OpNNGolM5aLFtDn0vChv9ISo2u22z3I37aW87nYq3waACAmRux6K5sgzSn8el3S5jtN+QX5OeAm9YvsWIu7HmoKR/FqzpgkvlfqyLw0uRiQiJHxfGf60hkTNt7+/HTwtWucnXT9B3yNV46hjElWEd8v43V0beeXcDtLiKyXdd+TW8MGTN663We/AM5mSSVCkzO8KClg5cBgQtqcewOKThFr6KR2JzNPTVFqp6OLR6fsT5pT5DuFgbRwT2erLsua5DoThrrO+hCryKPzmi7j1TIAMvc7jDSYSGNYNsmVd0mufD/E7AuPAQCyjj2Lt62i52XXxaAAACAASURBVJN99Rne97R59G+uKKEQ53Nmn36cFj7/vRBrveTbAIDiG/7K6911E33HnHkca6d23M0UY5BmjnuSl0dtRJ7Hi/a9AABw02Nnh9g979G98pqvfzHE/vEqZZwWiPtocxNnNIv2oz5HzajqEPPqqCceeZVjn3VGan9+mvcT7/v+vl4BiqIoiqIoiqIoGUJfsBRFURRFURRFUTJEn0sEW53kJ0tIuGzcpcOFUiXU50myxMHX+5CyBy9zSyd9kcve7EKSLSaYe3FFp5BZlBQXYKAhTS7SVZVf1rwIAHDps9eF2NKVGwAAsyaPDbGvzDoBANAYY8neqiZarz3BafYc9xtvKeHJox3OdOKT+x0QYk0xTvM+v2YlACBXTNqePI5qGCx6SEjfRjtzC6GYKqqiWCSSeinL6yJfyBP7O5NK9wIA/PqwK0Ls0jl0Lp5Y90SI/fm1JwEA77y7NMTynXRphJANjh4zDACn8gGgupjOX0eC20dTO59nL91cvY5NTxobyfQkKowXok7qViD2XVlJdcwqhpSG2MGTx9O/I/cJsTlfmAMAqCniKu3FYKlGf6I9QffBXFGvTUomPJX5JHXo6BByJHftdq9fRW16a/dBTyJNHSYpB/TIOnK+dmFFHtce8W1OHrOX3TYLKdPQghEp++73iJo62c48KVv81jEv0yxkKV7nApoAX1LNhjx5I0k6G93A0hTjzoURpjP5VSzF3fIhyWnLxHnMdfsx4hnXtoHOQa64RlpbvcHU4JQItsaFlCiHfgMp8/PPJWmsFe2iz7dVB8tLDuNif20J/r6IM+tJWL4XFkXonro2sS7EvERQ2TqmjGslvdNG99E50w4MsWSHk5DnippWzsjCzDk0dYdxluCaoUIGPcr1d8T1UPzHP9F6w8bzNieeTgvr1/C2vr6a7GNlaf4CAJ46+0YA3Z9Pq1uXAwByc7nPd/E5JwEAbnj2qRD70EkDRwoJ4LpNbKAWW0pTD55tezvE5s0lw4szTjssxFpjdI2U5nJ7k8t9hV4BiqIoiqIoiqIoGaLPM1jZboSuS46kprEJ9tmVJLrEam6UVkwUDcXps1JHawF2nJbZqhDLFqNSbsRQjgpHBuCIgzS58PjRAwC4f9m/AABnTJkbYtMPpAxJYYRHPle2rAQADCvgkYTKfBrBXte6PsRqnN12u5g8uraFbDNrO3jk9qmFIqtSQBNXx1eyOcItt7oJp+Wc+YiU0QiVHIH310ObyK74LEG+yIi99hZl6nAu+j0JN1oWyeLm6zMHn550Toj5ZWlC0BynEZ81ratD7Nl1VAW9U9i+57gJ2ZX5ZSE2rpQzSSOK6PuKIzypd1gBZR2zs/r8ttLviLsR1UgOX7vBCEZc437SfEsL2xCXlFI7TIjMoM8kyQwWG1/IzBjf0/y9TlrF+wxjdwv4NFbV4+g8S7vckiQdV2u8JXX9gUQ+Kxui7W5kPI1XiXyueVv1nGpuP/F6ynBkF/NIu7dxjzWxQUZRJbcpb+m+aUltiJUkXIbxkL1CbPETdD/NFwc2pMJ9T3L7rMcHGlFx38vNpkxiaQ5nzUc7e2+ZhfKZq8R2/mbSSr0tzm3WZ6vi4hjys+k6ak/weh5pNuXt3LfXMn5AITJA4d4m7M4/dO1PZqGy51Hmw7Zy/8K2k8LCjJrM+/b7kaWAZKZy7OSU7/OmFbIPlTVpXwBAchlbwNtmMi4xI6fw/gZpu+tJOmVFOnO1V1evBcC27gBQUUX3z7pGfsacMp+VUPe8/zAAYNpUVlt5Jc7bH3A/d83ktSnf59tXb2WJdpaB90ahKIqiKIqiKIqym9AXLEVRFEVRFEVRlAzR51qeYle9ubmVJ4BaXxMrImpj+XRwIk0NF6l4cduaNKYGANd4kSpE74vfTTqT1f0z+urUSef9na5kF1pilDr/6wc3AQBGlgwLn+9bPQMAsLSR6wy8W0s1r96r5VhjZ2qND1+fqEpM7l5VRxK0wgKu9bLOGSHEY5x6P+GAvcPykwtIvnfLHS/yzgvc+a1iOU1WGllozMmmpHzK0yXPZ8fAqaoe2UEJnqyqXpXtalXlDw+x2VVzU7ZRMkuHk18WCyOdJlfPI2tkccr6nZ0sgfHtRprAeLlzc7O4r7qbXjoTC4ClGnHRVvx+pMlFNE1bqq5xhhZtHSmfdSRSYwMKISPKK6Rz0CaeU4XObCK5hSdfF+xFk+fbP+CJ8NZtk1XA57GrkyRPopwZouu4ZhzcPW/43mwe4o0vSrawJKrC7XO9qKE1ydXsQmLg3Pt2hM0dm8Py8EJ65sk6WLXt9Pu1C3MK3059zSqAJYRSDuhl0DlZvF6TMICqLiBjBmmqUZwjaiQ5fD2tje0bQ6wsj2RRuVkDx5hpu9nGNI0jytz9U8j4uJ8orvNWakOmgp9zYRtpRCFkfKaU5Lg21pG6jZAk+jpato3rM5q4O8+iZl66qTCDkXT1Vzd30D0sIox6tmwimeW5xx4SYrc8+TIAIC+H29k9j4h+4kRqK8OGszGQN3aSz8GiHDZd8/SlNNCjGSxFURRFURRFUZQM0ecZrDAZOyHe5v2yeHsNVqmRbbzzdaVO5JaT6MJ+RPIiFqdtZFbFf7ectC1tqgcK8WQM69tpgt/975GV5X5jRobPG1xm6t1lPNKa4ybiDxvKphNZ7jduFmYS8RiN6L3/wcoQ8/bfDfVs3Zx0WcVl760KsT9vYHvv2HI3EjuUR/cLK2lUPyZG0/3kfHnuvZFFjsgMRJ31fmeMz21lDY9wKMquxmcd5b3KX5+jhg9NWX+IsLD3GSc5Vzgqykv0RH6Hz+gDQDLNpGu/qjTVKC1OtfXebxZNAP/P06+Ljbd6CAOLON9HsovpGdIh7kFHf/kIWhCZ/HV3PQ8AyBX264XOpKdLZJk8OeK5181+vZFG0+N1fH4iTsUR38wZk4YOuh7qRbYq4Z6V3Sb1DyKkSUQwjxElBZY1NKRsE3VlKbZ3dFtmtaR5hf9uaQHvl1tjqeu1xDkbMiR/ED+rckWpnIRrdzncbwtlCEQGK1zf6RRI2Wm6uF3i3ikt2122y3ZyRjPcIGU2ym1jFy4KoayjTk/Z32Btd9vDhw3025VXcFZ3r9GUpb/uvsdCrCCUKOF74tw508Lya2+R0cjqlSIDXE59x32msPHFonoyvDiZQ2kza5lGM1iKoiiKoiiKoigZQl+wFEVRFEVRFEVRMsTuKVjjZ/SW8MS1XDeJLSlm+3opmJS8JFydLFkbywitSsSlhKV5hZ/AnStiJjtV3zKkLHWyeX8nP1KAqeUzAQAzR1IK/OWlK8PnkTQGII1OllJfz7UHmlrauq0PsPxISpeWLFubsr+QXc/jbWMdQnYzluRQ8py2e8mSPPdtLv3exevFct0YgfQvcQYZSWFsMXQC16NRlF1NtCuWEvP3tdLSVEnenKnjw/LL71GNI2tZKuONL2Q9wJiLyTpWNplaJ0veTyPu3ijNMsaNr0k5nimVJP19XNaNcbveICboD0Ts5k1hObuQzkGlMAUxJ32c1vvn7SHW0OBMTYp4vbY2kiaVlLAUXT7vPIW5vE2uu7+1t/O9rDXmzy/LynLcOa0Q5k9bKRU5aEgn8yuM8GT3vSqpDpY0omjoJAlhR4Kl8H4/cj2bRv6VrnaWlCR60tW3inarl0VS0uRgl5j5jkOUJZVDc12fUcj8jLsnWVHHEYVOYp1WNsj9TuSJe6/rO5pcNtYKMj85DWUNydui61liWlRR3X19AIiIKSmDmHRSvJmV0wEAjQ13hdgCJ4UfN5pN2Jqb6dy3dXB7jMX43Bfk0W8s66BOmkhTYF57b1mInTpl9xh5aQZLURRFURRFURQlQ/R5Bmu4M0qQb6BJ60aWGnjEIeqH29KZXMgJhm4kwWzFzjPhJj9asU3UvfHKDIl1WZDcfB7NaBCjuAOFLpsMNrRPvvkBAKC9Q1RBdxOq5WR4P6EwkZAGEyZlPb+tHBHPcbbPMubPRXEhjwx12d4zleE7RCzuRublqK8/Bnm+/TEkSoQZRv7AMzBR+g9DC+k+6C1kJcOGpU5q33/EhLC8cB1liApE+/EZLJumHXnrdQDdjCh8+5LbII2T8KiK1GzvyJIqt29x33X7buhsSll/IGEq2Own0UQjqkOFIU/WWJp0bT/3jRCb8Oa3AQCF0zgbGNtC2Yzc4by/ZHtq+Qsr7rFdLfR5bhlbRyc76dwXHX9giFW6UhdvPb40xNpc1qti4sze/rwBi8wax5OpGeTN7W1uPT4HB4+cDQCYXDYlxIoiNBG/23POmWYYMSq/pYONm4bmU0ajLJfbdsRZunt7eABojFLbaYqyWsQbZ6TLdA0qkqkW6XufuBcAwEqTC286IY3PvDGG7Cf69cS2Jkf0C3zfsSu1rIGJiPVy6D6cP2c6xwqcWYMwxOlm2KF0oyhCarH6Js7CFxbR71otnof1zixt6BB+Jr39wFu8zXQyiBo9ujrE4mmylvtU7p0S2xVoBktRFEVRFEVRFCVD6AuWoiiKoiiKoihKhuhzieCS19xEs9pUKcR+n+KJZ6vW0ETiuhe5VlKQt0jZYJzSf9tKnieENCZnJqURx4vJc4v//R4AIDqB683E4luvLdN/sUg6qUHV0HIAQLuQpXjJX1MTyyO9EiIiJkynk+8lXCp2W2/pfj1ZuyeZpsp5tpiVnesms2YJuVNRbk7KNsVFlIbv6OTUfJFLNSeF1ObM2ftv4ygVpe+YVbkPACAWuz/EvBR3/tjJKetfMPPraZd3F6dPOBkA8OuiB0PMt685w2bvlmPaZYxiw5H1K0jeFREmSaZyZLd/AaD0wadSdtOXD1vzwJ8BAMse+iUHnffI6JpJffjNey5tcTZHWNS4GAAwqpjP0Q/mfg0A8F/PXBtiD/yT6pcdc+K8ECtxE+lboixVe+/9FSnfN278iLB8+AS6Zp5ctCTEXn/D1U1aypLaFXefTd+77MkQqy6sStn33kP2S4kNSKSkz9UOhDDWyT7kEABCAijoFvPSTVnjyJlbyPWSqz7krxs3gz6XckBfi6uVDS2yJtK9PDljsdh3pPv6Pb97EJOu7+jrQu49k6XwXn7+9jtLU2LLVq4PsXmf4LYZdXVsGxtYYtvWRv3bMWO5v79XuUoEFUVRFEVRFEVR+jV9nsH6vx9eCAB4cyO/le5dPQ4A8NUZX/vI+21LiMlx2Wy9mu5tOR2d36BJww3R2hAbUTj6Ix/Pnkq2yUZxDmXprj2BRsKfWfdS+HxqBY0gJMWE2pY4ZbNysvjy8BNupdVmjpu0GxF2uFlpLG2nlNMI/ZC8yhCTtrT+nEm7/dpOmjC8sZ0tkptjNOGxroNHAP1E5rXNfB4nD6FRyuYoXyN5kdTsl6LsKirzKYsuK9e3tdE9aFrlnp9h6EhQNkDeX332uyPRkXabgYKZwJPZ83Lp/lZZU7K11XcLWQefCAA4fNxfQqx8GE0kNyWpJiqDgS9P/+p2rXfHSb8Lyx8c/A4A4OYP7w2xhXV1AIA1azaHWHMrtYcKUdolVygsFmyhdc+YxZmnez9J2cWhBZzp8lx18I/DsjfQGPT4Z7bMao1z2f4S7kvA2+PLzFOwV89Kjcnft3Gz+Hxa6jZ+OZ/7mIi5+10rZ028QQayelf9DEay0uRxxhZPBAD84WPfCbEHVjwCACjM5fPT6YzWOoQxW4dQYI0eTtneYRPGhNiHm6jveMMJ3+/9uHZBhlEzWIqiKIqiKIqiKBlCX7AURVEURVEURVEyhLFpzAa2urIxWwCs2uaKg5Ox1tqhu/sgeqLnrFf0nPU/9Jz1P/Sc9T/2yHMG6HnrBT1n/ZM98rzpOeuV7TpnO/SCpSiKoiiKoiiKomwdlQgqiqIoiqIoiqJkCH3BUhRFURRFURRFyRD6gqUoiqIoiqIoipIh9AVLURRFURRFURQlQ+gLlqIoiqIoiqIoSobQFyxFURRFURRFUZQMoS9YiqIoiqIoiqIoGUJfsBRFURRFURRFUTKEvmApiqIoiqIoiqJkCH3BUhRFURRFURRFyRD6gqUoiqIoiqIoipIh9AVLURRFURRFURQlQ+gLlqIoiqIoiqIoSobQFyxFURRFURRFUZQMoS9YiqIoiqIoiqIoGUJfsBRFURRFURRFUTKEvmApiqIoiqIoiqJkCH3BUhRFURRFURRFyRAD7gXLGLPSGHPM7j6OgYoxxhpjJu3oZ9vY53nGmOd3/uiUHcEYM86ds4j7/08bY760u49LURRFUbYHY8zzxpjztvLZBGNM6y4+JGU7Geh9kD59wTLGHGqMedEY02SMqTfGvGCMOaAvv1PZPtyF3GCMydvdx9JXGGOONMas3d3HsStwAwsdxphWY8wmY8xNxpji3X1cSubocY4bjDH/MsaM3t3HNZhwv73/LynOR6sx5uzdfXzKjiHaVIsxptH1V75mjBlwg897EruqHVlrl1tre30Obu0FzRhzmDHmWWNMxL0EjMvUcQ1EtA+SSp/dRIwxpQAeAnAdgCEARgK4HEC0r74zk/g36oGIu1EcBsACOHW3HoySSU5xD5P9AMwB8KPdfDzbxBiTvbuPoZ/hz/EIAJtA91dlF2GtLfb/AVgNdz7cf7f0XH9PeI7sCcewh3OKtbYEwFgAVwO4FMBf062o96vMsKPtqC8wxmRt40X6JAD/3hXHMoDQPoigL0dppgCAtfY2a22XtbbDWvuotfZdLwkzxvzajcSuMMac4Dc0xpQZY/5qjNlgjFlnjLnC/wjGmInGmCeNMXXGmFpjzC3GmPJ0B2CMmeb2/Rn3/2uMMfcYY7a4+IVi3cuMMXcbY242xjQDOK8Pf5vdzbkAXgZwE4DPyw/cqMP/udHxFmPMK8aYiel24jKUa4wxR6b5LM+d39VuNOOPxpiCXo7JGGOud9nOhcaYo8UHNcaYB1wWdKkx5ss9vuc3xpj17r/fuFgRgIcB1IiRsZod+ZH6K9badaC/fabpIZl11/nN29qHe/j8yBizyhiz2Rjz/4wxZe6zh40x3+yx/jvGmDPd8l7GmMfc+VpkjPmkWO8mY8wfjDH/Nsa0AZifoT97UGGt7QRwN4DpAGCMOckY85Yxptm1ycvk+saYc925rDPG/LjndaFkBvesusMYc5sxpgXAOcaYfGPM78Tz7BpjTK5b/0vGmKfF9t1Gy40xJxtjPnT34rXGmEvEuqe6dtfonqczxWdrjTHfNcYsANC2i/78fo21tsla+wCATwH4vDFmZrr7VW/PNmNMlTHmIXdO6o0xzxnXiTfGXOrOf4u7Lx7dy+EoAmNMoTHmVnf/ajTGvGqMqRKrjDeUfWwxxjxijBnitptkjLFiP88bY35mjHkJ1C5uA3AQgD+6PsJvxD5PBL1gPev+//tunbPcvr7m+iN1xpj7jTEjXNy34W8Z6mfWGmOuNoMoK6p9EKIvT/hiAF3GmL8bY04wxlT0+HwegEUAqgD8EsBfjTHGfXYTgASASQBmAzgOgNdlGgA/B1ADYBqA0QAu6/nlxpj9APwHwLestbe5i/tBAO+AsmlHA7jYGPMxsdlpoE5LOYBdMoqymzgX9PfdAuBjxphhPT7/NCjbWAFgKYAre+7AGHM86OZ0lrX26TTfcTXoJXtf0HkcCeB/ejmmeQCWga6HnwC4198kAdwOYC3onH8cwFXGmKPcZz8EcKD7nlkA5gL4kbW2DcAJANaLkbH1vXz/gMGQbOxEAG/txG7Oc//NBzABQDGA691ntwH4jPi+6aDR338ZerF9DMCtAKpB19Lv3Tqez4KuqRIAOvfuI2CMKQR1BF92oTZQuy4HjbxeYIw53a07HcDvAZwNynyVgdqj0jecAbr+ywDcAbrvzQGwD+h5dgiA/97Ofd0I4HyXYdkHwDMAYEhqfwPouVgJ4G8A/ulf3ByfBt0D0w5AKumx1r4Ket4c5kI971e9Pdu+47YdCmAYgB8AsMaYqQC+CeAAdy4/BmDlLvhzBgpfAFAIYBToev86gE7x+WdBg8XDABQB+HYv+/ocgC8CKAXdE18C8DXXR7gYCM/QcmvtuwAOd9vNcOvcY4w5DsBPQf2RkQDWI7XPeBook7O/W+/cj/B390u0D0L02QuWtbYZwKEgGdoNALYYykL4zvwqa+0N1touAH8HPfiHuc9PBHCxtbbNWrsZwLWgHwnW2qXW2sestVFr7RYA1wA4osfXHwbgAQDnWmsfcrEDAAy11v7UWhuz1i53x/Vpsd1L1tr7rbVJa21HZn+RPQNjzKGgC/FOa+0boJeaz/ZY7T5r7avW2gToprFvj88/AeBPAE5wD6Oe32EAfAXAJdbaemttC4Cr0P237slmAL+x1sattXeAXr5Pcg31EACXWms7rbVvA/gL+GZ1NoCfWms3u+vhctANdDByvzGmEXTDeAb0m39UzgZwjdOwt4I6hJ82JDe6D8C+xpixYt17rbVRACcDWGmtvdFam7DWvgXgHtA14/mntfYF187kQ1LZNv4cNwE4FsCvAMBa+7S1doH7Td8FPYD8ffHjAB601j5vrY2BOoM2zb6VzPC8tfZB8Rw5G8Bl1tot7nn2U2z/PSoOYLoxpsTdS9908a8A+L219jWnEPmbi8s5zr+11q4dqM+yPmY9aGoDIO5XoCkOvT3b4qC+zFj3LHvOWmsBdAHIA53LHGvtSmvtsl36F/Vv4qDB10nuen/dPZc8f7XWLrHWtgO4C6l9FsnfrLUfuvOT2Mo6J4IyMFvjbAB/sda+7Z5h3wdwhDFmlFjnamttg7V2FYDfQbwQDGC0DyLo05Slu4jPs9aOAjATlIHwKdiNYr12t1gM6vznANjgUsGNoM58NQAYY4YZY253qfZmADeDGp7kawBe7JFZGQuSizWK/f4ANOLhWbPzf/Uez+cBPGqtrXX//1b0kAlCnBsA7aDzIrkY9IL23la+YyhotOkN8Vs/4uJbY517EHlWga6XGgD+QSY/8yPwNe7/99xuMHK6tbbcWjvWWvv1nexYpftdIwCGuXPxL3Cn4jPg0buxAOb1aGdnAxgu9jUY2llfcbq1thxAPmhE/BljzHBjzDxjzFOG5M9NoHugvy/WQPzm7n5bt6sPfBDR8/pO15a2N4N4Bmie7GpDxkTzXHwsgEt7tLMRPfar7eyjMxJAvVuWv+O2nm2/Aqk+HjXGLDfGfB+ggWHQc/MyAJtdH2awPqd6xRiTbbqbYNSAVE2PA7jT9f2uNt3nFm6rzyLZnnbh5YFbo1ubdgmFBmy9/Q2Wfon2QQS7TBNqrV0IaiQzt7HqGtAoUZU7UeXW2lJr7Qz3+VWg0de9rbWlAM4ByQYlXwMwxhhzbY/9rhD7LLfWllhrT5SH+dH+uv6BIZ34J0EjLRuNMRsBXAJgljFm1g7s6hMATjfGXLSVz2sBdIBS6v63LrO9u/mMFBJRABgDGkVcD2CIMaakx2fr3PJ6UIPquR0wwM/ndtIG6hB4hm9txR6k+10TIGMFwKXojTEHgTr7T7n4GgDP9GhnxdbaC8S+9LzsJG4U917QyPihoIGSBwCMttaWAfgj+L64ASStARDuA5W79ogHFT2v73Rtyd+/em2f1tpXrLWnggYYHwLJpQFqZ5f3aGeF1to7ezkOZTtw8suRYOmQ/B17fbZZa1ustd+x1k4AvRh/27i5VtbaW621XkFiAfxiF/1J/Qp3bysW/623pDq6zFo7DXS/OwPUaf5IX9Hb/3cy20NBL3Tp1gd6tGnXP6kAt2uApq94ZL9ksDFo+yB96SK4lzHmOz5l6qRenwHPGUiLtXYDgEcB/K8xptTQRLeJxhgvdykB0AqgyRgzEsB30+ymBcDxAA43xlztYq8CaDE00bTAjZLMNIPLNv50UIdsOiiFvi9oHttz2DF98HrQHLaLjDEX9PzQSSluAHCtMcZnHkf2mO/Wk2oAFxpjcowxn3DH9W9r7RoALwL4uaHJ4vsAOB+UuQSokf3IGDPU0KTX/xGfbQJQadzEyEHK26C0eo4xZg5ILrY93AbgEmPMeENWq1cBuENIKv4Nuvn91MWTLv4QgCnGmM+578wxxhxgjJmWuT9JMcRpoIf6h6D7Yr21ttMYMxfdZb93AzjFGHOw6zxchtRBKaXvuA3A/xgyQBgK4Mfge9Q7APYxxuztXnx/4jdyz6nPGmNKrbVx0HPNt7MbAHzDtS1jjCk2xpxiaP6B8hFw/Y2TQS+xN1trF/RcZ1vPNkOmJJPcYGET6HmbNMZMNcYcZagsSifoJS3Zc/9KetxvN9PQXPpmkGQwU7/fJtAcH88RAN6wNI8blqax1PVY5zYA5xtj9nHn9OcAnrPWyrIw3zPGlBtjxgC4EDQfczAyaPsgfZnBagEZF7xiyKnjZQDvgSaBbotzAeQC+ACUdr0bJH8AaI7NfqCb178A3JtuB9baRtAchROMMT9zjeRk0EvFCtBI1F9AE5EHC58HcKO1drW1dqP/DzRx8GyzA3a+1trVoJes75v0heEuBUklXjYk5XwcwNRedvkKgMmg83IlgI9ba72M6TMAxoFe7O4D8BNrrR9dugLA6wDeBbAAwJsu5rOmtwFY7lLFgyFF35MfA5gIakeXgzId28PfAPwD5KC0AtQp+Jb/0Gmd7wVwjNynS90fB0rdrwdJN34Bmn+g7DwPGiqc2QxqJ5+31r4PmvT9U0POdf8DIGQy3OffAnUcN4AGqDajn5TMGABcDnqReg90n3oF1CGDtfYDUMfhadC802d7bPt5AKvcPfR8kGID1tqXAVwA4A+gtr3Yf6bsMA+6drMGZJp0DchUYWv09myb7P5/K8g84ffW2qdA97+rQc+3jaABxe01OlFILnYv6L73Pug33t5n2bb4DSgT0miMuQbp7dl/AuBWt86Z1tpHQB37+0D31DFIzag9CHq5eMutd1OGjre/MWj7IKb7tBdFURRlIONGAxsBTLbWrtjdx6MoirKnYIxZDOBka+3iyayFKAAAIABJREFUj7h9BJRhG2+tXZnJY1P6F4PGl19RFGWw4uRjhU5C9mtQtnfl7j0qRVGUPQdjTD7IkfAjvVwpikRfsBRFUQY+p4FNYyYD+LRV+YKiKErAUikYNR9RMoJKBBVFURRFURRFUTKEZrAURVEURVEURVEyxHa7xgFAVVWVHTtuTF8dS7/mzTfeqrXW9lZId7eg52zr9PdzJpPPZgdNt9e3bgjLWYbGWfIjbLKTdI6n/jMAsKJ0REuUaoMPKWATzuKc3sqcZYb+fs4GI4P5nK1qZtfmhpY2AEAkOzvEEokuAEB2NrezkqKCsFzfRPXV8/O4bUYitH1HJ5tAjqusBgCU5ZVn5Lj31HMG7L62tql9c1jOyaKuU2ku3//kLTg7Kxu7mlUrV6O2tnaPLL9QVVVpx43ZnnMmFVXp/hT3eS3XFe7c3AAAyCvldmOKXLWCnByxO9fGuhIci8V4zzFqT+11bSFWWE77NDXi2LN3qNu8Td546+09sq31ZTvrcv2LriSfi80dtQCAAtEPKXf3MyNyQYlkPCyvaqbrYETxkBArjFDJLdl3SYfvP8m+U7pYOrb3/rhDV8rYcWPwwivPb3vFQUhBpGjVttfa9eg52zr9/ZxJea/ZwTesy175WVguzKGHyIzKySHWlqCHTFGEy+rEkvwwemLlGwCAs6dzne6Dhh2+Q8fwUejv52wwMpjP2Vef+F5Yvv/p1wAAleVcM31TbSMAYIiIHbYfl2u57d/PAQAmTuV6mxVDSgEAH3y4MsR++YULAQAnjjk1I8e9p54zYPe1td+9+7uwPLyoCgDwsdEnhFiWeCEoyc3Mi+6OcMi8Q3f5d24v48aMwevPP73N9WyyKyybNC+p/vPk338eYkt/S5V6Jh7H7cbMmUsLI0bxxrn59G9TPcfW8WVuly8HALx1y6shtu9pMwAAkcv/j/ddWpV6XGmm2mzvM9kUle+Rba0v21lbohUA0BitC7Hr3/kbAGBm1cQQO338GQCAnGx+6drcwfWaL3iMpsv98CAu+zi7ikrb5mXn93oMaQeR3Xnc1rnb3vujSgQVRVEURVEURVEyRGZznYqi7DLSjbK0xJvC8qNrHgEA3PTu0yHW1kEyiJf+yaN0X7mARr3HlraG2HnfvBwAMGo+Z7Vu/Px3w3J9ZycA4Kw/XB5io2ooYz5qBI/wHTGGtv/k5DNDbETh6N7/MEUZIDz2yoKwnJVF7XXFknW8QoJGUdtXN4bQ3bW8jAZqr11dyRBqa+0AADQ2c3td3Sz2qfQJDZ0tYfn9LST9vPDvfwmxn3zy42H5gplfB7BzKoOBTresj88ciKyVbaFMU8vn+Hd94JXVAIBs8VvG3bbP/f1l3p9b3hLndtOZpPWyxGkoE9LcfPdBrlhh9Z1v0XfccVCIHTGxEgBQfS0/+7LnfCzlb9rebEh/pbesnZT+vbDpGQDA65veDbFVTVsAABPKh4XYe5tJgvubOx4OsS+t5ExlIMpZzpFHTgIAPDnqhRC7b+ljAICcLD630yonAABOGndyiJXnsqywr9AMlqIoiqIoiqIoSobQDJaiDABuXPhXAMC9C18Psc4YTQaNdvLcqSkjaDJ8zeePCbE/3/s4AOCIi/YNsXnnHAwAmFbDI0zDCqrDckec9r3vLM5w+RGttih/3/3vvw0AuOWVl0Ls4vknAQA+O/lz2/vnKUq/Iu7mK25YzGYyE2eNAwCMHc1tKh6n0djlq3i93Bx+LJdPoAnb+fm5Idbp2vOBB8wIsdnVe2fq0JUe3LfiLgBAVQHPq7rhkacBAN885dgQa493huX36inzMXPI7F1whP0UYTZhImRGkVzMz68njqXnQ0uXyFjkUjuQSaH6BO0nL8L5glJnBDMswd/h58hli22LhOFMXZzWlXmZKtcWu0S25q2VlGGOnn5hiJ1ywdEAgMgPfx9iNumyZwM1gwWfEeTf3c/TvvR5zu6V59M9bHQJ3/dGjxoOAIhk8b3uskPmAQB+ccTXQqyzi9pUZ4LbVnEum2kVZtO+lzcvD7HWOM0fl5nDFU2Ucb7k6StD7ML9PgUAmF01N+VvMmkNVnYczWApiqIoiqIoiqJkCH3BUhRFURRFURRFyRAqEVSUfkp7gie53+OkgSOKOX3uJ3lKeUOjM6eYUlkZYnPnkL3txTffEGJPXXw9ACDbsITijsX3huXahmYAQEkp27gX5ea4bXjcJqeIUvh1QuJ0xwckF1SJoDJQeXbDU7SwqT3Epkwiy+iFi1eHWEEhWQmXl3A7ys3l2j0RNwk/S0zYnj5+JADg1QVLQ+z6N+8BAMw7fs+16u5P1HZynaX/up3soy856aQQO2zOdABAYQ5bQV80iyVjV7x2NQBg5lyVCG6VNPWknj3u3LC8xUn2qoVktsPJ7nKEEUWpk/ltjrMcMOmkXmXiO2LOlltKAJsTLD9sdlLEiflsCe4NNKRgrNh9XyTJBhoP//EJAMDJ3+FnssmnZ/FANTpJJ6NbUPcmAGBcGU8nmFm1FwCgJdaSsr63SgeAhQ2LAQAFEW5T/vcqjIjagNGGsNyeoPtrxPB59jXqusS+J5dTmYuRxXxcdy7+FwBgVuWcENtW7awdRTNYiqIoiqIoiqIoGUIzWMouQ45WyJGC5c00cjE0n0cXMl2o0X93piYv7gksbHw/LCfc6Ju0Jo25WH6Em/nQQsoobW7javUnz9gHAPCYyDId/CuaaDprn0khlhQjdmVlNDpXlMOj7dnuu+Wojc+eFYlR+foWGnVa38Yj+TVFfVMxfnfQmz3vL974ZVj+9NSzAABjiyemrKf0b7Z0kA3x9FPZOGZiRQUA4L2ulSH2wQcrAABFJTxCW5TkEdyoG5WvGsr3w8VrKLtSXc2xza3cnpWdpyp/eFj2xaBfWb8sxGYPp1ITN7/4YojNGjo9LH9m6ul9fYj9nnT3xwaRUUq6+2irKFFQ4J4x0iHcZ7MKxbPPb2MtZ7Xy3Ocd4jnWKgw0hrlnWVa3PoIV/0tE3fZJEd0Qo+/puukXIRb52s9oQZh5IMLPwYHIBw0LAQBDCspCrCNBZSWs+L3S9cNKnXlFllDNxJNkppWQBajFtjb0LwpDrLZDFJJ2FObQ/VVmwrzV/8JGLqUxvWIWgK33VXcUzWApiqIoiqIoiqJkCH3BUhRFURRFURRFyRAqEVR2GVtLtX7xwasAAB98uDLEfnfelwAA80fOD7GI8SYKnEIuc9W4tzV5NNOTF/cEljTyJPcuJ4nIFjKJEicNjAsZhKc0jyfy+qrqc0eNDLFp1UMBAJ2ijoiUA25pJ5lfugm8WeJc1Lv1huSz7CnLSTrerns7xAaSRDAd8274DACgsIh/h/b4LQCAfzzJNcKGDCkBABQU8PlpbKDJwXOms5Rw4Rqqm3TqrFkhtrGtCQBQkstSz5lDWeL56voPAXQ/p/56yRP1YOqdEcqs6tEh9tAiklHUlJWG2KSKKto2wt9X6CYozx89uM0Wnlr1LgCgra0jxO56+lUA3aW2FZX0ezYsqw2xtgqu+ZKdQ+dlaEVJiOVWkdSwsoDlLgvWcR0tZeeJdvE5OOwQklCvqeXJ9e8vp7o615z+lRD7wSM3heXPzzsMADCljGuVKVvHttJvGxVtwyNlfPnu2SFlYt6IYph4PvnaWE1i20YvoxfPp5HiXlniamfFk/xM8zKyhIhFbeoxRtx67Y+8EGKlrpyTGaCyQP+870ry8ySaIElfiZDseZmfPGfZafpjCUvnJ0/UxvKGFx2iDtaGts1heXM7XTc5Wfz8aonRPXd61fgQ8/2UjiTvJy+bzr00zQh/m9bBUhRFURRFURRF2bPQDJbS5/Q26R8A8p25wqQJnEH53bMPAwB+vOW2EMt2lsXNrWx9nO9GoMaO40nJ+4wcAQCoKeZJ4LUdlAW44qAffsS/Ys9jXevmlFhzNBqW/Qi3/N0j3ro9zUhhXQePthe47JccJW+JxVK2kRkzPylZxmIxGr3qFFa73oZ6feum1D+qn2KtRcKN1EWyUkcsN22iibcnHsymB/NqaPmX790VYsOPodHyPGE4svR9MgPpEpO9OzrpXNze9kqInXPoIQCA/yz5IMTe37IlLOe6LFV1EVuC3/zI8wCAieNGhNiYkWQ2c+K4Y0Ps6VVkRPPwc2+GWMSN+FaUcmmA5S8sAQCcfv4SDGbeXLoKANDQxLbNI0dQxq+xkWP57jdsqOCMJTbz/a18Op2XV99cFGLV1ZTBysvja0RmypSdJy+bM80XzjkZALCula3b//oS2fBPLOUM8VcPPjosl+Rym1C2TfK5fwIAGhN8jxvqsreLO+IhluueLWUi457nnm8ys1Ti73XiueOfgwnpkCFod/fXnG2oYbqs/5f3U+Aya++8w8+0w3rdy8Chywqr+xjd20rz+BmT456HUkXks14Rka1a3kTPOZ8FA4Ck23c64wsAGF9WA6C7CUa2oWftqKKaEGtzdu6bWlgp0OwyXe3xvjMI0gyWoiiKoiiKoihKhtAXLEVRFEVRFEVRlAyhEkGlz/H1D+TEwTe2vByW33qb5ERjRw8LsYSrhzFhIssGOztI/nbATJZldLh0cksny9feWkUTkN8260LMuBS+PSi9PKA/Ut/RFJaznHRCyvh8zStZGyvHSSek0YGPGSEb9DI/KYOQskK/TbaQU3h5ojRMqKulYywQcib/eX0nH39/xxiTIg1c1syyrtmuntiz73Dsxl/eBwA4+mssLdqyhWruLF7ENcI6biBZ3jF3nB9ih44bBwAYWjgkxP7ru78FAEw/jWWI137qG2H50mf+DAB44NanQ+zjn6PvXrCUv+8/T78OAPjVEXwe//axywEANXceFWIjZ46iv20aTyaeMoli48szW8euv5GXR9fCmFFc26/U1Y7z0kqA72mlZSypae7kttnWTpOyC4RktLWVpC2FhSxjKy5mKa+SWX7+NEl4vdwZAM4/+EgAwKfv+nGIXX7sOWH5iBpuJ8q2ST5KUwKkfM8/WzqFwUR93NV2FM+dfGdw0L16FW3TKetluX875XNO7CcvK1UamHB6QGmW0RWmPPB6Xqb4RgtLdQeLRDDaxX9ze5zuV7lZfL/a0lEHoLuxxchiku81x5pD7I0NKwEAJ0zcL8Ter6Xac62iXyPreq5uJtmuNNaqLqwEACxsYBOwMSXUj/z3Uq55dehoem41RBtT/qZtmaZtL5rBUhRFURRFURRFyRADLoPlR40LI2wTmePepstzK0NMTq7rSUOUJ8IV55R224eyfWyrEvah3/taWJ59GFnZVg5hC+hFi9cA4BFe2qcbTRKTxP2w1bH7Tg+hBZtoomksxiPB3ho8P3vgjPR6q3QAyHGj4u1ipMebGsTFiF0wohAjNH70p12M0tk0E4FlNstnoaQFvM+KlQtL9vp6GqGaNmFUiDU6G/CGzpbe/rx+RawrijWtKwAAj699EgBw1Kgjw+fLVqwHALQKM4K7//QrAEBLnH+HL1z5awBAzRQ2nbhl8f8DALzwyBu8v0mUnT1ov734IEZThuR7x54WQle9/PewHI3SCPzeR3Bb8edqxWqewF9aTPfOmZ88JcRmnjEbAHDwyQeE2Er3N21p4+vw1KlkG1+Rz215MNLYQPeoMcJ8x9vn19XyiOnGLWQR3FIv7mn1fM/rzEs1EhlRQ2YZ44fy82xdE48EK5nFm8vIzOOhIw4CAJx77udDrC3B7fjbz/4EAHDdkT/fFYfY79ny2koAQG6aLFKrMPdZE6Vn0PBc7r/5p1L3DJb7VzzG4j6rJZ6HWWKrXHd+5ZPPPyaTIrrB9SuqxTF4Y4yJBaxisAl6FpvIwO47dnTx/b+xkwwjrPi9fJZJZrBGF1NG6e1NH4bY1ErK9t+9kNVNM6ooNrq0KsRKhYHMiCL6XD5D87LJMCgh7OO9tXtzCx/ruLKR3Y6vL9AMlqIoiqIoiqIoSobQFyxFURRFURRFUZQMsUdLBLdVP8lz1zKulfSzh+4EAEydyJKkxctJTnPjZy8Nsf2q5m11f0+ueyIsH1FzBADg+nduCLEL9yV525C8ob3/AYOYdLJASXFNGa/rZAEtQj41fgJNgpQTi7uc8YWf5A0AtU5u8+9X3+V9lzhzhxyWdMzfa/KO/QH9gHUtnBb39XRqxW/jpX8xIeNrcxLCAlH13kv7utJMME5X5woA2uN0XhJSbhEqu3PM73OYqL3kv29t88CRNS2tX4czb/k+AOC6078JABhbPDF8XlhEUrwlr/DE2yNq5gMAZv7iE7yjDSRhWF/A9avmDZ/b7TMA2LiZ5IgLiliOiTUkMxtbMiaECnLeCsvzJ5LRRnEOy2QfXEiTfqUEbdbedNznnXdBiJ069gwA3eUgl79CEsfrr7gjxGb8gO6Jvz6Mtz0fLAceyLTG+XpubiGpjJx8vWoDndNuJhdOtnn4UTyx+8232AildQXVdJl0OD/PfD3AQjHZuzRf1NFSdpq2BEs2f3cytef/euxPIXboLym28crHQ2zK5WeF5dPnz+3rQxxQPLmMjBCKs/l5E3XPkRG53F78E2i9kP8XuGeUVBf6xUga3WBMmGbIz5vdczJfPPN8bay42GZqIbW1FcJYa6Sr7bgpzseVfP5+AED2kZ/EQEbWpeJ+Af8Or60n0zHZLzhmzKEp+zm4Zn8AbFIBACW51Jcrz+P+YnuC+ziNUTLKys3m/kyrq2tVXcCywve2kJFaURozoNqOvjPb0gyWoiiKoiiKoihKhthjMljpslXpMlfNMcpYzP7fz6Rd7/3v3gsAuOH9v4TYXlX0Jvvi+tdCbNYQelvOFmYX69vIqvjwEYeHWFU+TVK+bB7bsS5tool5msHaMW5c+NewnBATVyOu2npUjAgNcSPqw0t4ZN3bjUdFRqbV2SC/vWBZiFUPJ+vqFcvXh9gnTr1k5/+APQxv4QwARWUlAIDOTp4gH3H2td4+HeDfrjSPR7wb3KiTNKdod1mmQtG2ImJkz4/Mp2uj0gLeZyALxGi7P4/SerW/E4lko7KKRtkOHJZq0LtkGWXRK6awbbd1RjB7z5wQYpuWkkEL1vII+vhiyjydddGJIfbPJ14FANx67v+E2NxH6Z74gydvDLGXnuPM7oe/uB0AMO2/Px1iB8wlw4sXL+EM/cRPHwcAuOefvw2xhhiNMMtSC+dOp6zWk6dxxuXqQ2ly/zee+m8MNta1sdV9xF3v5aKdoYqs6xsaOPMcX0S/639+9ecQm1vP52fBGxtoPTEy7por2uI8cnzQKL6GlJ2nMyGMW37/IwDACQdz+YP8A8i44Jhbvhxivz3vS2H51Q0L+/oQBxQL2uhaPqiUn0EbXZbqS/tzqZa8MZTd+Oldb4fY6Dxqa6JLETIHEfF8yg7PLF5PGlp48wuZ4WpzsRyRHpv/PbrvvfijW0NslMtgyW3tS8/SwgDPYEm1Ul0HZZc6u7jPEXfKo2dvfT7Efnf0RQCAWdVs0rSule51ZXmyz0e/a3OM75ly3zmu/y5NNbLc2R9awP3z51euAgC0CpOLRJKOy5tuAduvmtteNIOlKIqiKIqiKIqSIfQFS1EURVEURVEUJUPskETQWk6hJUGp0yzxjma7JVy3TjoDhN5Scv9Z81BY/s1rDwIA1j/LkrCOhxenbHPXOywHbHC1eHzNEQD4+X00AbEgj2sUtDt51YPfuDLE2hI0Ye6tWp4s/uI6kt386tCfbfWYlVS+fvV1YXnq/mwAMLqyAgCwdN2mEPMTIje1slQqz8tuhJRtmpN/1o3mFLI/3w3NvO2M8lk7/wfsYcSiLBEqdKYVURFrjlLqW6bAKwpokqc0r+jsIimGrJDe4uR70vhCSvr8fUDWy+pwkqWqQq5BF3USwaw07bulozMl1l9JxBPYtLF+q5+3L6baeqOOYEnEoX/8IgBg8Wt8L8uqpvOT3MhShrl/+iwA4Nkv/y3E7rmOJM7DC7he1oRjaN8L3uP9FZbxuXhq3TMAgLHjeJvXHiWpzV2z7uODjVPbe2r9YyF07CiWJ3rOuud7AIBrTvtKiJ3/KBkJPf7SOynrD3Re3/xmWC525iNCtRQkSgs+WBFis06dnbKfIZWpNcRkOyspomukJRZNWU/JDE+vfyos57iafz+Yx9f5rYvuAQBceev9IfbZ/Q4Kyw+9SP2F3x7Rp4c5YPBmE9niMdGQoNZjZL2pA8kMpvV2bmu+llVC9D/940YaX/jlvK3kFaKujeVIWaE/PiGNzv7MtwAAzd+/OcT8N0vTjOj7y922AxvfR5a8t2V5WA73rirut2Wbrf8qsoZqLJk6jUC+c8SdmUaOmOrj+za5onbtiy9Qn/3Qw7gfuLyRzDfklAb/DmOgEkFFURRFURRFUZQ9ih16uTaGM03ZyE79fCfe+trdW/CbtZx5emEdTeS+/22e0PjhYppIvOCOB9Lup+D4KQCArBlDQmz0CJrsVlrMo7m+OnubGEWfMI6swaUd67ThNCldjsDXu4yAfNMejHRZmiQoz7sfAcg2fH387NWrUradOoEnri5ZS5W0vb06AKzbQCP+FUN4NHe/0bTNvS+/EWKrnbFAlsjI+Gt06qTRISbNTPo7MTfJs1OYguS6UVb5O6xsIvvRVmF8Ma6cJtrLEXGPtG5Pl3GSsU5nluG/FwA62ul7IhWp50KOEvkRpriw2u3vmKwsFBRs3Sr7uHOPBAAsXLwmxOoanD2sGLZN1tIk4akn7x1iJa5d5GcLi1k3VPqPRbeHkM8WThHX/dvvsS38KeNOAgDcOeHVEFv1OBlUfP9aNsaoPHgsAODUL10cYid9898AgNtOvCbEXvnHiwCAmpO/F2J3/+1RAMATv/t9iB19ZWr2ayCyqb0uLGc5u2k5glnrMuvx92tD7Lff/UXKfv73qK+H5Tk3PA0AyBbtzGeatzRy1n74VLYkVnaeE8ecEpbPbyHlxYyL2KxgxjzqZzz4nctD7Ow/8bl85KLU86p0x7Y2hmVvz14gnl+NLoNVNJsNXMzcIwEAScsmZv72mS0eaT6r1a1v4j6XT750PdZ4mmdjh7AYN0NIAdAmYn5Z2syveodMG6an+Y6BREuMy1NMHkL97ueWcpZ+aAUZcF359c+FWGOM1GRSzRZUcYb7Ib4/KfsrSaEL8NksaQHvzb0SlvsXBx1Mz9P8XN73i2vJ+GK86xMBQGcXPX8LI1xWZmfQDJaiKIqiKIqiKEqG0BcsRVEURVEURVGUDPGRdVNNLsVX27k5xN6uJSlfa4wnvdV1kgxmSf3GEFvlpEs5Ih08fSjJ+EYUcxXnJ5ZT9WUvCwSA8hJK3ZXnVqQ9rnfvoEmn+3zx4yG2yUmfqipYbhZ1E/LPPY4rSh8+an93zDxZvTFKMox4F6cbuxrIjCGeZgLeYELKAHvydh1LPa/6yU0AgH3O3J+3Fefey1+K8llitTlK52Cvaq5lcOfzJG0aM254iMWczOy0mTx5cULZGADAzx69I8SWNH0AAJhc1v8T9m0JuiZl2tynyEuEzLLdmVIkRW2O0lz6jde3srzI0yHq6tS7ehaVwrBCtteNTlo7ppwrrHd0kERQmmH48yzNMvxeolFeL9pF+8vL5omw/YmC3BxMH03SkU0dVPNqWAHLYF97i6R4leUlIVYzjO51S97ke+M5/3UaAODIMSwR/NKFVwAAss/h9vYdV8vqx//gazzpJDUXnnh8iL15B8sBz334MgDAN/dnyd7ToMn8k2ePD7F7ziOTny9P+GWI/et6kv5ln8SPDC/DPuWGS0MMUTqGF9a/jsFGNCEku06KEhfSlYSrB4MhfJ+bV83PH8/UshkpManY9aYLGzeyJLE9PnAMY/YEfvwSy9qnTBwFAPjPT68PsZc3vQQAOLLm6BCbNpXlurcvImOu2VVz+/Q4+zPJ59ggxBtQyLpVnf65Vcx1kbKmHtBtfYBrT3WbsJFG5pdODpgtvs/LCnOz5DHQvy1dqdNBPlbBMrI6V6euOofvj49uoH5u/+9x9E59lM3jplWSnPPmJ14KsaS7B86ezfe1WBfdKyNi6kZWL/merRnoeTlgW7wjxApzqE+yqZ1N0/LzyfCiVdQObXT1COePmxxiTTHqd6pEUFEURVEURVEUZQ9jhzJYTdEmPLyabNKfXUsjlHnZvAvjJqw1dbLFcHPUTcgXk9xHltAo7oKVa0NsyVJaPmkeZyKOn0zv/lliRGHdGsqYjT7jsBCbeByPEbx3CY2KdNzzQYgVnEWfrx3Fk/1nz6K31kkVPMp83+LnaH0x2X9YEWW94l2po/uDPYOVjrVtKwEAB13KlrYTjp0GAKgZxsYjS9fwqH25mwS5dj1P/p7kTDBGlXCmcvkqmjQ6tJpjw1xWsjnKWdMP68imWmZ4JpRM+Sh/zh7Jpo4NKTE/Uh7J4SxHUyPZ1OeJUgR5ETeSI7JMfiKwzCrmuMm6MmslDS26nMmFtHb3I/S+zQNAkTN+kFbxvn1JQ472hDvWfprBqswvw7kzTwAAXPEKjXRfd+TPw+cNL5O5RcMoMTJWRL/DrI9zZvcXh5FhxMjTDgmxkjk1Kd+3ppkmFifb+L5UOpTawqTycWmP8ak/PUn/TmWL48kn0KjikqcXhtiXhtAE/QsP4UzXK8+QzW0iyd932dmfAAD8+j4uo4Fx1JY/qF2f9hgGMhvbmsLy0TOnAgCi4rm3rIvueYWjy9EbJk0Zk4Z6zjgPLaERfTlIX1nQ+z6VHWOfai4jcsvjZOYirdvLc2mUvOR0zjRfcTk/85Y6lcuCem5rew/Zr28Otp+SfPThsFwZoWs+mkzNVGR/iTPkJo8UFbky0+UagrRItz5fJRpJJI1xk8yM+E/TJL+QSBM75RzOTv7mhucBACNy+TumFOS6/Un7+MzYf+9JdCZEGZh8ug9lC7OP5Supv3L1S3eH2FVHUIkSn8naFlsz0PPnz2eyJB3iuGY4hdy9z7GyorKS2vDQQu5PbnEP87C+AAAgAElEQVSKvBGFbBS1M2gGS1EURVEURVEUJUPoC5aiKIqiKIqiKEqG2CGJYDQZw6pmkvJ5iVFnFksgvBxiSAHXaxlWRGm46iI2ryiIkGxor8oRIXbHazQZ+/o//jPEzvsiSW7O33d+iG2YvAUAsGAmT0x76vX3ed+uDtbmB9lkwcsF/WcAUHAQSZHWNvNEuCYnbZITk9viPJHYs2rDFrfe4JEI+jR3uhR3S5ylMZPPOg4AMOxQnjQ/ZwbJLdY28HolpSyV8pMgo6Ku08o1fF7CfvYj2U0sxjKljfW0zyde4FppPiM/fCinftNPkeyftCdIgiuls/6a9RM3AaCoiNqhlCj4SaUtQiJY6dprzMn+ACDuJvUm0xhpAEAizut68vJI8tbQ1Bpi5x9/JADghVUrQ2xiJUlFc8SE4JY4Sd4q8vpnPZ+S3BIcPoImvF9yv6ujd2Tqetd9m2sc1XXQ5OAPalku+/rmV1O2aXmd5HbXv8uT7O98iOTMw0ezCcyBs6l9fPnG34XYIV9gKfUVR54HAPjcTVeH2JJnyXxj4uFTQ+z3J18CAIgYPj9nnXk4AOCrT/wgxG7/x+MAgB9f9JkQK8tjE4+wXkpkYLK+hdvezGoy4pF3yy1bqO7PlEmjet1PN/Mgt4MOMTl7etUwAMDSUr5u4kK6qew8Bw5n+df936C+xsm//WGIbfgZXfvls1m++/iKRWH5mvnfAABMq9inT4+zP7PmuWVhuchJytrFMybfPd9M5Uj0pFDUDvStRUr7stIoyryhhZQFplEkIik+99ukq3hqzjo7LMf/TBJB+bUJf0AtbJqG0koMFHwdWHnv8f2L4iJ+B+h0/TXZD8nLpncAKePzUxTk/W9b9zUvHYwJEzofK8phg67RpfSc3FLPNbsmTU6VAbbGWlNiO4NmsBRFURRFURRFUTKEvmApiqIoiqIoiqJkiB2SCFYXDMXXZl4AgOUq7SLF1+LqX21uY0e355auANBdWlZcTOnDMaVcl+qcAw8GACTnHhhia1vIVe6hpSz329JO8qguUZfg9EPYneehCKUXq085IMTqHnoLAPDxi08KsbvveQYAED+MU5DedU3uO985wXgffQA4Zy45fPUHOZO1nMr1dNlEynrZQg7kU+jSuSUrjbOVp/o8liGNPopkmOMnsHTCSwPjQtona5K1uXpI1cPZZdDLBVs6+PqaM57qW61pZqmhP8bJ81nS8c5ycmwrKOB6M+/UkXvM/kP5+uqvNERJalRYyI576+soNnvS2BCbM4Kkmb9/4tEQy3bnMZ5giV9JLl3b0vHM162S7p9Zwl0zz7UH6RhY7GpwLV+2LsSOPOZcAMBTi5eEWNxJEbuEJLEtntnU/O7k3s+Re+BRt32Rg8498Jyp54TQqfdeCKC75LU4h2u+eK675rsAgNc28G94wAHkzPnBwpUhNq+GZLkVh/F1MWcES6nn/+giAMC02eyQFhlPrk/rNrEU2tcYHFnE19Kl8+g8PrT8sRCbPX8m/Wklw0Lszy89Qd8xiuXfg4V1m1kKNMo926RsMOHkT8l0uqStMPboqSmxtzaRZPS9t5eGWPmJZSnrKR+dDW3s1Hr8ty8GAEw9lM/FlKtPBQCUFLEM6V9n/CEsX/U6OXGeP4Nl6plyJhso1Dfws8NL8WJCIji7ODdlG9tcmxLbUbbW/LysMJ6mZmMyXV2tUu6veAdDuZbfj61dI7YZOBJB7/wr+5cFEerbF4t6nK1t5Lo9qZJ/r6QTXXarh+qkgQnRP/X9zlhXeqlgun5pp6upOaKI66XOqKS2mxBSwiGFBe57eR+yplcm0AyWoiiKoiiKoihKhtihDJbkm/t8EwDwVi1Pyl7ZsgoAkC9q2eRMpVHv1S1c8+qdzcsBAEvqecRvaR0tF+TyKHlpHmUg5OT7vSppBKAin00ShhfzqMChZ+0LAFh1LI+iL6inDNZNx/0qxH55OI1QySxUfjZPzNsemmONO7T+7sJnpPwIQZZJHRnaXuRoxVG3uhH6IZwp2n8mjY7Xt3Nl7Y2uvpU0Zaiv48mGvnaTND3whglbNvGIwgI3IjSynEdrl22gugULajmrNXRoudsv7+++pY/Q8Q2ADFZHgn7bApHB8r/x3vtwNreqgEZPZUY2kaQRHJk18dnltm61sYiurZhc+DoX0iyjqpja5PMbORsyrpSyKiOG8DnzWTFZB6tlAGWwxhZTGzh//yNDbPESGsX88UtXhdhzd1B9Hdl+Fuz7IS3k8m9z3Bgyz/jWldfxl7TS+Zt+PNfh+b//UHZp3xkTQuwbl/yS93PBMQCADxauCrH9Z1PG+fQZ+4bYpLOOBQDM/+pRIXbXKb8GALy96aYQ+9ExnwLQvZZJaytdmz4rOphIiKzwwlpqj7EYj5jmuQzwpk312F4uOJbO2fevvTHEuvwQfBe3TTugbHx2P1c8L6xZXL26P3ziohC65rW7AABvvcdGDa9ufiEs3/c69TkumnVBXx5mv2aDeHYUu2dBVDxvCtI4VSRfeSQl5rNfXekKWKVB7lZms/xyllDueOFVVrr6VSIbtayT7seziviZ3OozWMve420m8H22v9Nlu7r9CwBdrn8h62AVuX7KXlVsVtJTVSWRn/k+a1LYjEizjG6GQOEYaN3mGPcxJ5ZOAgDkieeSr+FZEOFz5g3EMoVmsBRFURRFURRFUTKEvmApiqIoiqIoiqJkiI8sEfTMrmJzgfEuDffEWp4I7VN4+1TNCLEZlXsBAEpyuGZKThal4aVMr8xNtpaxiFvPijSiTAz775OmGrEumkzZ0cXpv4pcSu8mhM9+k5sc1xRjWVpDtN79y7G7F9FE7tMnH4k9HWNS06h/+eCGsFxZQHK6vStZapR0KV850fe6N+8HAPzrP6+EWEUlTeQ+/ti5Yls6GzkR/s6ZU2myfFMnG1ZI6UyXk9akq7El6Win85hfxZftlJE0kbG0jM0BDh5F3/fGBpalPr98JS0c1OtX9Au8RFCmyqNO8peXzSnwZlfTQUozW2KpKfC8bDpXUorrJRE5QsYn68N5WUZHnNuPr6eFqJQM0PKIYj4/C+tIQpgtrpHNHZtTjqu/c/aUc8PyRZ1/AQD8371sOPLPa0m+V57HE+Gvff0OWojw7/6dp68FAFROZTOJuvepbX5y7pwQW9pA9fluvuaBEGv817theU3bSgDA3n84NcRu/8ePAQC/eeMOPnBXY+apPz0ZQk3H0X3w9XfZaOOB60iuc/H/cB2s6RNpIv/IkoEzmXt7kRLnl1+l2oszp40LMd8Os7JSZS1b48mVi1Jijc1OTruWzaQ2d+z85H+FuXr+l8Lyk5PIUOaoH10cYvseSH2YXHHO51/EcsCvXOBMMHLL+/Q4+zNbRC3Fmlz6HTuEnD2SxsCg5Zo/AwCKhQRte8WxXka7LZOL7DT9EGlyYd0zzZRxDcJsJyuUmwazjLqB92wDgHiS+mO+797tszj377x0elghPxNaXN8knhSGFu6cyqkIJl1BM4HvM0oJpzfOaBE1rYYVkOlS5/tbQqzzcCdnFP1jb7AhZYq9GbxtC81gKYqiKIqiKIqiZIidzmBJynPJhvGsCZ9K+Wxp04dhOZakyY0rmleGmJ9cJt8mt3TQqGm1ePP1lZ2fXc0js+X5PEkt4kYH17XwBDc/Ql+Sx5PJvWVudSGPMJXkkrVkUS5nzAqd7eSIQrZ8/Pmh/03r5/Qva9wrXiP76Ct/+vcQK9+P7NTzhAX3pi2UrcsXNufDquh3OuLI2SHmTQrefX95iPkK3rl5vL+4y1ZliVGn3Fy+9Px+ZAZr7HAyH5kwjE1IVtXRca1qZHORGmeHXCSOv8pl5ZavZHt/n20bCATTEvF7tjgr1KEFbIXaGqcR7hxhHNPosojyt/bL8SSPKKazpZUZrkL3e9e2tKXEZDn7je2UaZk5dHyIvbZiNa0vqr239nOTC2stT/DNSr2tjh5ZTZ+Jc3baly8BAERm8jVe7CZJD5nFZQ78+Z48aVSI1b1Mv+FlP/xLiM35zDwAwMI7/x1ii5reD8vzPkuZphmn80TrfSrJFOXuh74pDpayjVNnjAuhQmcf/9n5bBLz62dpgv8f/vlEiEU7XHmFo9iCebBw1DS2xH/zcXo+bShnw5faBnomFQlzmm1R5CdlN7MhQNKP8ObxteSfU0pmeHjlU2H5qttIvVE5mvshL3zxZgDAtW//JsQ+9/U/huVj/vwNAMAdI28JsU9NOrtvDraf0ilSSXkuS9Au7Lgn5uelbPOz51cC6G7hnu5ZlQ7vCZMUOS9paMEmF0xeOqONx2+l9Y7h89nl9hkTf1P4+3YiA7InE3XKsEhWaomf1Ws5a3fmEVQyaXTxqJRts8Sv7RU50rrdkxB9E2mrLksJeXKz6Nrw7xm0Db0DFO1dHWIb6skYLS+br7O2KL2HJK1U82gGS1EURVEURVEUZbejL1iKoiiKoiiKoigZIqMSwd6YVDYtJTa9YtZH3t8nJ352Zw5n0NBlk2hzFbcfeZ/kQgd8gk0pvHwsIgwHpu5FJhHSHMHXUsqL8CUTdfWMxo4bwftzk36lyYVP4ct6TF1CbuYnQba1cu2sF16nSeLV1WwAUF5BpihrV3P6ubaA5IJS8nZvB8ngSsu4VtoxU6ZioOBT6fnyXEQpHT6xjGsgrW4hGZk8j+3unEmJppfLdgl5g580Kiec+vpVAFDspEsJMZk110lx5UzfdW3rAQB7VbB8KhYjSVlBIX9fR6L/S8p61iLqEDU1liynunzfOPPYEPv9mTRp/ogrefJ8Z5QkMkcevE+I/esxV2twEUtjy+eR3OLqz5wTYmdOPAtA9/p8837wFT6gcjpnT3zxTyF05Wu/oIUmluZkVZPcbNGHXC/rjLu/AwBYsXx9iE0/laSGx83ie/tvrr8XALBmzcCc2N0bJ084Oiz/uo6kYa3tbOzj5ZPRujZsL1OGOFmaUMIk/H00wddbbpqJ5spH5/bn2czpLxeQfPb657gG06/fugYA8K19vh5idVG+5mPuvrh/9f59epz9GSmn88YSraK2295HkKzctvL9zMvucsQzxvckIqKN+L3IakvGRaWiMGlS5YXyc/9xuTAdavolSUGHHPc5Pn7XQGPbKVccCASZn5DQdSToftfaxn25T+31sZT12p1RV24237c63f6kUZfv63SK/kFpLhtmeXmirMXl+4ItsTaxHn3P3AOmh9jGDSTfLsopDLF6Z2Yn9xfBR7+3agZLURRFURRFURQlQ+yyDJaye0gk46jrpJG1jRvJNGToUDb2GDWUTBH2Hz4mxHw2YU0zW9Mv2pA6Iu2zXoXCDCPuslHtHdGU9aSlba7IcLU6e3xp7VlZmWog4j/Py89N+UxmsPz3ZJfwyMRNTzwHAPjRAf+dsm1/I+aMXhLJ1GroY4vZTKLFGUfI36YlSuelQJiCxF02UWao/ETTqMg0yuVSt09pFd8WoxH67ALed8xNWq4QVuT+PG7Llr8/YYwJo2SeI/72xbDctZIm1P7u7w+F2MmXzwcA/OUbbDDxpct+BQBYUL4ixLxBRvkMzk6esR+ZzXxszHEhlufKWfz9wz/wQaxsCYv5+5LNuy9/AQC/uN0dT5uw2y+j78ur5nb28lPv0EILTxz+x7XfBwD8/GVh8V5JBg7bstcdiEwp2ysl5ssnAAj299iB6z7WlUjZJphciN0URAqhZI79p3NbmzGEMrSx2IMh9ou7qBTCp6ecGWJTP358WD7/UopPKk29JpSt0yaeaXmHkjlC8t1nQyw3y5cP4Ys/0UvSSH7UlWa9rDSxmNjKuMOpEGqRuxdsBAAIbUA4Lqli8H+JbajDQEQaQXja4qllYEYVkdpiSdPiNPvg8x1397ocYZrRlaaPkxR5yYQzljJpzDKkMYZnehUbSq1Lo7Lw28aFQUZe9vabEvVEM1iKoiiKoiiKoigZQl+wFEVRFEVRFEVRMoRKBAc4edl5GFNMcocll/4LAHD2I5eEz++7+xn6t5AvBV9vZ+aUsSE2ZyzFpKzLp1Nzslnu1x4nSYysTbHC1a1atXJDiC1bzcuRbPruOfuxEcXkakrl3vskTzae5yYo5gipYb4z6ZCGDxMqSAIlJW9jDuhfNct6w9d0iCVSU+DleVyrZeYQMkqICZlSq5Pxyd9rfWtqDSo/SVuKmaRJif9t5fXgz7NM+x8y4mAAQFkuy1LjUjblSIiK7gOFsnKejFszh9pSXSNL9o77wldpoVRIC91Pt+7t1RwrJwnumhweD1tw75sAgNtP5PZx+Slk/HPU6ENC7JezWJJ46IEzAfx/9s47PI7qauPv0ap3y5Jtyb3SbNN7c0JJ6OGDLyEkARIggRRCSPJBGpCEBNJJhwCBJICBhBDA1BAwBozBoZjm3qssWVavu5rvj3PLkXa0ku2VJa3O73n0aPZM2btz587cuefc9wBv7/D54TLMdZC1X5mzXfrROQCAacXjne3ut/g+sXLFRmdbU8dhjJOKfNsqL+d2e8Wck53tajyF4cCILB9+YhtOW7sPNXGJdtrj221PTCkeF7ePu7V2+HaWn5EHJXnInH+ffZCFYG4604sa/O4NzjX38Qe+42yP3elzYv3fo3/mhQ/1ZymHNiXifhazYV0yZK+Cpy0E7/j7VWaC8Nou+hIh4hU2Z5JcIwPQbARvpxDfCGyOSHHwzgQhiR1ipfstKSp8EQsJEbTiFWkil5XtrwQh5yEsjE/mtrJTFWR/Muw4aeK6sLlyJa0xLpfsq9qpJlJ8w5ZHhgjuCerBUhRFURRFURRFSRLqwRpGWG/D/af5kTacxv8eXfewM/1iwaMAgEce8ZNLURfyRm8HDeSE9nYzJpTvR+UjI3ny/VkneXn4xy79mVueXOAlvLvz1z97ueqNoysBeFl3AIhEeIzAylsDwNZRLM5RX+dlOp0whldSHrLYTOZyMC8tJPt5cSYLmEyZ6GX0m4ycuxTIsCIXXc9rvJdMfl+DGZnPEHLvVrwiPzfH2SYVTAMAtArJcntsKWrSOcRH+YLAe+7siNi/P35n3HY726rdcp2RU39mw3Pe1sbexMVbvER6lfF61Qrv14ijCwEAD537Y2cry/H1bKn9ycsJy13/s1cSrrd8asZFPa67WM7j/3D8+qvx9T59RyqRtj+3vU4hCpI1goUoOkdJERgWncmMZCGMjLRInM21Q9Eg89SDlVSWr/PpCNas52iLWSWznG1iEbeb1xd/4GxPrvFtadVa3v/OD+5wtsv2v7x/CjtEKRbehBbzPOrioSpgz3jTvJecqcx4vdKElyOjj5oxYd6EMIdYRArKIF4W3srBB/X+Xp6dFu/pyrSaNhU+EiCVsIIeYaIUrU0+PUU0MKlhhPx61Hi/ctK9gIQVVwuLksqM+O+wHjFe5lpNF/dJ+/zNy/D9EOtty03391n7PR0iesYeh9DHi6oX1IOlKIqiKIqiKIqSJPQFS1EURVEURVEUJUloiKACADhn0nnxyyIqqCnKoUvbW7w4RZPJs7Sj1ed5yM/gif0T8r1ARljoUl9Z/Nu/uOWVdasAAIWZhc5mczGkk7+US7I5PEdOwpxiQtVSAesClyF9B87u+feVZHs3fPXOel7I9bY1qzfHHc/mLpNhfHJy6YQJo+O+p7GRJ5I2NMTnwsgQIVDZORwqIMVKZEb3oQhR18myPSGFEOzyFw4IqbtDklY0ZQA4/hgObX7x7wudLXMU37cattc726LtHMJ5Qnl47HKHnQRe4MNrMkzbbB/nwwL7cu0pfSdb5Fo85KAZAIAZF53hbAefyXnolnznb8522p1Xu+Ul198DAJhSOKM/izmkGZXp7/mbTeh6lphukLbPoQCAJ97c7GxNRkSiVYS4NxtbuojqsgIT0mZbSFoPQhnUbTvA59tqF9/3rskZ2LnufWc7sYjD0XaKZ6gNL9yVvHdDicy0+LDmqmaenrHPPj6vaol5zi3c+qqz2VxW2aJfEBhbY7vvP7TF+LqQIYCyX2dFNZo6WuLKUt1S65Zbok3G5gW9Wk2u1m1Nlc5W2VRjypKcKQt6V1YURVEURVEURUkS6sFS+kReOnumEglS9AczSw4OXR7OlGazFLsdgQGAspKeZehvP+kWt9xu5Ecz0vwIbYD4bOkxM/FTjhbZyaoAEDVSqO2dvgx22/z0grjjpYmxnEwzcik9ZqXZI3osv6IMNT5/MMvUv/gvL6NvBXmkKNBTa1lIqCcP1mGjD4rbx5HjH9+pmOZgINmxw3sZG5p4RL3qwUXO9uQGTn+wrdlHdBQWeY/i5x5n8ZmbT/6csx09+oT+KewQpXxUrlvesJGfS3LE30ZMXPDqv7ztBbM8wwuOYLMRBAprI5JCkyqkJ2+v9TQVlcSv21nlFs9/jcVMIrNPdLZJRsBmS6W/btJT1HNlsalX1tX71B1vVbK4y4iSQrEdP9ufWv2ms1n59cxIvIhPU4cXLLOiGSU5XrCiLRYv7Z6X4b2hNgXNO9u8Z+qMSezNuu7wK51twXucrui96tXOVpZbbMoccg3sBurBUhRFURRFURRFSRL6gqUoiqIoiqIoipIkNERQUYYYNsyvscFP7Cwv7TnELiLyVOSk9a3JyxDCZCBzWzSZHBltMgynoyluH0UZqpw24UxeCG5yNperr8mH862rrUUiJhdMNfv4sJmm9WafDh8qs2zncgDAgSMP290iK4KJk8a45RmlHJJ97iPXONsNJ3waAHDcly51tpu+5ZdtTp873nnM2Y4+RUMEJRER0tcY41Cw8kwRMtbKoZlpEw/wtkvE8kBxyqfjTGNGc4hg8xbfnm1uLISEtKUCWREWyrLCEJJJpfEhdhce4JMkFmfylIZY4Kcn2KkKMi+VnYogyRR9k4gRv0ij+FDDY8f6PGW56Ry+W57rc5ItW8yiaccd4Ke9zDRtPVmiQerBUhRFURRFURRFSRLqwVKUIcZHxvPo+KzPzXY2O5E0DCmvniz50UTILOgUMtH3ulPPBQA8tNRLWH9o7Jx+L5ei7C1y0nlE+4rPn+VsVU3spd3R4j3PVx58dsLj2MnW377Oj5pb6eLy/DJnO3/qBXtYYkXy7P/e4ZZ3tvFI+PTv/4+zvTCJ713Tj/Uy7M+uXuaW7zrt2wCAcXmT+rOYQ5ox5x/nlvf57dMAgEzxvKBx+8TtE9i0BZ3SK5RkMYk04Xew8uxp0kPCz1AStoIrPwUAmPbVX3ubEXCgY09PbvkGCXlGzOrzMy92tpb9+N4m0+ZYTp+Q+F63t7nvem6jU4omO1t5bkVSv0M9WIqiKIqiKIqiKElCX7AURVEURVEURVGSBMnwoV43JqoCsL7/ijOkmRgEQVnvm+1dtM4SonU29NA6G3ponQ09BmWdAVpvCdA6G5oMynrTOktIn+psl16wFEVRFEVRFEVRlJ7REEFFURRFURRFUZQkoS9YiqIoiqIoiqIoSUJfsBRFURRFURRFUZKEvmApiqIoiqIoiqIkCX3BUhRFURRFURRFSRL6gqUoiqIoiqIoipIk9AVLURRFURRFURQlSegLlqIoiqIoiqIoSpLQFyxFURRFURRFUZQkoS9YiqIoiqIoiqIoSUJfsBRFURRFURRFUZKEvmApiqIoiqIoiqIkCX3BUhRFURRFURRFSRL6gqUoiqIoiqIoipIk9AVLURRFURRFURQlSegLlqIoiqIoiqIoSpLQFyxFURRFURRFUZQkoS9YiqIoiqIoiqIoSWLQvWAR0SQiCogo3XyeT0SXDXS5FCUVIKKXieiSHtZNIaLGvVwkRUkZzLNr2q6u6+WYlxDRy3teOmVvQUTriOjkgS6HoigDR7++YJmbTAsRNRJRJRHdQ0T5/fmdyt6nWz3vJKIniGj8QJcrVTDn1f51inPdSESfStb3BEGwJgiChO2zpxc0IjqeiBYQUbrpSE5KVrlSlb1Vr8quYwb2dhJR1kCXpb8gojlEtGmgy9HfENFxRLSQiOqIqIaIXiGiwwe6XMruIfobDURUa+r2CiIadA4DJTGp3nfcGxfkWabTdgiAwwB8dy985x5BRJGBLsMQxNZzOYBKAL8d4PKkDEEQ5Ns/ABtgzrX5u29vlIGI0np5gJ0B4Mm9UZZUYVfr1Xr1B5LBUIb+xgwOHA8gAHD2gBZG2SOIqBDAPPDzqATAWADfB9A2kOXqK8Ohve0mZwVBUABgIoBbAFwL4K6wDbU/N+hJ2b7jXnvjD4JgM4CnAMzs7j4nohuJ6N7ejmE6ed8lovVEtJ2I/kpERWbdU0T05W7bLyGi/zHL+xLRv80I1nIi+rjY7h4i+iMRPUlETQA+lKSfPewIgqAVwD8A7A8ARHQGEb1FRPVEtJGIbpTbE9FFpj53ENH3NLRizyGiXCK635zTWiJ6nYhKxSaTzahfAxE9TUQlZr9pRBSI47xMRD8kolcBNAGYC+BoALeZEadbxTFPB79gLTCf3zfbnGeOdQURrTJl+hcRlRu79Xh9hYjWElE1Ed2io5EAEd1ERA8S0VwiagDwaSLKJqLfENFWItpMRL8kokyz/WVENF/s38WbSERnEtFSU++biOhrYtuzzf2y1tT7TLFuExF9k4jeBV8Hqc5FABYBuAfAxXKFeVb83oy0NhDRa0Q0NewgxJ6TjUQ0J2RdFhH9nIg2EEd33EZEOQnKRET0O2IvzDIiOkmsqCCix8yzbRURXd7te24loi3m71ZjywM/jyvIe00rduUkDRFmAEAQBHODIIgFQdASBMGzQRC8Qyb00tTDTnP/Oc3uSERFRHSXaGs3kemsE9FUInre3M+qieg+IioOKwAR7WeO/UnzuYKIHiaiKmO/Smx7IxH9g4juJaJ6AJf058kZ6gRBUBcEwWMAPgHgYiKaSSH9uUTtjYhKiWieuffVENFL9vlDRNeaum8g7jeelKA4yh6Qin3HvdaJIXb7nQ7grT04zCXm70MApgDIB/A7s24ugEJCh80AACAASURBVE+K79sfPLrxhHmY/BvA/QBGAbgAwB/MNpYLAfwIQAEAjXffTYgoF3yzW2RMTeAOSzHYy3ElEX3MbLs/gD8A+BR49KIIPMKo7BmfBZALYByAkQC+CKBVrL8Q3HEcDSAPwDUJjvUZAJ8DUAiup1cBXGG8LFcDrm0XB0HwDoATzH4HmG0eJqJTAfwAwPng+t0CoLuH5hywl/tQs91Fu/G7U5FzwfetIgAPArgeHAkwG8DBAI4F8K0+HutuAJeakd/ZAF4EAOJwqTsAXAa+Xv4M4FEyL26GCwCcBm7Hqc5F4OvzPgAfIaLR3dZfAPaCjACwCvzc6AIRfRT8TDovCIL5Id9xC7jzfxCAaeB2cX2CMh0JYDWAUgA3APgnmYERAA8A2ASgAtx2fkxEHzbrvgPgKPM9BwI4AsB3gyBoAtfnFuE13ZLg+4cqKwDEiOgvRHQaEY3otv5IAMvB5/WnAO4iIjLr7gEQBdfPwQBOBbcRACAAN4PP+X4AxgO4sfuXE9EhAJ4B8JUgCOaajvvjAJaA6/wkAFcT0UfEbueAO5rFiL9PKiEEQfA6uA0cb0zd+3OJ2tvXzb5l4GfitwEERLQPgC8DONzcMz8CYN1e+DnDkpTsOwZB0G9/4IuxEUAtgPXgE5Jj7CeL7W4EcK9ZngQOzUg3n+cDuMws/wfAF8V++wDoAJAObkhNACaadT8C8Gez/AkAL3Ur2+0AbjDL9wD4a3+ei1T+61bPHeAO9Kwetr0VwK/M8vUA5op1uQDa5bWhf6HnOuH5AfB58EMlrg6M/Trx+SoA88zyNL4ldNn2+pD9L+lm+wKA281yumm/k8T6vwD4sfhcCCAGfgG025/crUzPDPS5Huh6BXATgOe72dYDOFV8PgPAKrN8GYD5Yl2XujDt8jIABd2OeYe9FwrbagDHmuVNAC4a6HO0l+rhOHMPKzWflwH4mlh/D4A7xefTASwTnwPwC+96ADO7HTswbYzAz6qpYt3RANb2UKZLTN2RsL0OHvwYb9pSgVh3M4B7RD2eLtZ9BMA6szwHwKaBPud7oU73M/W2CfzC9Bi4I32JbTtmu1xTR2PM+jYAOWL9JwG80MN3fAzAW+LzOvBL+CYAc4T9SAAbuu37LQB3m+UbASwY6HM2mP/C7pXGvgg8oHAPRH+ut/YGHvx7FMC0bsebBmA7gJMBZAz0707FP6R433FveLA+FgRBcRAEE4Mg+GIQBC17cKwK8IPLsh7ciRgdBEEDgCfAo4sA3wzt6M9EAEcaF3AtEdWC33zHiGNt3INyKaaeAWSDR31eJKIxRHQkEb1gwiHqAFwBHi0EuD7deQ+CoBnAjr1d8KEMEUWoq1hCBfgB8xyAh0x4wy3UNZZ/m1huBnuCe6Iv7cKGB/ZEl3YbBEE9gJ3oOuIkv2e92UeJP/9h98C+jtydC55TtIFYxOFIY58I4Npu98dy9Fw/qczFAJ4NgqDafL4f3cIE0Xv7uRrAQ0EQvNfDd5SBOwRviPP9tLH3xObA9CQMto1UAKgxzz+5ztZd2PUyrNpWEARLgyC4JAiCcQBmgn+/DW/eJrZrNov54DaRAWCrqKPbwREwIKLRRPSAub/WA7gX/rlmuQLAwqCrB3MiOCxTtrVvg1/oLMOlrSWbsQBqzLI8h721t5+BPdHPEtEaIroOAIIgWAVuyzcC2G7qe1i1nb1EyvYdB2qeQxP4greM6WnDbmwB36AsE8AjUpXm81wAnySio8GV9YKxbwTwonnRs3/5QRBcKY4lH17KbhJwnPs/waOqx4E7KI8BGB8EQRGA28AjSgCwFezFAACYmOiRe7fEQxtzvvPF35YgCNqDILgxCIL9wHVwLnhAYbe+ItFnE0Z2HPiFLmx7oFu7JaICcHjVZrGNVA6aYPZR4s9n2D3QnseE99UgCF4LguBscCdxHji0DOD74/e73R9zgyB4KEE5Ug5z//k4gBOJaBsRbQPwNQAHEtGBu3Co/wXwMSL6ag/rqwG0gMNo7fkuChIreI4VoWuAbyNbAJSYNiXX2Wsi7HqxbSvl67Q7QRAsAw9Azexl041gD1apqKPCIAgOMOt/DD5/s4IgKATwafjnmuUKABOI6Ffdjru2W1srCILgdFnM3ft1wxcT5jwWfnqHPIcJ21sQBA1BEHw9CIIp4AGoa+xcqyAI7g+C4DhwGwoA/GQv/aRhRyr2HQfqBettABcQUQYRHQaOG+8LcwF8jYgmE8u9/xjAg0EQRM36J8EN4QfG3mns8wDMIKLPmO/MIKLDiWi/5P0kBeCZ2ER0DrgDvRQculkTBEErER0Bjo22/APAWUR0jOmo34j4h5SyixDRh4kn+6YBqAe73jt72a2vVILnP1pOBPBGwHM6EARBDDySJLeZC+BSIppNLHt9MzhkV0pE/x8RFRPRBHCI4INJKm+qMRfA9cQTs8sAfA88eg7wvI7ZRDTLPHBusDsRUQ4RXUhEhUEQdABogL8m7gDwJXNPJCLKJ6KzzNzV4cTHwA/3/cFzNQ4Ch5e9hF2bE7gFPLfmq0R0ZfeV5rl0B4BfEZH1iIztNg+nO6MAXGWeXf9ryvVkEAQbASwEcDOxAMpsAJfCXxNzAXyXiMqIhW6uF+sqAYwkIxSVihCLW32diMaZz+PB0S2LEu0XBMFWAM8C+AURFRILbE0lohPNJgXg0KY6IhoL4Jshh2kA8FEAJxDRLcb2OoAGYvGEHBOBMJNUNn63MHVzJniw6N4gCN7tvk1v7Y1Y/GeaGcCoA98DOoloH/MszQLPYW5B8p6jSjdSse84UC9Y3wMwFRwm9H3wm2pf+DOAv4GVytaCL/qv2JVBELQB+Cc4ZvZ+YW8AT1C9APzw2wYeiUjZHCcDwOPESWrrwfPfLg6C4H2wwMIPiFXQrgfgRsXN+q+Ab45bwQ+s7RgiErqDmApwO6gH8D7Yu9TXNtYbt4K9xLVE9EuEy7PfAOB+s83/BEHwNHjQ4xFwPU9AvEftcfDAy1tmu3uSVN5U4/vgF6n3ALwD4DXwCyuCIPgAPOg0Hzxxf0G3fS8GsN6ENF0KHnVHEASLAFwJ4I/ge/IKu26YcTF4LsyGIAi22T+wkNKnaBcks4Mg2AB+ybqOiC4L2eRacFjSIlMfz4HnFPfEawCmg0fjfwTg/CAIbEjMJ8Fzl7eA284NQRBYj/JNAP4LvlbeBfCmsVlvzlwAa0xbTcXwpwbwvKfXiBXlFoHbztf7sO9FADIBfABuF/8Ah84C3A4PAXfInwDfb+MIgqAWwCkATiOiH5oBqDPBL+9rwfV5J3iSvtJ3Hjd9io3geVe/BIs79USi9jbdfG4Eizj9IQiCF8D9w1vAdbQNPMjRV0Ehpe+kbN+RuoZ1K8rAYbyStQCmB0GwdqDLo/QOEa0AcGYQBCt2c/90sIdtchAE65JZNkVRFEVRUpvB2ncc9rlmlIHFhCLlmnCkn4NHWdcNbKmUvkBE2QDu2t2XK0VRFEVRlF1lKPQd9QVLGWjOgZ+sPR3ABYG6VYcEQRC0BkGgk34VRVEURdmbDPq+o4YIKoqiKIqiKIqiJAn1YCmKoiiKoiiKoiQJfcFSFEVRFEVRFEVJEn2WnQWA0tLSYOKkCbv1RTISkQaRWn1YhOTulO/NN96qDoKgrPct9y57Ume7gz2f8hx2GmN1a7XYzqeTyM/g/Jp5GfFpd3qLYA2rq77WaSrWmfztMZcezrO8ah0AIBrz5398CSdHH5E1wtmol0bQ0dkBANjSWOlsze1sG1dU6mz56QXmeInL6r834demZJ31RqwzBgBYXefThuVlZADomk0z7NR1Xc9bNHd0OFt5fgkA3wb7g+FYZ0OdwVpngNZbT6xftwHV1dWDqHflSVadhfUvLLEg5pYjFNnlY7fH2gEAmZHM3Srb7jJY25q2s57pa53t0gvWxEkT8MprL/e+YQidokOdRoPHcRY2B623zmUYOel565NRnmSzJ3W2O9h6lnXcHuPUBH9e+mdna436dAXHjT0SAHBY2dE9Hg/wHURJWF31tU5Tsc7k+arvqDU2/+A58Y+XAwBq6hqd7cZPcfqQ86Z8wtnS0xLfGqpbtwEArl/4K2d7ex2/APz09Mud7djRnJdzT+pJkop11hsN7VyPH593rbMdVsEpi6Kdvr4jIeeuU5zjjDTudLyxbauzffdozt141Ojjk1jirgzHOhvqDNY6A7TeeuLYI48b6CL0SLLqzL5Ehb1ANXTUueWCjF1PK7a5iS/5sXkTd7N0u8dgbWvaznqmr3U2eN50FEVRFEVRFEVRhji75MHaE3rzWtnRh9e3L3K2m158AACw+I1lzjb7gCkAgMIiH062besOt7z8jdUAgI9f8GFn+9LB5/O+JQc5W3Z6LoDeR9Z3x5s13AjzTv636lVn+/KjvwEAfG3Omc52bPmxbvl7r/wWAPDe2ludbfEXHuxyPMDXS291kup1FnYetjRtAAC8su0VZ5s9chYAoDna7Gxlozkk7GNHHexsl/ySvVCX1N7ibEXT2PtdV+s9Xdjuj4NaDqeY9tH9nSk9g28nr297y39fNocLrqxb5WzHjuGR1hFZPpRQ1Ux75sWt8wEA8//0grPNz+cQQTR2hOzRdxobW/h4n+4/D5aiKMruIp8N1nPV0dnubF/4z7cBAO+v2+xsy1dtBAD8z8lHOdt+I8sBAM+s/MDZXlu81C1HW/mYV378I8722ZnnAQBmlRyyh79CGY6oB0tRFEVRFEVRFCVJ7DUPluTvq+cCAH6/6Bln21HF8wxGlhU727gSXt45qcLZ3nr8TV5o814TRPxI/rjjpgLoOvfg0vt/CqDriH9JKcfo3jDnQmf70NhT47ZTeiZsvtW6BvZUnHfbDc724Oe/B6DneR53n/oLAMD9K//mbD998+cAgP875BvOFpgp+3JEK8wzmqx5dUOJ6rYqAMChZYc62862GgDARX+72dl21DYAAE6Zvo+zPXzd9QCAB5fOd7Y5Ew8AALy7fY2zHT12plveb8S+AID3a/xo4C9fmMfHWfy6s43NH8XlGuXL9co2jus+ddxpzpYZyertJw5bCsIEKMrZA480cV2nJb7GI2ncVmLLapztwPEVPW2uKIoy4IQ9ux9Z+w+3vOANfgblZHtxiopRHKmxZNUGZ3v43xxVM3b0SGc7+sgD3PKK5bzt3U8ucLa/Pv0SAGDrTc85W0Yaf89g1RVQBg96VSiKoiiKoiiKoiQJfcFSFEVRFEVRFEVJEnstRPCcR7/oliurdgIARpf5vDvlIzhkz+Z3AYC2GEtynnP4gc6WffQRAIDCrPC8LR0xnvS9vr7K2T58ME/Er29rE9vxsb//wv3O9v7sFQCAL8/+ct9+1DAnzC1++VMslHDC4d71bkMDo50yL5OcuMqX4YXTP+Nsv17yawDA2zsWO9tBIw8H0NU1Hyb4ECAkRDA0S9DQxP7WunYf6pWbzqIvcvLv1576A6/Ly3a2gkIOLbvz3/O9rYBD+q6Yc3LC77WiGQBw+zsc5vvPBf91tjFjOCwjJnJs3TTv7wCAX53vwzL2NeGFW1t8XqeJ+VMTfvdw5vkNC+NskUxuM7E2IXJh1fij4vrP8nLGndQZZ3tzHU8Gx4lJKaqiKEq/ETX5F5s6WpztqANnAAD+vXCJs7UYwYqpk8r9vqbPV1ld62xNza1uudEsyxDCEw7kUPpFlV486vjyDwHomssTGiK4S8RMX1D21HpLDZOIwRquOXhKoiiKoiiKoiiKMsTpdw/WhkaeJL+10o+2Tx7LE9/tpGsAaI/xG21TiOrwihovw55jPFwtHVvibACQFeHRWev9AoBsY5PeMZjl4rFjnOn59SwH/9n9GpwtL6Og5x83DAkbKfhgpx85evc9ru+/XHtP3L49jSxYj5P0Ml044+MAgPuWP+hs1oMVJt0e9j2pLv29rdm3gYKMQgDAz9++3dkaGlhWvaAg19miUW4X4yeMdrbanXy93/XKfGebNWU8AKClwzfIyx/7qVtevZa/e799fVLGqkr2TGfneMGKSDq3vR887z3Fc8/7oSm/T3g7LpePE9mDUaxUJSOSEWdz7VAMoiLdtIuY8BQL4QvbLmJFfjJ4pakzRVGUwU5LtAkAsLLGi1e8/i4La9U3+jQi+02fAABY+o4XaZpz6mEAgMptvi+6aYuPdMrP5UiP1W+udbZJk9kDVtPm97GkhSQ7Vnqmi9x+yHP+zerXAADPbXjJ2dLTInH7ymilc6dy6p/JBdMTft9AiZypB0tRFEVRFEVRFCVJ6AuWoiiKoiiKoihKkuj3eJx7lz0EoKu7zopNyNC+7PT4oth95LoME1bYkRb+bhgxrkAbFgh0DUW0RDs5tkY6Dq3wxdMbn3S286Z8IvR7FM/DK59wy8cczoIiFXkTnC0W8HlN6+F93rpvZfhhWQ675tNE3VlRh6LMEmdzghYiGtAeL9VzX4WFLUwp9pN6X0xbCQBIi4jzbkIE24U4QvEIDoNtbfEiMDZ/SJoIMevs9CfZhgbuqK5zthX/WQoA2PdUL3CSa8IuTpzhRSyyImyLifpuiXF4R35aYdxvGu40dbTG2ey1HYgcgC4foKgnWX+urRT6EMHa+sYkllRRFKX/aIry/Wpro79vbTOiaWjxodH2vlcxcZSzVW3n7dpavRBUTpa/Fxbkcyj99gLfL60y+Vk3NWyLK0uq9y+She3/RUJCKr/x0nfd8oKlHOp55IzJzjYyh+ukNMcL4rVEfT/l6J99AQDwl8uvcbaPjOewwWjg+zgZ5Ot5b6IeLEVRFEVRFEVRlCTR7x6sLQ08ApCR4b+q1YwgSK+WXR6Rk+Ns9u0vMxL/5lsitouEjCRkCa+X9Uw1iQn7dp9YiBBC2GiFwoQJVSzZ7sUWLp71obj1Vs406GHEx9Z9Z+CFSez3jC/wHpnXty8CAJwy7nRns14vOZpEAfVY1lSgLcYejfaYH4mraq0GABw6eraz3dHxPACgU8impxvRCXm+Wpp5RCgry4/c5eblxNlahIfLervyhAT8sRceAwCIiPZqBTSOLPepFna27TD/vQcuGkgJf0VS1xrvwbLXtpNeB2CrNGiLb0eAbyuZok7b2kNUhZRBh/TuW6QoUF9H060gUV279zwfPfqEPSydouwd2k0akvfW+hQf551yFABgVF6es839z6sAgKr3fN9kS4dpQ5miPznSP7/yp/Ezb953fuRs33z0TgDA2lovyKT0jrxfhXmublp8MwDg9z9/2NlaHl26y99z8X6fBACc8devOdtHvsAerIw077Vy/cTduGfuCanZA1UURVEURVEURRkA9AVLURRFURRFURQlSfR7iOCy7VVxtg4TllKc7/PzWCGLZRu9K7bZZNbOzPQhLfX1nAehuDjf2VpbfKgUmcmNMiTRugKP2WeK3yfKIUlbGnzOKxsuuLE+vsypig3PC4RKRFhond0uzK3aIULQPlxxUtx6MsfrLWQvLAymPNfnKdvQuDHk2Fwe6YZO9fxXVuxDnq+OaHwYWZFpI1LkIjACCCTED7Kz2ZXe0SEmCZt92oQYRpdQQ9O+bMgh4IUz8vJ928vL57CLmAj/tOWubPbtrMaEOBYLAROFkaHNlkxz/qPtvs4iJmdItDl+sjcABDFebhf1nB4Sfq3sOYlCUt6qft3Z9iueCQDITs9FInYn3PnJDY8BAL4772/OtvQDzvGTJUJ7a3/y8i4fW1EGgq0m9+PKNZud7dunng8AeGLVa85WtYafLdOO8fmRVj39AS+IPszoipFuec2zHKJ2xFeOcra21j8AANbV1TpbQzsvF2QW78EvSU1infxsCctz9c2Xv+eWf3cT5zc948unxm3XZeqQ6ZfK+5/9DgAYlVMBADhoqhdVO/SPnEP1jSsfcjaXA1LsG6H+z7mpHixFURRFURRFUZQk0e+vcHaSu/RCNTa0AOg6Oj5ryngAXd9erXy0HWHn43CRpXx3TY33Qk2dNhaAn7gPALW1vL4st8DZnnj3PQBAyQhvs9+9pTE1pYsTeXbkCEGYt8qOJMgR2caOegBAQaaQOg0Z1SHEe73Cs2zHl09mS19buylufdixU10+NWpGYaTMeX0718WWxu3OtnmzGcWbPt7ZKrexwIT08Nq2JGXaLXI72V7tKZYeLLt+VImXWl/wCk+qvyMny9m+eAjfC5buWOdsZ006K+67FaY5xIPVadpPWkZ8u0UX8SC/j63LNOGJzBX1oiQPK9iTnuafe3bk+5ivXuY3LDTrM3w7OuTgGW75hpN5EvdRo491Nnt3q+vwo+rn3nstAOC9R95C3IbCi4lS9ly1rfHPzM8++3UAwN2n/qK3n5WSyEgA+zzp8uxLEL0hn2OdSDyxf0+w37OucZWzTS6Y3tPmKcuOVo7eaNtc72wfm8QerD8sfsZvWMlpPz55nPdG/XoHC7scfui+zrZs2fq47yjIKHLLM/fhdCRvvb/G2VpP4v5rAdSDBXQTtAjxXF2z4DsAgD/e7dP5YBr3ER4849dx23cRLEN8Cp+w77j28M+55Vl/4uvhZ0f6+9k3D/l6j/v2J+rBUhRFURRFURRFSRL6gqUoiqIoiqIoipIk+t1f1tEen98mw4T5vffuamcbX1EGwE+KB4CaHewG3rih0tlGmJA+GbqUIcKUqqvi827NnMohUo3tLc725lsrAADnnnaMs22r5e+LZQ3vsJm+hti9UcWTtaubm/fo+2z4Q1pIWMWS6nfd8sJN6wAA7Qd7UZNMk+sgWXlihgIVeTyhMz/Dh+I9uWEeAOC3z/gwiWvO5HwQT69+z9mqTJhEkRCYycn1E94tnZ18PmMxL07R1ubPu811tWOHD9WwwgtL3l/rbHdd+WUAwJ1vvOBsa2o3AACuO+yrzlak4hY9km7DocUlnGauZ3mNxzpMXbX6OuuIyvsv10+2yIM1pmxEcgurAOgaGmg5fe5XeKHetyMXIrjZh6W/ucKLYJzzz//yQo64N9abkNFMMT4aNaFq+eJ7i3zotqPd3CdL/DPugV8+DgC465SfhfyS1Ke350SiZ4dcF0FywwJ3tlW75etf5XCnz+zvQ6nH5PB0iJxeBFJSiY7ODrvgbLYOVq/ywhd2tsEHVT6naf1aDo+vn97kbLFYfL9B8sWDzwYAfHTetc7WGOW2WraLZU9VAtn3MlNNqlq8WN29z77CC9m+fZz4oUMAdA2ltX24MEGf3kR+phXt55bTJ3CI5w33epGLkyYcBwA4pPRIZ3OCF7J9u3Bg/317kk9VPViKoiiKoiiKoihJot89WHYkvLHRe4/GjGFpTCkVa8nL9iNr9cYzNW7cKGfbWcMj5nLkqFlMzi8o5NGcLCGMYbfNjPifW1HOZaht9fLWsSiP/LZG471uqYA9D2FiF9ID1NcRhLe2s2dk25YdzvbBThY12H/EgQn3DR0pDBGsmFI0yS1v2z4fANAe83VmPViJpOXlcip5sgqFoMgF0z4NAJjzpTnONiZ3HADgkQ8udbasDB7hLij0We+j5rrPDhE8sOuArl7hiJFxzxS2qBkNtG1elutjk89ztuyI91JbEo1eDXfyrYiMaLb2Mo6J+skv4PMaPdDXY2u194wExXw/bdjuvY4bexnBVfaMqJAF/u98440vFx6HRrN+hGh7I0IiKMSIPXIz7MG9LRJyX2sJGaFNt8td3KEAgD++98eQX5D6hD0TpJwzQlKBWNY3+iicny2+wy0/tYifg6997R5n+9N7d/PhxLn/1mHeM9Kdn77xW7f81YMvAgBMKJjqbDWtLGg0nDxYK2rWAQDGzB7nbDYFyNYFvi5gxH8e/vWT3mZO++L7F3lbfoin+ZEr3PJfT/s+ACC32D8va9t28kIBFIQLR3z2mR+4ZZsWJKvQP/efPu9PcfuEPftX1bF0/l3vP+Bs9zzzkluuXc1e3ksvPd3Z8s17RWenf2Ae+0UWwWh56P2E5Q7pgoam3Ogr2ptRFEVRFEVRFEVJEvqCpSiKoiiKoiiKkiT6JUSwoaPOLVs3XUOTDxGsMOFF0jU/vYQnua+sqXG2fSaUAwBKcrxrsWkMTy0sEEIUMqQv00y+zxB5slbvZJeuDBmzYhl1tT6Exk/oF+FTZlJl2KTloUZYmFxYaNaWJhYheLXyVWcbnTsaAJCb7uuiKJvP4SeOPsLZ1jfwvhnifG1t5gmP+Rn5zmZD+3pinBFyaI36cMCtW9kdfMt/f+lsl83kELS19T5PxcSCSQCAKYU+n0wqEpZLzIYFSgpyfChuaztPsM8QeXdsSJ8M7ZPhgIkYUeLjJFat2QIAKBN5sCxhYYGy/Boa2DNFIaI7rg2LEL88U88l4vwvXfOBW84axXUVTU8T+wxvQZ/+5jNPf91/2GHuZeP8fRA2FC0q4z/FAaxdTBBHgxHJkPmt7PUgm1Gm2Scs/6GMDDUCGi9vXBH2E4YlveXLuWERh0DNXeAFSZpb/VSFbJP38+oXbna2t5etAwC0tfu8dl896EsAgNx0f00s2cHCJsVZvh/SasLii86a5WxFh7LIxbYfPN/bzxnSyOkLNa0c3jx9hs/t+Mq2+fE7FYfc12zIWLpoN7IdNHK9vDDvNWdqOJm/T+ZibexownCly7QLWHGy+Gf3f/72oltOm8TPo+mTxzqbFXAZkVUat++sWz/mllct2wgAuOh/T3K2y0470S2/sZX7lo+99IazjSzm7/vMCV7A7pa/s5DPhB+c4mzXnH0GgK75RD8/k6dTyFxoKnKhKIqiKIqiKIoyCOgXD1Zz1HuFrNhEU6UXQmg1ohStzW1IRMy8LUshinbjZerolKIMfkTCblua6yd+Zqfzz9zc4Cd319XxKERpqT8F7UZSviDTj1ZYb1zYm/ZQw456hwla7DATZgHgzx/cBwA4ZPQBzra5kSVQCzP96HhdawMA4K7n/GjF9eeyIMnSGp9xviPGI0OtMT9y19npJ+dnp/NoU1TYxhbwce5ZYjm6TQAAIABJREFUvMDZ8vPYC/Lc+8udLSPyIACgINPX9+/fegwAcNWh5zrbCeV+BGSos6uCHfb6l7S1ybrg46Wnx3u1un6vX7biF/kF/ry3Ghn3mrpGJCKs/KkoQpIsJhSN6nllLN6LmZkp6rspGrdeDqtlZSX2JCtd2dXr9F+/ecp/GGPaSoNveygwnv42f++TYiZdRtstWaadRkM8U7JcueY6qBOy8LYR58prhP/VNPsok6GMraNAnEg7Qb2v9WajOADgWy/fCgB46CGfamLqzIkAgHIjlgX49DMA8IlZHNWxpnaLs71qPFwTJ5U721Uv3AgA2FTv+yYvL2QxlI9/9Fhn+8H9VwIAIvv6dBZ1Wzgyx0bZhIlXpQJSXKDD9P/yhRjaU2sXxO3j7nFSHMaKwgTiBiivByt4sdl7qBZu5Sie0SKdRXN0+HqwZPsJE30o+AZ7jYoOGONsdaY/YFPEAEDFOcegJwoOq3DL+82eAgBYvs33T5cIUbsqk5ZJ9lYqq7ld/Gbes872zfPZW/Wnp30b/tZd3M+1nksAuGn0IwCAtnZ/zzz+GBZse+b8eGGO3lAPlqIoiqIoiqIoSpLQFyxFURRFURRFUZQk0S8hgk1iEqCdHNghhCjWb6wEAJSVFqE70s0dCXHnW5sMC4yELEdFiNOYfJ5Aur7Ouyit6IbM4xMz++SJEMEmE+6YCiGC9tyGTdr75OPfcctHj+cJpA3tDc7WFmOXaV6GDwmbM55DGP417m1nO3TUwQCAbc2VzpZn8nR0iNwibTHv5m3vbDfrvas2ZsIFrz7uTGf75QIO/du0qcrZ0mZzfe9b4vODNLQ3AwAeWOpdxMeP+TCA1AhBS/QbwoQvcjK84Eh6Wnzd+3BAHyIYluFe5pWw+7SLUMORxSyiUFufOITChe6kZkRL0hmRHS8a4q6BVh9aVlTEk+LHjfFhS0tiISe50bfDkhBBEqVnwtpeWNjgZf/+Bi9IIQob7pcvHru2Lnpq0rb6ukzMt21YtFFbz+0hIVES24ZbREhiM5fhcwf5yeMLcF8PBRp4gqBrmDvQ9Zlm66G3vDWLKjmfztm//Z6zNazkyfcunBNA+WhuT0eddJCzjSjgtlYvwiplhN7l+38BALCqfpmz3fqnRwEAebledGjjBn5OylDDWftPBgDM/acPZ8rI532ys/y9vKGS77NbmzcBADo6RShoCiHb1dQRHD729patzvbPZW/G72Tbg2wDThhIVJRsVzb0VoSM3flfroP8fC/SVJo99PuCyWBdA08DmfPrLzlbtIn7dSRy3GYYwZeaylpnS5/J57BAnNfxYzkUXvZhKitZ9G7VWh9q2yFEYiJmWoO8RqLNph2I4/zwTw/x9xb6cqUZEaBx+/twxtp67u+37vB9mBXLfbjwrqIeLEVRFEVRFEVRlCTRTyIX/u3PTpzPEBPta1byhLWDPjTT2aznKSJG/DKM5HpMeKMiafES7xK7Xkq3j8jmt9aJRd5j9pKZLLlZiG+MMRMZpXesJdoc+j1DkbBzdvv7twEAtld6efyOsTxKtGiLl3jOM16QF9a/52wrNvPoW6kYBX9uAwtetAlBCzuSGBHeE1mnVqCiXXiw0sy7f1R4vQ6fwhOLm5q86MlL69cCAGaVeUn27AiXtanDH88Kr+RlpGb69UQTnLc3yfbI7TAS8XXRYTKtt4uRobSEni6P3MeKkNj/PbGrE86HOxmJJKOFx6LACI6U5eaFbpppRhLlxO+ysuI9L2AKECaMkHB7yEiLSNz6+37B3naUe0+Ik1oXXkc3gh7maQSADNMOpVCFbbuZoo1mmuPUi+1q40dyrXQ7TfXXSGC+4/ypFzjbJfh8eHkGAUR9k07e1LTOLT+74TkAwF2L5jvbtm387C8Q96uLv8LCSBtEtEuzeY7ki8gWu7zg1XecbVxFWVwZphT459LkWZx6pKjYS7KPMhE+zeKZ9s4HnHLEeq0A73zpcs80AikPr2LP2M427yFIVRZv5XOzZrX3aGyrNn0X+Tixl3xvz5iw52aGv7ZWrGSZ8PLRXlzkv9s5YufQsqP6VughShDEe+dX1vk+4eyrL+QF6aU3z6PaqLgW7T1OpAcZUcj3n1zhzX3nYSO1ni9SIo0XKS0s4h4Xs8+/Hb79oMQIoOwUInrWoVnq+5N/+O5XAQC3vfScs1kPlnxGXnLK8fFl6CPqwVIURVEURVEURUkS+oKlKIqiKIqiKIqSJPolRLCxw+fBSTciEsUFPiShsppDBGUYUmaEt8uOJC6SDd+Tb4ZdQs9CXL42VGxcgZ9IOqKIQ8U2vrnO2XIm8GQ3KZohxRhSkQ+qeQLfPiLLdoPJASCFQhra+DyMLfAhdu+0svt8qwgvrBrFOQi2NfprwLqXG0VugQ6R88qGjMnQTJuLbHqJzwH07zfeBwCUjfY5KWw+jP+s95m8i7LYVtXswztr27mMqRoimIitW30YbIZpj1LEwtaPbI9paWGhFX69DReU+bQyzQTsSnE9JMrYrvQNmXsujmZ//nNNqFOYkAkgwotafJjEpKJ4oaHhSF+FERKR81kvgoCRJvSlUOQZs5PnZduyk/DDcloBQGDukyJsye0v6hE18c8pO5HchuMAQEVFfDvcuZPv1WGhjoOd/2x+BgDwk4X/cDYX7i5OaVMzhxCNHevD+KbPYDEnmTOzPJ9DwZZWVztbTQ3nqHr8c/HCHxcd4IUoTv3+N9yyFeEIE9+QuQNrdvCx33lrpT+o6cMUj/HhUdkmvFfeo23ewVc3c9icfL6mEr9753duee5v5vFCnugn2nrOkbaQ9hQaRi/aog3dLfY5tmqWV3b5DwBXv70aAPDZP3zO2TLTUi+fIFF8GP/H773ef6g195xJ/vk0edxoAEB2jj+HSx9bAgDIPdiLSTSY9li1cL2znX8156q6/eQfOtvKOhaJmZA/ydm2GFEXABiXx2G37+xY4mwbGrhfevaks53tlL9yHrkl//D9xPQ0vt/J/J/1/+V8r5jmn4u3XP8XAMC3n/wmdhX1YCmKoiiKoiiKoiQJfcFSFEVRFEVRFEVJEv0SIihzIBWFKYrl8tdKNR2ieHXALKMi2CF2dRl7hKtchvRlG5U0qSLYaVzD+Zm+LCUlJkSw3h89y4Q4dYjQuGggwjBShO++eqNbbjdqijL0z6rOyfxJNsxShv4dNmNSl2MAwLIdHFrRGvU2Wz+ZkfAQFLt/tlCatN/37navFnTa4bMAdM2BYa+Rl9/3IRb7mnDHxgYfImjzmaU6Ycp8Gzdvd8s214RVDgSASA/1kggbqtLa4kOTnGKoyC33bg277k8oPynh8cJyCSlMQUhYa5tVbxTqcwVGkcyGyHbH1Xmzr/v9SscnqZTDg+pWfrbdt/wBZ7vu2t/HbzjDqDNKVT+roiXyyTm1qs6e1AtDFAO3mfuaqPtv3PgpAMAPj7rB2WxYdPk1pzpbaSmXq17kqissDFedHKzsbNuJR9b+HQDw2dt+DQCYONaHkl8+h3MefmbfC53t52/+FgDw4orVzjYih/sDmeK589za5QC6hj5PKuewwjn3XuJsL3zqbgDA8eUfcrYrLvyoW/7JGz8DAFywz/84mw27rtzmQ6g3bzWhiCIE1IZXyTDumjp+fskw+vb1rHRYb8L3Y0FI3rMU4M4FPgwzdybXc/NqH/buQmbDQgDl4yQWvzq03cm2Vs3tt/igcn9IUwe3vXebs101+6rwwqcIb+9YDABYtniVN9rQwBqv4HfsGfsAADYKFc6l5v+MaeOczSp2/+a7Pqw2L4PfB1bXr3C27S3cdynM9CF7LVGfe25bM/cPjxx1jLNNLeR7dEGmV8j983nXAQAOfcIrpc59fxEA4DOHH+tsb77Gpc3M8SGf7WV8n1iyw4cX9hX1YCmKoiiKoiiKoiSJfvFgtYuM4tYLIgUT7Mjb9BKfW8DmO5IjNHZJeqsQkotH7mNFLqQ3JBqyz/4T2cuxJP0tfxzzPfJ4rdFWpAo2q/zMsmnONrPkAADARQ/82NkONZ6pzQ0NzhY1HikxbuRG5LLEuW4xI+tZwothPYJSgKRTLNvzXdviz3Wm8YbIuti0jicvHji+wtkWLuMRyTMO8TnV3q7kEQw5ShvrDBu+Sh1sXh45SX+bmQxaPsq3s7BcVmG2sLGXsO0yMtPFei5Drpjg+m41X3PSg6Veql0jQIKRaeHFsHWfEckI3dRO9JfsWzItZMvhQawzhoZ2ztdS/q3TAADFRT6qwnr86hdvjt9ZTrK3uVrS5YR54yXMEt5h660Sucuc50IKVoTts9mP2p7xZfZI/eNMP/k/jJjNISgEMGwbjooIg+kTyzGU2NnaiIeXvQIAaFvCI9wrtvhn1TdN7qLv5Mx1tgzzPMnO9vcmK/6TJ3LxWKEeK2wBAJsi/B0NTT4iIvfyQwAAV332LGe77vAvumUrjjUqx59be39c+sFa/2OssIKoo1Zib1WrvE5MziuUioigCvY8fvIAzse0JudFpCLjx42Ksy1/a5v/UGS8DZEQf0EXsSZzr5SeLtm3tJuGiNBMMOINAPDF408BAKytC7kvpCh/fJs9xvI+VTCOPUQNK3zOKytO9u57a+KO8fYb3jM1cgx7sF494FVnu+7BvwEADp3tn0n3nsae4Je2zne2I0b5/GN3L2UBiutu/bSzHXAk5547fv/pzjZthOkztvj73gsLuO9/4oQpvpBGuKNdeJSpjO8Ph5buet4z9WApiqIoiqIoiqIkCX3BUhRFURRFURRFSRL9EiLYEfNuxFwTPtYlvGgEu+lnlk10pqUmH1OGzMUTFkrUQ46X7khBBSt4Ud3sXZknTZwNAJg74t9+u1YObZSiGXJC3VDnibWcM+T0Sac4279WPwUAaBCCEDaPjgyzbDfnJCoELWyYifS42/CvDrFdeoiIQiSkbjNFPgK7f26mn2zY1MR1MWfCwc727SO+BAB4s+pNZ1tS+SQAIE8IrAToaRJ5aiDzrVhW1PGEbRkOlGnCKMKELWQb7WserLBwv8wsX2erd26JWx+Ghg32TBAyedu1QxEiaNtrdg8hgjYEWgbLTsgfviIXmxq34v9evhkAENvMIWY7hLiBC+Wb4SdLuxB1GbUZCclLZatF1I/LeSXr04asyPCmRlGGJj7mkgcfcaYZRQfE/RYbDhhJ8/fskdkmtCrPXw/RDv6+1nb/HWdPPyzueIOZKUXjce9ptwIAZo3i0J+H3/D3/zXr+J7TJAR42lv42d603YcSuvDLyl6e8RM4BHTGzEnONHvWVABd+xl2moNcrm/f6WzzLv85AKA40+dx3NFaBQDISfe5sVpjHMqbn+HDVUdmcV2mp4W3bQC4PfuuxL9jiPL4x/4YZ7v2YJ+P6Tc/NIIzZSJ80gqEyOeYbXfydiqfO3a5XdwhTft95MKfOFOFyb00nLh01scAAH8b68NQG0x/DPn+mizI5L592UgvSlFTbPoDW/2UjazxLBxzzX13++849XgAwE8ffMLZFh/GQhQPLH3O2a6877du+cOH8b3wxDOPcLZXXn0PAJCZ6ct12xLTz5cCJsu4bZbk+LJmjOfljgYfTh+sZMGO5t0QSlMPlqIoiqIoiqIoSpLoFw9Wfbt/0ys0ksEtrUKu1owcjcz2Izn1bSyzLUeE3Kh2iCCC9IBkiH1i0XhZ9VwjtLG92Y9enTCOR77SxKTRdjN6WShkjpui3rMz1NnUwJKwI7K86MFVB7IH6L5XFjrbxnqe4NshPB/tZsRTeho6zShRuxj1Tc+Iv6SiaXycTiGJGgmZkNrl2GakuD3iy2BH4BdtedfZFm5+BwCws8WPQmYZT5iUIk9P65dLfVCzaCtP4owKud9cc246Q+Rp0/roHd6VfZZWV8fZVJJ91ziolCfUYx/vSemMxgtflOXyKPjInBFx6wAxWCtGHKcX7Z+cQg5BSrKL8Mn9WDDinug8NkqPk5VVl+faej26CFp0xu9rhSpiXdz75nix+O2knHuOv1c1/+N9s2vithJJcH+beZif7F1dzaOx0kN9TPnRCY89mLn20P8z/72tzXiAAiFbbtOttMb8c8Kul+cuI41H27Mjvl+QTtxeequD2jYvAVVkvFQyzUteOqdbSCPfXxmfP7nL9wJApyu3v3ainfyMbYr6PkwsiHU5nvSgpTqLN2yKN8pHUZs5h1miXdjT2UW6XbRt28+U9Ww8HourFjvTOcPQg1Xbxt4e6XwvzOfnTXSKELWqYkGY5fOX+Q1LeH3FZC8UYlO5SE/6n56azwtt/v54yrVfBQBMmOnP+aYtVW750Rf/CwDIF0I1EyrK4so/trwUALB5o383yZ/F5Vlf59P+5OfxcXbujO/3b2paH2frDfVgKYqiKIqiKIqiJAl9wVIURVEURVEURUkS/RI31dAu8kWY8Lz2Du8KHLkPu+Zy0r0b3uZIioSEHEmxi86Q7XoLNLKTv2V26awIuy1zxIT8ZjMpNifduzxTye1uz6MMR8iKsEtUhtPZ/FFpIowvZsJaZJhEWkiYX0dIKGFYGFl47qV4ouneXVxby+7dA0onx22Xn5Hnlm97gyc0Njf5iYppw3As4enlHwAAoiJs1tZzIEIEyYQLSVtY3XbG4utM2ihEGGPLJnbn27AdwF9zMdG2EoU4DXfaTU6dIpGjqa66Pm67iUU8ET43IztuHQB02Otg+DWFUAoyC3x+tnIjMiDCU1w8jAwRjBqbDBGsM+F98vq3ghfSZttXtrjWG8y+IlS95Q4v2OB3FQI0IYI2icgv8AIKVVUs9CSfe2XZo+P2GcwEQeIwY3t/CSM/o1Ach48RC6Q4BT+/5P2qKYif3N5h2iSJushM8/2Glqh5hopwwID69syz5Qmvc/97c9PzzH++LwynMPhXX3nHf7AiM617mOvSXksyrNeEU79V+YEznTPpPAB71iaHGhsaWDgmSwhH1G/j/nThGC8SMTrP9MOkUI9pZ1tqNnibDVNvEKHRJvcUVfi+XLCN3yU2bfNhgRVjRrrlLSaXXd3y7c6WO4WnwNTU+XDa2jW8HU0qcLYpk3ia0GsbfbipFa95cWklutO8G9OFUvuqUBRFURRFURRF2Yv0y5BHRLzN2+XONj9KdMaxLLNdllPqbFZKvTjbjz51hk06DPF8hMm5S5sVxGgV8vFRM0H0pGMPcrYXX2N5x/S0EKGNFGCfEp4ouK7BZ9k+cCS/7TcLSdti45WQnicrikDkR3diZjspI23Pl3RaxWLxI0u9ecKi1qOW7UdaMzO4XpbtWOds1xxyJQBgUeWikO/o6cPQJky2O+w6XbacJ2Xm5fg2ZT2RYSIXEntjCPNKdflesb6jnessM8uPckVMnW1o9NfccBZW2B1sigE5kbeusy5uu4mFYwH0PJId2BFe4S1RmMbf8P3jn2secrbfLXwaAPDWO6ucrcNOfq6PH3lFpkh9YOWA28XzyjYLsW/+fjwhu+pHXv5YYtv6noyQS890ZWUNAGDixDG+DMKrMxQgSs5z2R7DilgAiWXQd43i3jdRdpsDD/LCLUtWvcELEXFNRBM/3xxdZNxtCgaxby7fSw8onbY7xUwZ7njleQBAW43w4tSwl3fKUfs603sbQ9KyWNGeBuHVMvfHzKlekKl9C3uc9p3mBS2W7lgBACgq8F6t3BzvKUaTOWaJt40zghYNjV7QpraA23Vutt/unYf5uik/YaqzXXPmGQCAl8Z5D2lnAfeNn1j7n/jf1gvqwVIURVEURVEURUkS+oKlKIqiKIqiKIqSJPolRDBbiERUt5hQFhEpcXg5u3fXN/hJbzb/lcyD1W5CyzpDQtCkrTMkZCpsn4w0mXWdXYsnTz7A2eY9/zqAriE2qSRycegoDoe8d+mjznbgcYcBAJpa/KTeFhMu2C5yFITnTYoP07Dbpaf7c22Xe4zqCMlPYcMToyJnTFExT+ZduMbnI3hp5TcBAM3NPsRxRAlPZCwd5d3PMifKUCdASIhgiNSLzf3QJFzl9rx2dsr8Yn0Lt+ktXFDWuaWlma+rTY1+IqkNEVRhi75hJ+2XlvrJxJtXb4vbLiedt5N57rpgcjiNnhifJ2S4EzFiBP879ZPOZpc7On1IX10754NZXb/S2d6u4tDydSKfyrZGFkZIF7HSYws4FG9K8Thnu2ifzyYsVzJC4cpL/HUzY/p4AMCh+03Z4+MqykCRmRkSyinbis1Xlymelfb5JfuLsZBQwrSQ44QQ9sxNVdZtMM8bkaPPClWMHe2fN6vWmntglu8LZFZwf6x9sxediBTwO8K4MX6a0AbTd6yurnW27HK+Z8aEmNZOI8LGB+f766gKL3xRVcPvHE3Nvk9bVMrHyRbXTXAwh0nvqPWCUY+v4NBAm+MLAGqNEEdZbnh+yUSoB0tRFEVRFEVRFCVJ9LvIRV0rv0VGcvyb4yGjZgMA3q1+39kKs/iNVopTWG9WmIhFR4hwAuAl2fMzvThCmhlpsOsAoLaN33KtVwcAOs1ohfRaSfnvoc6BI9lb9duWB5zNTqKeNMFPem5s4ImM2WIyoZVVlyOqVm9ETqK2AgdSiCHqJN59WcK8HVLy2wpfRDt8Paeb7N/SgdNQz2XNEmIYdrRDljU/w8tzDnXsyFlnINqAaXNS+ry9jT2QkRARkbDz3+U7+ujVigkPYyTBMWMhHsQwcRQlDD43RcUF3U1dsF77kuwePFimnRYLuXeld2Rai1IjaV4qpM2PHHXcXi/TrjD39F8PdBEUJalUVu70H+y9MCSSaZcI2930CTc2xEcMDKdnVv3izfFG48F64nfPJty3/V0jsS4dhzv4vWDNKu+tQg73H6oi8WkRWqXse7YUE+Ll7W9tQhzNoi9k/sdLQ3VlwTvzeWGc6PdvYo9ZbWt8apTeUA+WoiiKoiiKoihKktAXLEVRFEVRFEVRlCTRLyGCUiQiFsSLHkwtZJGLFbV+ovC6WnYV7l/mJ2BbkYvmDu8etOGCEeGela5aG3bU2O4nJueY0MDKJj85rtVkaj9o5OHOll/A+WHq273Wf5iAxlDnzlN+7pb/s/kZAECryIO1s55dtBlNXhzBnuNskUfA5qWKCGGS5iY+r50iX9mYCp7ImJERfrnZELawUNCw8y/rPjuHw3fkJEgr5CBD0Mpzx4d+91CGQnLjRAOR682E70kRC2uT7TFROGDQS76ssPNOkfi22RRtQnfC2u1wCrvoKzFTp11CPW2d5fo2lRnhtlAgw2EzxT5Rk99OHMeGlKrgiKIoQ4XCQi9C4O6F8tlhc9Oli/tfxD6rQraT5nQpcsHPpVU18SGCw4mlf38SALCidrmzra3fCACoafGBd1sauR+/XfS112/lEMGK0V6IIsP0Few6AGgzUxpk/lXbT7ECZ0DX56AVEZJThvKz+Dl4/HifK+2EsUcDAFbW+ZyGdW0suiH7mNOKJwMARuX495DcdA4XnFq4j7PdiO+jL6gHS1EURVEURVEUJUn0+7Blg/EkFebl+C81k4Zz0r1tfCHLKOZnZDtbWxrvKwUrwoiEjORb2V3+Pl6eOsLLLI7I4kzraWLfvBz+7irx9r2zTUzCG+J0GqEB+ZtPGvsRAEBB4d+cbeUqnjA4eVK5s0WNp6KtzXsGW1v5zV9KpmYaL5UUnajezhNSZWZtSYXxcHUVweDjhHlXghCvlvR8NJv6C9suFbC/Vf4+u5xOvklbkZKYGN2xrSLMeyS9VdbT1ZMQhRUzyRC3EOcdE2VNJAHfKYQv0kLasMJYMZOyXDFqGypywdtlpolM93IE14zWjigp9IfR864oyhCjrk5ERFip9WYhhBA1NqmtZKMtoqJfIJ9PbeY5KcQR7LHX1fUmj5DaTCqY1uX/UOXg0iP26vfp01VRFEVRFEVRFCVJ6AuWoiiKoiiKoihKkuiXEMHxBT60LEIfAABGjvTZ5PPSecLaOZPOcza5PFDYULfmqHcRj8ze9ezNgxUbhiXzfFlBkiuOPdnZrlnFkxdlSFhrK4tgZGX50L/GZg75a2rxGbPt+ppnNzjb83+5EwAwOsfn2mqJeSERG4bW0eld/EFIUgq7vjXqv8+GmUlxh7YYhzEeXHpw3DFSFXLiL75JLzf1OKHCT9isa+Tznp+bg+6kR+Inl/ZGTq4PR2tp5mskXYiZRDu4XjaF5REJi3NT4rB1unzjVm+sNOG2IpxlaQ1P4D1gxEy/nQx3Me2sWYjXNHZwbo/CzOJkFllRFKXfqG/0/QdM575lWZm/h1UtXM8LHfH5FyFEmJDln3OjD58AAMjL9dNUahs4FLFmx/AOEVR2D/VgKYqiKIqiKIqiJIl+8WBFO/2kejsxu7Y2PjvzYKO0lEdCirL8qHxRZlFPmw9ZpACI5TMzLnHLx157DABgVZ2X0a9urQEAxIIYuhMmKFLxhQpnO3r0CXtWYCWU3jxAj1/DUqKLtr7lbNa7t6PFjwDubGkxNu/ZsIIVUoY9FhViGcbD1S5ET4pHsDx4YYEQYzCcPfn0hGVVmfaeGZHFIjAXH3W8s23YfwYA4N3t253twhmfAACUZo92tjO+fKpb7jB1efq02c6WmZZYQEhRFGWwceelV7nlE8rnAAj3wncRgjJRMTJ6Zm297+PMLImPeKlrZ4GuoszUiWRS9h7qwVIURVEURVEURUkS+oKlKIqiKIqiKIqSJGhXcgURURWA9f1XnCHNxCAIynrfbO+idZYQrbOhh9bZ0EPrbOgxKOsM0HpLgNbZ0GRQ1pvWWUL6VGe79IKlKIqiKIqiKIqi9IyGCCqKoiiKoiiKoiQJfcFSFEVRFEVRFEVJEvqCpSiKoiiKoiiKkiT0BUtRFEVRFEVRFCVJ6AuWoiiKoiiKoihKktAXLEVRFEVRFEVRlCShL1iKoiiKoiiKoihJQl+wFEVRFEVRFEVRkoS+YCmKoiiKoiiKoiQJfcFSFEVRFEVRFEVJEvqCpSiKoiiKoiiKkiT0BUtRFEVRFEWyc6QUAAAgAElEQVRRFCVJ6AuWoiiKoiiKoihKktAXLEVRFEVRFEVRlCShL1iKoiiKoiiKoihJQl+wFEVRFEVRFEVRkoS+YCmKoiiKoiiKoiQJfcFSdgkiCoho2q6u6+WYlxDRy3teOiUMrTNFURRFUQYDRPQyEV3Sw7opRNS4l4vULwyqFywiupCI/ktEjUS0lYieIqLj9vCY84nosmSVMVUw52UnEWUNdFn6CyKaQ0SbBrocyULrbPhAROuIqIWIGoiologWEtEVRDSo7tnDDfNssn+dpo7s508NdPmUPUf7IQOPtrPBx96qkyAI1gRBkN9LWUJf0IjoeCJaQETpZvB4UrLKtTsMmoc1EV0D4FYAPwYwGsAEAH8AcM5AlisVMRfd8QACAGcPaGGUPqF1Niw5KwiCAgATAdwC4FoAd4VtSESRvVmw4UoQBPn2D8AGcB1Z233dtyei9L1fysFXhqGC9kMGB9rOBh+7Wif9ARGl9TLIeAaAJ/dGWfrCoHjBIqIiAD8A8KUgCP4ZBEFTEAQdQRA8HgTBN4koi4huJaIt5u9WO4pPRCOIaB4RVZnR/XlENM6s+xG4U/o785b9u4H7lYOKiwAsAnAPgIvlCiK6h4h+T0RPmNHz14hoathBiOg4ItpIRHNC1mUR0c+JaAMRVRLRbUSUk6BMRES/I6I6IlpGRCeJFRVE9BgR1RDRKiK6vNv3xF0bRJQH4CkAFWKUpWJXTtIgQ+tsmBIEQV0QBI8B+ASAi4lopqnzPxLRk0TUBOBDieqPiErNvbHW1MlL9kFFRNcS0WZz7SyX9ajsGkR0ExE9SERziagBwKeJKJuIfkPsDdlMRL8kokyz/WVENF/s32XklYjOJKKlpm42EdHXxLZnE9ESU6cvE9FMsW4TEX2TiN4F0LSXfv6QhrQfMmTQdjb4IaJcIrqfiHaYc/c6EZWKTSYTR2Y0ENHTRFRi9ptGRIE4zstE9EMiehV8jucCOBrAbaY93SqOeTr4BWuB+fy+2eY8c6wriPsjO4joX0RUbuz2evgKEa0lomoiuoX2NGIkCIIB/wPwUQBRAOk9rP8BuHM5CkAZgIUAfmjWjQRwHoBcAAUA/g7gX2Lf+QAuG+jfOJj+AKwC8EUAhwLoADBarLsHwA4ARwBIB3AfgAfE+gDANFNnGwEc0X2dWf4VgMcAlJh6eRzAzT2U5xJT/18DkAHuSNYBKDHrF4BHEbMBHASgCsCH+3BtzAGwaaDPt9bZ8KyzPazvdQBODrFvAHClqfM6AMeCB8qyE9UfgJsB3GbqKgPc4SMA+5hrosJsNwnA1IH+/UPhL6yOANwEoB3AWaZecsDekIXmWh8F4DUAN5jtLwMwX+yfbtrkJPO5CsAxZrkEwCFm+XAAleZ/BMDnAKwGkGnWbwLwBoBxAHIG+lwNhT9oP2RQ/mk7G3x/YXUSss2XAPzL1E0EwGEA8s26lwGsBDDdtJmXANxk1k0DEIjjvGy+bz/wsyvd2C7p9n3jAWwIq19jOxXAdnB/JBvcP3m+2/bPARgBjhpZ1f07dvk8DXRFmR/3KQDbEqxfDeB08fkjANb1sO1BAHaKz3pj63p+jgN30EvN52UAvibW3wPgTvH5dADLxOcAwLcArAcws9uxbUeewCMNU8W6owGs7aFMlwDYAoCE7XUAnzGNJgagQKy7GcA9vV0bSJHOutbZ8PtDzy9YiwB8x9T5X4U9Yf2BO4ePwrxMi22mgR86JwPIGOjfPZT+wuoI3PF7vpttPYBTxeczAKwyy711/LaYbQq6HfMOmM6jsK0GcKxZ3gTgooE+R0PpD9oPGZR/2s4G319Pz6du23we/CI0K2TdywCuE5+vAjDPLIe9YF0fsv8l3WxfAHB7WP0a218A/Fh8LgT3U8aJ7U/uVqZn9uQ8DYoQQfDoeyn1HMNaAW48lvXGZt2QtxPReiKqB4+cF5POSeiJiwE8GwRBtfl8P7qFnAHYJpabAXSfcHg1gIeCIHivh+8oA49KvGFcw7UAnjb2ntgcmKvaYOu4AkBNEAQN3daNNcs9XhsphNaZYhkLoMYsbxT23urvZ+ARuWeJaA0RXQcAQRCsAl8bNwLYTkQPkIZl7ikbu30Ou97Hom+cC55zuYFYKOFIY58I4Fpb16a+y7sdt3s5lMRoP2Rooe1skEBEEeoqglEBHgR8DsBDJmTzlm5tq7c+i6Qv59iGB/ZEl+sjCIJ6ADvRc13+P3vnHWZXUf7x79x7d+/2nmx6DyWEELr0jtIRFEUUUSwoiopSVFRUFFSa/hALoKgUUXrvBKkBQgsJJKSXTTbZ3WzfvXV+f7xT3t17tmRzN+xm38/z5NnJe8qdc+bMnDnztm2elwyVD6xXAMQAnNrD9hrQg26ZZGQA8H2Qmcv+WusSAIcauTJ/+QRwRKPIH+MMAIcppTYqpTaCTLz2UErtsRWn+jSAU5VS3+lhex2ADgC7aa3LzL9S3XtkmPFKKcX+b9u4BkCFUqq427b1ptzbszHs217aTLAopfYFvQxseHx+r3ptP611i9b6+1rraaCJxIXK+Fppre/QWh8MahMN4Dfb6ZJ2VLo/w0HPu+0LbaAPY8uYLifSer7W+mSQydPDAP5tNq0F8HPW1mVa6wKt9X96qYfQOzIPGV5IPxsiaK1TmgXB0FrXaK3jWuvLtda7gqxwPgnSEg/oJ3r7v/G1Oxj0QRe0P9Dt+TDzk3L4ZwQg6xsL798DYkh8YGmtmwD8FMAflVKnmtWgHKXUcUqp34Kc2i5TSo0yTnI/BXCbObwYNLFoNE5yP+t2+loA07bPlQx5TgWpRGeBTBjmguxaXwAFUegvNQCOAvAdpdQ3um/UWqdBqvXrlFKjAUApNV4p9fFezjkawAWm3T9t6vWo1notyK76SkVOrHMAnAvf/r09G7UAKhU5Lw9XpM1GOEqpEqXUiaCX/m1a64Xd9+mr/RQ5cc8wH8RNoGcqrZTaWSl1pCJn/U7QWJrePlc2YrgTwE8VBRoZBeAn8M/7OwDmKKV2N4sp7v2llMpXFDK8RGudANAC3zY3AThfKbWvIoqUUicpChQjDACZhwx7pJ8NIcx7ZbaiQBHNIDeHbL1buvenwwAs0Fq3AfTBB9JI833uBHCuUmqOed9dCeAFrTVPC3OxUqpMKTUJZCJ417ZUckh8YAGA1voaABcCuAzkcLgWwLdATnJXAHgDwLsAFgJ408gACqmaD1rBfRVkFsP5PYBPKYrs84dBvoyhzhcB/F1rvUZrvdH+A3ADgLPUVoQZ1VqvAU3YL1XB+T0uAZkkvWpMJp4GrfD1xHyQw2MdgF8B+JTWut5sOxPkfF8D4D6QTbRdqejx2dBafwDqVCuMen84mj5Jm41cHlIUIWstyO/qWgBf6mX/3tpvpvl/K2il/kat9XMAoqAQ8HUgk43RIH89IXv8HDTBew/0zM8HvdyhtV4Mcs6fB2AJfPQryxcBrDbteS6Az5vjXgUFO/kTyMxlqd0mDByZhwxrpJ8NLcYBuBf0cbUI9P65I0vnvh7AmWaOcC2Cw7P/DMAdZp/TtNaPg3yR7wOwAaSh6q5RewjA2wDeMvvdui2VVF1dKARBEARBEARBEIY+SqmlAE7UWi8d4PERkIZtqtZ6VbbqNWQ0WIIgCIIgCIIgCP1BKZUH4JaBflwNJqLBEgRBEARBEARhxDFYGiz5wBIEQRAEQRAEQcgSYiIoCIIgCIIgCIKQJeQDSxAEQRAEQRAEIUv0O8QzAFRVVeopkyZl8ee5eaLK3JxK0p+Vy/1eEUqMrsL+21CnfGj9eHscAJC3C4suHbLJ1Nnv2aIK+N0BsOCtt+u01qOycrIsUlVVpSdPyWab7Ti8ueAtabNhxtBts2yPjYx4BwBAb671shCNW2rs5KAjeqdxsyvqZILOU1HNzh3ufsQ2MZLHxiUNq/x/zDsnL8e/dtO620YAKWa2H1b0nkukU042o4xyYYbU4K2PDtV+BmS/3biXRG/Tgc5khyvHUjTPSGnfLjznem4oBwCQF8l3srDKbr/qzupVa1BXV5edCU2W2R59bXWzT2eUTNOcMD8nx8l0QF/jbdaZTGacc1rpxAxZthmqfW1Q32ntzfQ37NsH0fzgfXsjZvpkews7Tx79zS/ysiyPlf19p23VB9aUSZPwxovzBlyp7ugUe6DNS50/8LqlAQDQfOZpTpZTSTctUuaTcqdaOl159QLqZDs//YiTqYKSzN8zvU1FWANvA6qwbHVWTpRlJk+ZhJfmv/hRV2NIkh8plDYbZgzVNsv62Jj2i0Z6zSIAQPqma/wO0SgAIPLTv2z1uVP33ujP3UAfW+GzLnQylV+81efsjZE8Nh5917munEzQZHzWOP8x22EmdUnW3m2JhCuXmnbe0OInEPef+nsAQF54ABOSfjJU+xmQ/Xbjfuiqly+spU2LXHl50woAQHO82cmi4agrjyuk9H2zymc7WVFOybZXthcO2v/gQT3/trA9+to3n73ElTe3twMA5owe62TJNPW1NPvAioT8FHhJPY2F/Hm48/jfD05lGUO1r/X3nRYUxyGoH/F3WvqtZ2g/trAXmjpnq+uYXvkunfv157xw+iw63+6+P6jczLGyv/UOor/vNDERFARBEARBEARByBJbpcHaFjQzcbDqOhXu/efbvnomAGD+u940pi29AQCwstOv8u2cn+vKOeYLdMaNP3OyyA+u6/H3unzFWq1WSL47BUH46Ehdf5Err73zfwCAwkI/fr26jLT7HX+e6WSfmEur5gW7+FVbrt1/9vEPAABJNubNnVgKAMj952NONuq7ZwMAwqd9cxuvYuTSkaQV9JdeWuhk06dS+7xQ1+hkm+qbAAA5zGxwp5neLKk9TqZoG9bXOdkDK+8FAHxmxlnZrrZg+LBpsSsf8fvvAAC2NHktop036FXMNCnXzxsKplYAANKsr42vrgQAvPe9+zN+L6396v5gmn7uiMRTMQDA3294yAsTdD8fDjGNhG2LMJPx7VZ7wdpsy1HU78qjVdmr8A5MoObKmAOmF77ghetW0rb33nCi+PVXAAA6lm/KOEf+9NGuHKvZ4uU7jaffPewov/OHNOamO1p9vSbtQn/H+/el+w4ZxPm+9GRBEARBEARBEIQsMegaLO20QpkOntbHCgCSPz8fAHDPHf6LNmS+hnPYV3HCnG9qnvedirJVCLvvs3943J/797Q6e9TJu/n9fvI7+o0x03yFzLH9tckWBEEYDEInf96Vix5+BQCQP9r7Ru0VpxXaTZu94/1LC0nT/+DzPijQkcxXdXwujZkVxV7jXzGxDACQZJouddDx234BI5zL518FABg7ptLJKqtIW1hS7NukrJzaNJn0Fh7Vpb6dGzupXaZN8VrJP736FADRYGWLoHf8l++/0pWt5mriWO/T7tprdCWCSJnAW7m5fp6y/D1y27h3xX+c7LRpZwyw1oJlQd18KqSYNdL4QvqbTGcewNubN32emQ5vavfn3kzz0aMnfCILNd0xCeo/mw4/wJUrDtmVCuXlfod84xPV6d87oXFjAACF+d6XMbaa/OJCBXn+0GMO9Ocxx+sP3/eyZuMX+b7XQtc//1uqy6ePcLLI+b/u8ZqyhWiwBEEQBEEQBEEQsoR8YAmCIAiCIAiCIGSJQTER5OEYrQOZ7vQOZ00nk7p13mKWj8X8rWTOvrkBqscGo5qfWeLDLrZ2+vDrEXNMEbuyuFEdP/+QVxmGHj4BALD/fhOcrPi/ZHrRJVS8uRYJfCEIwvZCjfb5R8LWBNonTUJBQebQvdt4CgM9rsCbWHBz55gxl8nNYeba5tw2/QUAhKqnDLziAgDgtdVrAQBlZf6+1tdRQIspzKystZ1MXNKsbXk+no4OcuBP5vAgUfRnWZM3i5lRumuWai4AwJYGH7yitJjMzXg8rLwomdnG4j7YFp832HJHhzeBCpeRmdOiumVOdhrzUBAGxgvrX6NCnPURay6YzAzFDcVkPOCFNSdkffE3L98NADj6DDER7A+pW34BAKj88fleOHYK/d3C8jjWmUAWYf8uCh1F5rKqsMzJ+vpASa+lwE36zee9cLz5PZZuZNQFlC8y/dRdTrZin30AANPe8G5J2Ua+GgRBEARBEARBELLEoGiwgrQ97849yJU/aCYnwjHMAdRqnrifojZ6LbaggNFGwzVqlNdgNaz2yf4iYRuowh+Tl0P1iUZ8vexi03OvrHGyQ487FABQ9tj/er0WoWdcUJMA7eOSxvdcmW+vMCFQO1PeYd+GreXJG4tyyEm8Ob6FyWjVvthsE7KDvf/bO2TwlpgPR33TolsBABfv9YPtWochQYFPSrq5jvpFVUDwnZJiP4YmzApuEQvnXt8Yc+VOo40ft+d4J4utp74ULvCBL4Rtp7mpDQCQzxy2O402KpHOdLzv7IwHnidlLDYikcwgUU3xpm2u50gmaIxrT1K7rVy30clGV9CKehvTRhUZp3seur2L5YvpqwV5vv1tG0YjmX1NQYJpDZRnViylQijgHm7NbbUarKgfP5cvWz/wio1A9ApKwI01fl69/glKBjz+nI87maqmlBWoZyHZU15zn3HePgLP6RUf+v/U1phz1ztR47NvAQBKvniKk0198sEefy9byNeDIAiCIAiCIAhClpAPLEEQBEEQBEEQhCwx6Hmw0qsoq/LiZp9bYEI0U0UeN3aAKXhVoM1pFWGq33ZjXvHBam8ekctU/PG0NS3zsmRALoSw2T612MfXf3URqSuPXb/UyULjd+rhyoQgrFlnkMnD3O/63D7FE7wjY8KYwXS+XZtxDHdCHX/IdADA+ue9k/DOJ+wOAJg9faKTzXt9EQDgt2ee7WSfm/kFAN4sROgdazbTk2q+Od4IAHifmX3WdZBKflG9V9d/ffa5ALqacFozwIqozytjz11uzEUBYGUjBcFJpr0j+cjB3/eKChqjOjq8E3epCWhRXcpMpdeTqfS62jYn44GC9tqD8ozolO8DiRiZZUTHsxwlwjZjzcG4aV+pCXjRFvfmgKFQZj9Ls3JbG5mlVVf6/lNbT+++1oQPHCVsPUHmz79/+wYAQHGhz1VWWkJBLpYs9WZPTVEyzf3hZ092stv/94orr1hLJoYVZd7UN27ec/e+ucDJLt6L/kq+zYEz/3UTvCyaaUYbaDbI4ffd7hv1z0UsMRLfPVuHjrMciqd+FgAQ2s3nqpr0Y+or6Xl3+2M+oHmDKiz0J8ql95zu8Ga3CNOxutHPDXWn/5bQm9dRodgHtFA55vviuNOcrPyH1K91vTf5bD77cwCAoq99zv/cyV8LvsgBIhosQRAEQRAEQRCELDHoGiz95gsAgARblbPO1ikmKzHhGuNdglz0TIStPCTZnkUmBHEq1btTnA2LmwyI7KlffdILTxcN1tagrYaIrQ7O3/QiAKBiqtdO5LEAJ7EEraKXHDTFydo7ySG8pMivJE6YMBoAsH4X77xoV4j5s5RKUaNarZUwcFKap0DwbfanhX8FAFz+q1v9zuXGoXuzD1byq13uAwDEN3mtCmxahRKvyS6sotX92bN83OK1a2nVKnUY66QjhWb/jG8297Oywmvb2zeR9oIPbVXTKfx3MuE1VKMm+BX0VDv1qc4m3z5Wux+vaXQyqxPry7FY6Jm0eccl2QvGjlVcQ2X3a2/3q8DxlD+Gt0F3wqFBf32PCGZd47VQnTHSWHzqiP2c7NUl5Lg/Y7oPDrOmhrTrE4qrnYxrK8dUkUY4wixpjjxgDgDgg5V+FX30ZYcDAN790W3+2AKfOkbom/w8EzI/N0BfEDRs9TSWpTL7WkN9c8COQheafKCKhZ+/BAAwdaa3iHh9Ib3HD//O8U4WOv3LVIj5dxEiZv6Q9IGZ0NmWuR9rv9BkSk+RjrCxsJU0/Pq+O5xo0ecvBADksBQl086ioHahj3vLqmwjGixBEARBEARBEIQsIR9YgiAIgiAIgiAIWWLQbQySzzxDf5n21Qa0iLGAA9bkjwessPENuObWKgd3muqdft9d7s1bSopJXbyF5X8JhWxurEwVcGvCm2NYM7P0Sy/6Opz+rR6ubGTC76ENaMGdhYPMVk654acAupoFhlh+MWvS1xH35mixeCLj96qNjJugpWfS9s6kP3ZURc85sSTfyNYRUgGOwwD2GzMXABBm/TBq2re90LezNS0LVXrztvQm036sj7a1UfvNb/ZBM0oryLwtGvbHjhRSf/utK7e00XNfVupNKmOxzGAtkVoyZxmzkzfFbVrrc8bZrpRkA2rYjI1tzd5ErSRO7aNyfQANYeuw5mKJhB+XbE6sBDMBjJpgCXUNPmjTmLGVrmzHyRgzNbTnLM4pyna1RxTfeu5SAEAHy0G231xyCXhp8bKM/QsKfX8oMuXyqB//QswcsLSUnPdzcvz7cOGSVQCAfXeb4c9TROc5/tbvOdmb3/zvVl7JyKbVBIJBJEBfwINc2GGvF7NbAEAOO08H9bW2pA8oUxiRfteFPH8/5i55BwCgk75PHWXyW+ka36fqv/RVAEDRFOY28qd/Z5xalZixMJLDhL5N0/MfAwDUXnaNk40+jMwGw5f9n5Pt9nMfBMOijXl27LzTfR3+el/GftuCaLAEQRAEQRAEQRCyxKBrsDpXUkhm7ti7wWgiRrPVnaTZrsG0Wpq+VKNsFSJlZMtXeedD/pW4sYFWX/OZw6n94OVak4TRXK3u9KvohSbQRvtSn8W9Z13IyIQ7u1ttEA+jHQnRSsPKFh+qO2raOZdpsLY0+VCcpcW02tfIsnpHjONqW6MPyWlXhfMm+FZJmGdperl3qnxi3hsAgH8v847Dn51BjoxpSJj2rUH3EGrGhojmYe9TZkUIbf55KB1F4fi3NPsgF2mrgWRaLVTQ6n5FlW/bcWP8Sv6Io7MzQxRi42A4QuUwk3WY1dbkBq8N4Yu1tutGWOoDK+Mh4J1jsWiwBozVdjQ1+nEubMYvHviipID2S7LQ+a0tfswL8sdPpWwqkmj2KjwCeXPlWgDAqFE+ZciKdeSQn2DWFPkFdJ+5NUXcvHcKcnyYaa6tajdaFf7Oi5jtby5Z6WRWg7VxU4OTvb/lXQDAruVztv6iRiBJE5gkUIPFxrouZlSWoNcbl5mAQRva1jrRjNJdt76SOzCpay5x5ZaXKGR+SyubA5TTM55ifarqXqMpKmGpWkI963tUQUmgPHz4GQCAsY8d7WTpBU8DAN6ac5CTzZhFmrKLn/YpmG647FQAQM4xR/b4u9uKaLAEQRAEQRAEQRCyhHxgCYIgCIIgCIIgZIlBNxGsqyVzkzxmyrI+TiYShWFvFlEWIZOw9rQ3nwgZ+4hYmuU4MvrbOJNxP0Z7xi7qfOPUXZTnL3eNMWNqTPo6TIqSKcC7izY72SG9X56A4MARFz53vSvbtkgx525uOrGpnkyaCop9zitnblbgHftDASrkjZvJiZ8HudDtVD5p8imZle3LwVXoQlr7NguzgBdJnZmbKmHbIO77VGD+pHxznljmOdo7vMkuN6UaaahJk105EnoxY3uol7xU/BEPhzP34zkCrdlhio2nSMS6HyJsJWNLyal6c603/bL3Oui53mXmRFdeudqbqE+fOo6OSWeaNpdHK7JT2RFES8Kbz9aytrGUlVG78e7VYfLHWVNBwJt0dgn6FPBu4UFOrNlhhOXiaWokU2v+bntyzXMAxESw3wS8R9yUJCC3FVq8+RoKAqbAfMg0bbq6dY0TiYlgV8KX/dGVy808vqzdu/AsPfBwAMCMKy/wB5l3TPPJ3jxv+RLqjxMn+qAZ2ryX0uz91N7u+9TyzfR9ceTV33Sy0DFkNrjHX/0xqy/6HQDgj6/c7us95zD6jVYfJC+95DU6x84+D962IBosQRAEQRAEQRCELDHoGqz19eTQHmFLQoVmJW9dzH+JTjHaI64NSdsw4EzWalaOxuSGM2QAkK9s4AX/9dppVv9K2Gpug1lFrGCrSTnm2Jq4DzEp9IxdsQsKzf7MC2+7cpnRTDU0tTKZdw7OM6GKO2N+Zcmt9rIVwNZWcv6ewIIfWMfx/cbt7GQfHk0rIeEeQowLfWPbNieUG7j9/qWv0H7Nvq9Eq2jlqTPfy9wqcYdvRx91JvO8Mdb3Ro0uz9xhhJB87Q1XzjVhg1MBq7FBCtlEIjiQS5DSy2oYk0yTn179PgAgXDm+3/UVujK6kMa3GHPstqSYBmt8cXGXvwDwzhveETt3Z9Jkck2I1YCF1aC/vnc43qrz/aojRmNNcSGznDBWFjnMwqK9vdNsYwF9rAaLBU3qEkTLtFFePhs/c6m9ePvbY7j2a95qav/v7NH/6xrRpHuxSmFjoSo3wUp4GPY6n/IFBabN+UBpxtyatg3bXM0dlQU77+3Ke958GQBAL37HyaZ/YjcAQP1v/uJklTdQqoKSW30gsrn1NRnn1h1mzhjx/Ujl+uBYk5vrAQChXfZ3stSNPwMArL/3FSebdMwsOt/9dzhZ049ovw6WomTU975IBdFgCYIgCIIgCIIgDC3kA0sQBEEQBEEQBCFLDLqNwaoYObMVBAQo6GSq3aQ1B+yinSVZlB2bb8qTxnkTs0VreU4skx+GqXkT1pSNmQi2m9/mwTcstYmR61y/NaS0cdpV3pzinXoywago9Y6KkyePAQCUlfg228AcjJtXkmqYm0lUllHeg5oF3rl0UcMSAMBRpx/oZA+f+qeMep2985d6rHOQOaOQSVBwiiWN77nyEy+RCejUXb1z/qZ6chaNlHgVfrLJqN87A/pUKNMUIxz1Zp2hgL45Ulj+/HJXjprgPElmIhju573h+QdtfpeuubHIhCbNzQ/bfe4mYWBUFZDJX2u7N0GyZmVxng+mgMbJyjyWcbHRBxmJGTM2rf0Ya/tmfsSPp0L/eKVmgStb8zzelzo76X4XFvoccJFwpqm5HR75O4uPV1bOx1HrsB9n5p45xsSdz1c2bMoMviEMEJb7ypqCTpjpcy8tfjJg97MAACAASURBVNC7MqAkwBzeuo20bMrcJgAA9n7nBVfWG+i91fDL3zvZspU0P9//lQedLDRmGgAg9fAt/kS16+nvuEmZP8LybeqEdyXRG9ZRYcpuTha5mH570kUsMMbnjgMApJl5btFVVwAASmcf3NOlbTOiwRIEQRAEQRAEQcgSg76cP844izYGhKbNZSs+uWaloJNtDwr/HTMBK5au86usOSozMAaPtdmbD2QQ7algJ3Ghb659g5wI+cpeczOF0nznPb8q/9KlN7jybuVz+3Xuxhg5NK5sWd7HnsQ/PvibK9+/lFYu7zj+d/06ViDakz4wyWl/+7ErV5WThrGj06+2t9WaPslDg9swuDzwQr6RMWfjcD6NE9FcPyS1NLdvU92HMyXFfjW1vSMgUEIvg1pQuGjAr7B3DS0doAlb/gH9HbyFvR2eWZXkxN3c4ldtO0ywBB6mvTNpNCa5XmPCw07btuLHhMPUbwoj3kpA6B8LN3lH+ojRYHEtUyKeyDgmEsnUYNkulNLBKSl8ahIeGCNzDhQKqENt7ZbeL0LoSsS8R/j9DTkVoxPZPlRRWeL340NlUBSgeuqzm1nYcaErqqjMl2dSwItRz77sZFVxuod/muC1TF+/7xoAgJ7/kpN1LFoNAAgXs7EwAM36VMsa0vaOmraTk7Xf9E8AwGMvr3ay02/9KZ37mM/3eT3ZRDRYgiAIgiAIgiAIWUI+sARBEARBEARBELLEoJgI6oQ3G7I5quIBZiuNLPeKDWjRxEwhbGAMzfS4ditX5nJTwrgNXsG0+jYHVyLOVIumXuUR/41pf2dOoXfS1w1kUqAqxmXUfySSZiYRkVBOxvZ7n3oVAFBZ5vO6tLSQqVdspTd9uH6Bz6h909H9MxEsi1L+qz2jlRnb/rX0Vn/uZx4FACxeuMLJcosoB0bnx4e+2ZnWwU7S2SSVzsxLxfOGJc32va4/08nGTxjtys0mp9nGzcwh25oG8iAKRqbjzHzDmgYW+OHHmj2FmUN5T6ZuI4FtaXbWRaH6uYQWYmadumb9wH9cAADsUUVJjJIpbu5Hf+Mxn+stlqR+VpjDzGLimSbq3ESworI0Y7vQPzY0edeCUEDgLe0CwXAz2qD8cyTjc5Nonjfrte3V1xjmckmycW9zQ1OvxwjdiJixK8Zkdjjj+f3MvZ5Q1kP/8Y2fsSkWYN4pEDrNXzjK/PHvk9RfLgcAnPfGw04WmrQrHbvPsU5WZF9WvF/acwf0VQAoiNF8ThV6M8XiY78AAPh0gzcHTv32EiqIiaAgCIIgCIIgCMLwZHA0WBu85qDTfIHyL7m2gBDpNpR6HvtSLTKrOim2omBXIcryvPakrsM7ptqjk8wJ3AbB2ML2O7KUQtyuYE76IbNfa9qvVqRNCMrwEZ8JuNKRB9dghcyKw82Lb3Ky0WZ1NS/qV/NsWNrJ+01zstuufsCVvzT7RADAgWMO6/W3rdblijd+42RX3XofFdqZRiaX6pVb5leFjzyYtGTl0apef2M4wdtia7dHAsLVr2z50JVP+Ov3AQCfPngfJ5tQXO3K1z32CACgM8acwq1zPtNMaRvcgjnu25DsqPCaYldnthq2cvWGHuu/o9PQ4MP9FBTQWLetGj23QMseCxssg4eYTq6g0LeS0GDgTC2eCaCrJjJhxkHeZ5pNGpMxBb5vgYXMtyvBvF8cPGlKtqs7Yqjf3OjKVmseFJyC9zV77yMqs0d0JH0Y/mjUz0lsQAud5pqwzPrYdyN/TpKd8cwdhZ7p7TXItMGFBfS+mVvtw4D/m+9rG2GQrEZ2VFQP2iW3/TAKkf7mEWc42Z6//ToA4LkL/+hkzabPFIW8NtcGreNZRHhQu8XtNH6ed9oefgfT0eoW+fnD2Buv7LF+vK9n22JINFiCIAiCIAiCIAhZQj6wBEEQBEEQBEEQssTgmAh+8IYrWwUtzyTRadTmpWH/fWcDVXCzQWsaGOuSa4L+8jwxmzq8Sj3fqCs7mUlFicmt0xT3ZmSVlWQ+tmCNV/GPMcckuSq/YXPAFY48rHkeNy1LpOm+f/uaG51s4s7jAQC5zFyitY3uMTf1LNt/gisfdc5XAQBtj33gZNb88G/v3+xkVz9KOWVWLlmXWcFi/3t5JkhJPnM6Xr6yJuOQoYpSXlUd5Ext702ojwgGvW1PsiAXP3n1lwCAp95938lu/+JlAIApxd6s86ZFt7qyNQHtYoZoA8bwPFidxjSQ58GqpPbJifhnyQYDsGYcANDcMvQDkmQbHae+0tzp26e0jAK0xGOZuZB4cIq0saNIM7OkEAsAZJ8hnpsnyLwjtp6C0WQacApbS3mpD/YTN6aBxcUFTlbTSsFi9qzyprjg78CAnIwzKyZlyIT+UbfF5zMqKy7M2B6UqyrIbMiOe7GUn3vksEAV9hjF2tL22RjLtZVjcmx1CbhhJiANMT/3qIiOCrocAej6vukOe+8U5NE4OqV0QvC+9jQBOQaT6d7N8UcyfZnYNX//RwCAPf98iZPZfFRHn/6tbfrtY3vZNvaBv7hy62W/AAAUXeIDrYUPOZ0KKeZeEskM3LYtiAZLEARBEARBEAQhS8gHliAIgiAIgiAIQpYYHBPB5Utc2X7BxZgasd2YsnysOOpksYCIZ0lj0sLzXEVM+cPaVv97fdQnnrSRDP158vPp0nkerDZjjpHLowotWkiF0/v4kSGK1t6coTeTMW7qZctpFp4nN5Sbccyx/6ZIMNNnT3ayisoSAEBDvTfFKDEmMdw8I5rDVLEzKfJg4fn7OdEFZx0PAPjDbY/4/UxEoJwKb2KTNOrdMIs8EwlnXifPUTKccKYm6NlMBfDmX2ntTVxq2tcCAFY1r3Syu5c+AwB46MU3nezo/XcHADzzZa9S39RBEXjOevQyJ3tv4XJXbmnv7FI/ANAmeqPKZbmsbBUrvcFZ5QTKY1aY72WFxqyTn2/Lh2Qi05EcQaaCHTSudQaYqfB7Y80Aw5FMGTfZSKV6P4+FRxFs2kJmipJtaduZON6bdm02EezyC/x7r6Gech4V57C7nePHLxvBjudJmlE6fVDqOhLYwvJgVZQWAejaH6wpWIK5E1jTvq6RBTP7GieWSGbIQuY8PKeZCsgbZFnTusrXVUwEe6a3yG9s/LPmmCU5xcH7BjWlOXVd+wh6B2WZkivIRBDvLXCyNQfQXO/ttT7nW6fpS5FemhPo6sLTbPrSbgU+YvTcI8itIWfnKU5W/IfrAQChaQE5VwcxaqRosARBEARBEARBELLEoGiwUu+9nyHjX52jzArdxFK/gr2ykVZNi5j2ocOu3gWtuDIRX3iwZdXFubvr+QCgdCqtoseW1TnZZpN/YirTdrS/SbmBSjJqMDxQymuurMZDM81H2ASt4Nqt3jRdX3/mYlfetLEBAFDEnLbtil5evr+HnSYISfWocifrYIFJbFCK0iJ/nj/cRAEtsNGvHHU8vhQA8M1nvbPk329/EgAQGVXUY52Bbk7Ew5CHVt3ryncveREAsGilD/axaMlqKjT7+1o2ge73zOneqffgGVMBAA9841dONrucVnUeYL9xxeP/BQCs3+D7R2u7DwgTMSvqPKACWmnVVuewkDZxs1rLOmxjE2lpuJO5XcFta/O/gQQdy529d3R0cz2Arqt4Nj9fit3rcMjmR+J5dqwWkx+b+RtdzmPGSb7fli2UW0RCKWw7u0/xfe/R9fQcc+1IYUXAanrcaziSpg8UsOAvM0p2ynY1d3hsUJ90zN/7oJxXNlBFoouWif6GdChDxoMFRUKZ23WAJpqPo8WF9M7LyWFTsSjVYXmTzyc6t3Lfni5NSGQGJgkiYjRYowtGB+9gnwM+3zRtsaFuS8ABAoCuCd5scK5Wn2+u7cprAAAFu/k3ykQTsGxicWXv53a5ydj8jeWpddsTPm+kfYemr/XWNy0XfBcAUHjcgU4WOf/XmfXPMsN71ikIgiAIgiAIgjCEkA8sQRAEQRAEQRCELDEoJoKtH2xwZat8a2X5PGyuq6IiH+ggsYVMwbhG3foncnOZiFEJjmUBMtY1xzKO4VpeW2xjqsVwCTnFlTHn4TqTM4ErDDuMw/dwNRHU2ptAONO/PvIn1XVuBAC8tuk1J7tq3t0AgA0b6p1sytSxAICW5jYnq6khkzJuumSDXKyr8aZebc3e9G/8BFLZ19Z5tbI1Ddz8kM+pZlnewNT1RoXPA1tYh3Bu+hEKspUaBty17HYAwMV3/sPJTj5kbwDAG+f9x8liKVKRn/fMj53sPWNCeOEhJzvZYeMOB+BzmAHAkqZFAICHls13soTJ1RJlpivNSd+H45uMmQszuUGU9i0o9OZM7TZHyWZvFpNaS8FOli9j7W2el8jOFV42lkwIy6N9mBHsQOgNKzJkkUimOaAllGZBLsxm/qinAo5JdXH8zhwLWmOZDvrCwDh4wq6u/IR6GwDQ3uHfV6NyyjOO4S8vO4aFI/49VZIbcIzQK50p875hvgrWLDnE3h3NxkSZB53IzaG5QlBAi/akN01KBwTB4LGJbB60GDMRLQmybDcdeHN7Q4/XIzCSvZh4lXlXhYh5l5XnVgTvawdOfjrjztLc1Ja5vwAgOJdiepkPolV46fcAAKE9Dney1O3XAgA6nnjRH9Pm5yTd4X1PJzNNQnOrvKl1dM+d6ffO/a6TFSXp3KEpszNPHgpnyrKEaLAEQRAEQRAEQRCyxKBosOJxv9Jtv+A2M0fET46ikLRVM33o0YaVtFqTz76G80yZJ+puMFqoCFt5TXbJJE1/+WqS1W4k2GpuyDji71btv3wXrSTtTA5bvYrF++dAOVRRyq/GWS3HfSvvdttfWkfaiw/rvWaq1gSvOOfgQ5zsM3vuDwBom+01EasaSSM1n4VkLzbaKrtaBwAdJnhIW6tf7Rtd7VeRWsyqYbLVr+y2P7bE1D9T85TDVnPtAxZhMntMVw3W8FlL4KH1f/3oPQCAplav8fvbQ88BAG6+ZQ8nO/CEfQAAe4wb42R5JljLg8tedbLyaBkAoDnu2+zlmncAAG8tWeVkGzeTlrCVaRrRzjQbxaR9zh3rl2Dt7c7P99plW4dweQmT0fZYzK9YdcQyV69a1lEdw2pQhqmhyQYKrR9iz719nrkGKxQQ5MKWQ2zA5Nt9SOjeq2CDAWmW4V6FR1AbZJH9x/jgBCl9BwAgnwVRam2h/tXJUhEUzq12ZRvSm49vvQUhEoJpjBttENPeWq1gkoVUj8VpHEqk/Bhm3x0qoE/Gkn7c4nOOeECYdhs4g/e/IP/6aC6NretbN/VyRSObFAsuAmtZERT5jLW3nQ9U548LPqkdK3mbmJQjXOss9I2q9ql7mr/8JQDA/xb+wMk+fgppkgrO8NY1iAS8Y6zVWU+RmyLGCq7Fh3vXi94DACw86ctONqqKrGpGn3O8P/QrP+vHlWwbMlILgiAIgiAIgiBkCfnAEgRBEARBEARByBKDYvfBTbNsUIpOpuKbdQRlolcsY/0G4/g5nZlP2FxWPH+VpWaLNzfLY+ZfcfM7OV0chekvN/ZTUfqdURO86VJyRV2XOgPBTuDDCa01kmky19v3hjMBePMvAJgyiUzK8th9HzWanKhzwz4ISTRM259b7XOc5RqzoTBzEo4Zc0CuUq9dSaYOFZN8sAJu8tL8Xg0A4N2/+qAN1gQjpVlgEmVyL3GT0NyeHRS5+QWv41Bnc+dm/GXRnwEAdVvITG7nGRPd9sZGyiPVVOgdb19+nhzoX25lphOl1H5vRj90oidfIXPALU0tTpZuNG3VyXpIYcDQUOKfkVzjMMzNZuKmzeu3MLPCBnPuAna+DlNHrvY3wUpyJpZ6mWmz9xrezqzLjkoT9c2x5T5QSDKZOf5ZK4kkCx5kx10m6tIH7HZuohQ3ptu5LHeZHUPR4Z8RFElghYEwvtDnfrF5ktLsfVZeYd4/PKhCrh93XV5BJhO2nk0dtVTgwa/MPec5r3Jz6D7rLgErqL14MAw7N4kzU7Uoe6e5HFtdzHpDZltm/ZJJfx47ti5rkCAXPaG4may9n/x9Yts5oB1t7s8MrDlhDntIjLl1ZzwRcIDQE4krfL7U4gvIVO+kg050MlVSBQBIb1juZHr9MrOtj6BWLI+rNv0mvJvPb6U7aX405wfMbDBm5iQRP4dxdRlE95HhM+sUBEEQBEEQBEEY4gy657J11mZxLxDZl5zzY8/7MOCVZvWHa6OazMoSD3wRM6sQfE03jzm9pZyfYkBIVb60W0FBFnIq/Vdus9ke6cMJfDjRkerA+40LAQAtrRRMgjvgvr90DQCgtKTQyQrzafX85rp5TmY1XAl2rHXQ5qGgG5tp9SDGVnyqp1IYdh5oouadta78k4s+DwCYWToro/5Wa8UpYKHDI+FMTYpdKe5M+joUFuVnnGeoUh4tw2nTTwEA3DruBQDA0uXr3PbKsuKMY8ZPJsd43j71jaSBSLEV2vq1JpgJf8ZtucprTUJGc5vmQV5YoJq4DbueYH0qj9oqVOXvdW4VBcHgK8L22eCh8/ONRpmv7lbOImfkNze/g5FC4mUaEzuZNtGms4gEaNO7aqgyZelU5jjIg2C4wBfs1HG7+s5CxquZe/fzCgROcY7XyNoxtpMFAGpvJ0sMa2UAAHE2dloN5f7jvSZM2HoaOo3VButDdvzp0l/SVsvr+4jVcPH3V8rMQ5JMg5UfydQydgkvHaRBNivwpUUF/tymzdfXsXQkQhcCA73woS5g3ONWM4EERXs3Y2UsIAiT0DPRP97jysnffgcAUHvln50sZj4Iyqr8c//+YrIgyw2wNtp5Hx+YJM3mM/Nfo3nR4Wcf4GTP/fMVAMBOY/08Kd/MTSqv+pE/6WgKxDGYwZxEgyUIgiAIgiAIgpAl5ANLEARBEARBEAQhSwyKiWAOCzxgteFppn9V0yjTcvqxF5yswDoTMgfgXJvrhR1rA1CMK/V5Kt5v8M7+43LJ1ChAQ9wl0AaidHxOdZkTBSUEzy8c3s7FBZEC7F6xFwBg5Y8fBwBsbPfmZje8czMA4E8PPutkVh2+ZvUGfyJrHrHFB69Qo8ikrCDPt4WFm0bULjcOxht88IMfXH6WK/9on0t7rL/ukuPMZLjf0pKxPcXMPyMBTot8+1AnJ5SD6vzxAID5X70TANASb3Tbn1r3JADgrG9e5mRjTtgdALBk8Sonyy2m9knFM3OycFMZWDPANm+alDYq9S62uGtbXXHyYTMBAPvOnuFkF+5DQVQO+833nKxzpTFzKWb9yIwP6Q5fr7YIPXPhEv8sbTQmMj++487M+u+gRH/1fwCAiV/0/WPVMroP3JSp1AQcSaW9uYQ3eQqydelqyusIeAOkrIlg7RovFBPBbaaikswFV6xY72QFBdRHi3JKAo+xJr8Hjcu8/2nm7C25sXqnKW5cAQLMbHmACd6fnMy8O7jZoO1rTTH/TuO565Iu5xXPSZf5DkqlMvezpmyN7D0ndMXm9ATg82CxoGkuClDQRLAn7Hl44tVQZiAUoW+SPz7HlTuW0ng3+t//crLQuJkZx3xsAL9ztPnLzfyO+WUkQ5a+/WoqrF+deZIe3pfZQEZlQRAEQRAEQRCELDEoGqxoCXOWN38T/CsxStsjZT6wQp1xlp8SZQ7Y5m+crdTZkO1tbf7rNMQ89m0QDB6mPWFWbuNdnCDNisT06U6U1M9lXEtOZVGGbLgzpmCCK19xwOVd/gJ+ZfS1TS852d1LnwAAzFu01Mm2mBW2NhaS3a6+jWVBM3Y5lDRofzjSh+4cW+DDjluCtFU8WIkNjXvG3P2crLaWQtlyDZV1RuZOyftP9Nc8HCnO9ZrW06adAQDoePyMjP0eXn2/Kx845iAAwLee/ZWTRcPUPmsavEasoZ5WdyeMH+VkK1ZQ6PzXLrjdyQoj/esLNb9+zJWXNS8BAHzj/uucrL6eQs+/8O2/ONmhN5wHADj3qMOc7LzZX+lyDgA46Koj+1WH4YqqJM1lyV2+HceecFzGfg1Gk8z7TF6UhvMEC+uulN+eihln/TBfaTfjJVvZL7ROxjG2SixsMxMqqQ8v+dBrBsM84oGBj1tWUzK9dEbGfkL/qesgLbCKZAZ4SfNQ6kYTGO6S5kWb/TJTInQy7RfXYNm0IEHa5CgLue/fVfxYGqPb2qX/9USXIGZBGizbpmy3/PxMS5tuJ83ENEtMwrT3SFCQiPDPfECL4lya73cJ+JI0QUOYBhghYzXDA03YVEEd3noGubwdTQOxMVPb4Ga8P57ds5UUshzYgiMaLEEQBEEQBEEQhCwhH1iCIAiCIAiCIAhZYnBMBMd6c6YUyMEtyp1wCyg+fbjIq/p2ys/MsJwO0NlaNXwLczos4OpB85ebJNo8WbMKArI473UQ+x8FfODBLsLFwyd/UrawZhIfqz7EyVz5kKAjsoMKMpcJcN4+f/fzA8s7ItyR3dKbQ/uJk0/NkN1x3PVZrVNfcIf9uZX7AgBeOfeOXo9ZctFDPW7bq2r/7FRsGKCNk70q9GPo6HmvZOxXee+NAIB1v73VyWpqydwiysz9SlhwkVA+DffMGslZ0nCzwhlV3rxXyB67VFGuuoc7fU6dIKskbkpjzcWKA4JgKGSOl0IwCzetAtD1HdPeRiZ4NtAEAORFqb8kmCySjpj9MsfiONsvzdrN5prkOSdtwBJ+HqXo+FhAIKKWto5er2kk0+W9aAexUO/9YVRFaa/b4dqF5cuy54xJkIseCWXmF1O53k1IN5ogZznMtM+a5fG5TDLADDPHnIflm0OK/V7CjKVhJgsYVHXMBMIrKvd1jFIOrqB5Z7YQDZYgCIIgCIIgCEKWGBQNVrjMO8PbVZ0ynkF9EoVpb122ycmazUpQKcu2HTYrdDyIRdjEjeaLFbncmU3ZYzy23MC0XqkVFK4x5yT/RVtkHFOZHywi1RVBlygI2wUJvzyyUGY1MMg5nq+0hU/7JgBgsvkLABMeuxUA0PF3ry1srmly5cYmWu3r7PTjYE4kc/WustKsGibiGduE/mFX2Hn/rS6kd0mSvYcq8zMtJHiQixzzPsyPZGoVgwIACcFUFdD9KyvxcxPbn7i2Kmm0GLksEIXtdkmmeco3aV54SpAwK+fmZE6tbACoIE1Xgmm6bICMkqKCvi9shFLXWZsp5F0gQJs1sSQ4FYLDNktQVwpL/9oaNE9JYDRFYP0MqYDUMUHh0u1+SfYuijBLNNs5A1IgdNGO5ZpxNicvc79BRGZvgiAIgiAIgiAIWUI+sARBEARBEARBELLEoJgIvnXXm65slX6tTL2u2ygPTumjzzvZnFlzAQA1rT6nkqWFqRa3GPMK7nLITSVyjVqwi9mgUc3vUujNMaI33E3nMc7iANBsHL1jLC/GwjtfAwDs+fOMagmCIAwKQY63Xcwu7JjHzCDCx50DACgyfwGAZy6rfp+CZSR+/zsnW/865WRKdskjZ3LQvfe2P/gTX9yK2gtB5IbI7CzV6PMbrdpUn7Ffc32LK1vH/LzwyAu2lE0+OYNyyf3mlX85WXJfyjnXvG6L39Hk4+xsYPOQqOlj+Wy61EgmS2/vss4fysz84u/VAQC27O3NmZoXUG5B7oOgZlD7bnhxhT+3MZXa9aQ9+r6wEcqqlpX+Py0mOEKUtY8dPzt8m7TF+zB5jptZpfbmofZ5wOqWzP2FDKxpu+KB5/LMW6ilge8Js2OmrIupoCnzdx8vB5kVBgTdgAm60aVefZjhZwPRYAmCIAiCIAiCIGSJQdFg7Xnp6a7c8WvSFB1R5r/lVOW4jGNmL6bV0t3q1ztZeoNZpeBZnFuN0/ZatoJRXunLFaPoN8ZP9783eTb9Dfg6VbP3c+WLZo+h043yDsVFnz854xhBEITtTeDqG1uF0ylayVWRzHQUABDe9QD6++d7nWx6wH6p5+6iQt2mgK3CQPnE5I8DAHbd+zEnu/CQzPfL3L13cuVdJ2W+Ky0S2KL/7FG5DwDg5dtuc7KUJo3F7hV7Olk0TCvdq1qWOVlHktIftJu/ALChfSMAYGbpDCdLpH2Y6bXHkmarOLfYyXJD1C/3G31gRv0WbH7Vla1Fzq5ls/txZSOTQ8ce5cq7nULWT0uX+7ljIkmaq+K9ff/56QE+IJDl1AuOc+X77/kfFViAjFAJtdnBx+2bhVrvmPSl9XHbS/w8XcdMX+LBLmyYdvaeg0lb4sK6dyccoK2y7z8W0IK/O/tb72wgGixBEARBEARBEIQsIR9YgiAIgiAIgiAIWUIFOXr1uLNSmwGsHrzqDGsma61HfdSV6I60Wa9Imw0/pM2GH9Jmw48h2WaAtFsvSJsNT4Zku0mb9Uq/2myrPrAEQRAEQRAEQRCEnhETQUEQBEEQBEEQhCwhH1iCIAiCIAiCIAhZQj6wBEEQBEEQBEEQsoR8YAmCIAiCIAiCIGQJ+cASBEEQBEEQBEHIEvKBJQiCIAiCIAiCkCXkA0sQBEEQBEEQBCFLyAeWIAiCIAiCIAhClpAPLEEQBEEQBEEQhCwhH1iCIAiCIAiCIAhZQj6wBEEQBEEQBEEQsoR8YAmCIAiCIAiCIGQJ+cASBEEQBEEQBEHIEvKBJQiCIAiCIAiCkCXkA0sQBEEQBEEQBCFLyAeWIAiCIAiCIAhClpAPLEEQBEEQBEEQhCwhH1iCIAiCIAiCIAhZYof8wFJKaaXUjH7sN8XsG9ke9RKEoUT3518pNU8p9ZWPul6CsCOglHpRKXVOD9umKaVat3OVhD6QNhOE4YNSapVS6uiPuh49sV0/sJRSByulXlZKNSmlGpRSLyml9t2edRAGjnmYO5RSLUqpRtOW5ymldsgP9eEEa5tWpVStUupWpVTRR10vYWBIX/toMP3H/kuzPtWqlDorW7+jtV6hte61f/Y02VdKHaKU+p9SKmIWSKZkq17DEWkzAch4B25RSj2ilJr4UddrpCDz+0y228taKVUC4GEA/wegAsB4AD8HENtedRCywkla62IAkwFcBeASGRg26gAAIABJREFUALcE7aiUCm/Pigk4yUwA9gKwD4DLPuL69Ik8I70ifW07o7Uusv8ArIHpU+bf7dujDkqpUB8f0icAeHR71GU4IG0mMOw7cCyAWtB8Uxhkhvv8frCs2LbnauhOAKC1vlNrndJad2itn9Rav6uUmq6UelYpVa+UqlNK3a6UKrMHmpWJHyil3jVfx3cppfLY9ouUUhuUUjVKqS/zH1VKnaCUeksp1ayUWquUuny7XfEOjNa6SWv9IIDPAPiiUmq20Zr8SSn1qFKqDcARSqmoUupqpdQao1n5s1IqHwCUUlVKqYfNCn2DUuoF+5JSSl2ilFpvVvCXKKWO+ggvd1ihtV4P4DEAs7ur0JVSlyulbuvrHGbCcJlSarVSapNS6p9KqVKz7TGl1Le67f+OUuo0U95FKfWUadMlSqkz2H4Zz0iWLnuHRfra0EUpVaCUusO8uxqVUq8pparYLlPNqm6LUupxpVSFOW6GUkqz87yolPqlUuoVAG0A7gRwAIA/mxX569k5jwdN1v9n/r/I7HO6Odd5Sqllpk73K6XGGrnVnnxbKbXSvGuv6uPDYIdD2mzHR2vdCeBuALOAvueBSqmzzbuuXin1k+7vTaFPepvfn2P6ytWKNIsrlVLH2QOVUqVKqVsUzeHXK6WuUGbBUPXxbcBRSu1qzn2m+f84pdQ9SqnNRn4B2/dypdTdSqnblFLNAM4ZlLuitd4u/wCUAKgH8A8AxwEoZ9tmADgGQBTAKNAgdD3bvgrAawDGgb6O3wdwntn2CdBKxWwAhQDuAKABzDDbDwewO+hjco7Z91SzbYrZN7K97sNw/mfa4egA+RoA3wBwK4AmAAeZ+50H4DoAD5p2KwbwEIArzXFXAvgzgBzz7xAACsDOANYCGMfaafpHff1D+R9vGwATASwC8MvubQbgcgC3sfvqnn8A8wB8xZS/DGAZgGkAigDcC+BfZtvZAF5i55wFoNH030LTdl8CEAGwJ4A6ALPMvhnPyEd974biP+lrH/2/ntqg2z7nA7gfQD6AMEhzXGS2vQjgQwAzARQAeAHAFWbbDACanedF83u7mvaJGNk53X5vIoA1phwx/XcK234sgE0A5ppn4kYAz3bb/2kA5SDN6LLuvzGc/0mbjdx/6PoOLADNNf9p/n84ep4HzgLQCuBgALkArgaQ6Os5kn9d7n1v8/tzzP38qulv3wBQA0CZ7fcB+Ato7jAaNNf/utnWn2+Do0FWO2sAnGjkIQALAPzUtOk0ACsAfNxsv9zU6VSzb/5g3JfttgqitW4GPcAawE0ANiulHlRKVWutl2mtn9Jax7TWmwFcC+Cwbqf4g9a6RmvdAJo4zDXyMwD8XWv9nta6DXTj+O/O01ov1FqntdbvglaZup9b2DZqQJM6AHhAa/2S1joNUg9/DcD3tNYNWusWAL8G8FmzbwKkyp+stU5orV/Q9PSnQB1qllIqR2u9Smu9fLte0fDkfqVUI+gl/zzoXg+UswBcq8nvoBXADwF8VpEq/T4Ac5VSk9m+92qtYwBOBLBKa/13rXVSa/0WgHsAfJqd2z0jmlYahf4jfW1okQBQBVrQS2mt3zD9xXKL1vpDrXU7gP/Cv7eC+JvW+n3TPske9jkepJ3uibMA3Ky1ftv0rUsBHKaUmsD2uUprvUVrvRrAHwCc2cc17mhIm+242HdgE2hi/jugz3ngpwA8pLV+UWsdB03KdcC5hR7obX5vdlmttb5Ja50CfYSNBVBtth8P4Lta6zat9SbQQuFnzXn7821wCGhh8Wyt9cNGti+AUVrrX2it41rrFaZen2XHvaK1vt88Ex3ZvSPEdlUzm4HoHK31BJDGaRyA65VS1Uqpfxv1YDOA20ADIGcjK7eDVtVhzrGWbVvND1JK7a+Ues6oCZsAnBdwbmHbGA+gwZR5W4wCrSQtMKYYjQAeN3KABr9lAJ5USq1QSl0KUKcC8F3Qx/Im82yMG/zLGPacqrUu01pP1lp/cxsHjXHo2pdWg1ZTq83k/RH4wepMANbXYTKA/W17mzY/C8AYdi7+jAhbh/S1jwilVFh1DagwDqRJfBrAf8z76yrV1Z6/p/dWEP3pF9bUrCe69Fsz8dkCem6Cfme1OWaHRNpsxHGq1roMpAn8FoDnlVJj+pgHdplDmg/r+u1d8eFOT/N7s3kj26/dFItA84UcABvYe+svIE0W+vltcB6Al7XW85hsMoBx3eYhPwJQzfYZ9HnIR2bHq7X+ADTQzQattGoAu2utSwB8HmS+0h82gFTwlkndtt8B+rqdqLUuBZnJ9PfcQh8oihIzHqQ1Abqu/NQB6ACwm5n4l2mtS7WJxKS1btFaf19rPQ3AyQAuVMb/Q2t9h9b6YFBH0QB+s50uaUejDTTxtozpacdu1IDuvWUSgCTItAKgFcAzlVIHgF5mzxn5WgDPs/Yu0+Rs/g12LlkdHADS1z5ajLajiP2rMaujl2utdwWt4H4StKAwoJ/o7f9KqVzzG0/3sD/Qrd8qpYpBpmXr2T7d35c1A6zvkEfabGRi2v1ekIb+YPQ+D9wAwGkLFfmtVm7fGu9YdJvf98ZakPVFFXtvlWitdzPb+/NtcB6ASUqp67qdd2W3eUix1vp4Xs2BXV3/2Z5RBHdRSn3fqr0Vhc88E8CrIH+BVgBNSqnxAC7ailP/B8A5SqlZSqkCAD/rtr0YQIPWulMptR+Az23rtQgUNUYpdSKAf4N8ehZ230eT6dJNAK5TStkVifFKqY+b8omKHIcVSKWfApBWSu2slDpSKRUF0AmaOKa3z5XtcLwNMu3LUUrtAzKH6A93AvieUmqqonDvvwZwFzODeRQ0KfiFkdv2eRjATkqpL5jfzFFK7auU2jV7lzSykL42dDH3braioAPNIPOzbN2/WpDvgOUwAAs0mcLDmNvUd9vnTgDnKqXmmDa9EsALWut1bJ+LlVJlSqlJAC4AcFeW6jsskDbb8VHEKaAP1ffR+zzwbgAnKaUONB/El0MW4beKPub3PaK13gDgSQDXmPdcSFFgC2sG2J9vgxZQLIZDlVJXGdlrAFoUBXDKN5rs2Wo7h43fnhqsFgD7A5ivKOrVqwDeA/B9UDjHvUAv/kdADvX9Qmv9GEgN+SzIBObZbrt8E8AvlFItINva/2zbZYx4HjL3ci2AH4NsYr/Uy/6XgNrlVaPifRrkWA+QI/HToA70CoAbtdbPgXxCrgKtym8EqYt/mP1LGRH8BMB0kMnJz0Eref3hbwD+BXIqXQmafH/bbtTkb3UvyMH0DiZvATltfxa0yroRpBGJbuN1jESkrw19xoH6QTMosMzT6H8f64vrQVriRqXUtQgO9f0zAHeYfU7TWj8OWvS4D7QyPwmZ2pmHQAsvb5n9bs1SfYcL0mY7Lg8pSgbdDOBXAL6otV6EXuaBZvu3QQtYG0Bj5CYMkxDjQ4Te5vd9cTYoEMVi0DzlbpCPFtDPbwOtdSPI5+44pdQvzULGiSD/yZWg99vNAEoHcnEDxUbxEARBEARhiKKUWgqKkrV0gMdHQNqaqVrrVdmsmxCMtNnww1hsNAKYqbVe+VHXRxi+SC4FQRAEQRjCKMr7eMtAJ+rC9kfabPiglDpJUX60QlCY9oWgEOCCMGDkA0sQBEEQhjBa606ttQQfGUZImw0rTgGZtNeAzKk/q8W8S9hGxERQEARBEARBEAQhS4gGSxAEQRAEQRAEIUtE+t7FU1VVpSdP6Z5mavtiFW5qK4JoWi3dxvZaJxtb2L90QP39vTcXvFWntR7V+17bn+3RZsm0T2AfCWU+Ul5J6rWlKuCGxlI+aE80PPhB50ZimzXFGgEAHUl/r6sLRgMIbpO+aEu0ufLmji0AgDEFPoVIXiR/QPXsiZHYZr3BLRBSOgWgax9MpVOuHA6FA46nvwNo+n4zdNusUk+ZlMU2SyZcUdeZvJopPzYiTPdflQfkuY+zgGVFPtCVrjWRuuP+3GrCFCoEtGe2WPDW20OyzYDgvsYNcbblWY6n4wCAZXU+Qnp+NBcAMKbQj2u2j6W171+dbExNpKm9WhOd/twp2ndKiZ975GbxPbd61RrU1dUNyfDiQ2HuOFQZuuOjtFlP9LfNtuoDa/KUSXhp/ot97ziI2AnF1kwGE2bQ/N2b1zrZj/a5NKu/lx8pXN3rDh8R26PNmuINrlyaW5GxPW1SJKW1TzUS9CG2qmWZK08pnpHNKgYyEtvs0TUPAgAW1X3oZN+b+x0AwW3SF2/WzXflG976LwDg0v18JPGdSnfLOGZbGIlt1hsptrjRaPphZd5oJ2uON7pySW5ZxvEDGU+3lqHaZlMmTcIbL87L2vl0vc8Lm7rlt1Ro8GMjSunDKfTpczOPXef7Y+jAk/15rvkB/V2/0clyr7oZAKCKMtuzyzm3oW1VYdmQbDMguK/xd0tIDdwwZ0P7WgDAif/w0aXnTKccvxfte7aTjTJ9rCXR4mRLGpe48qb2zQCAF9YudrJ1zc0AgJs+7rMgTCyaOuC6dueg/Q/O2rmyzVCYOw5Vhur4KG3WM/1tMzERFARBEARBEARByBJbv2Q9yAQF3eArcEGrcXwV/eJn/goA2LXar+K+tJg0I+9/uMbJSnKLAACrmvzK4JRSUt1/a863fH2sWVsXE4QhqYXf7lzzFmkEL7vhX042e7+dAACvf90nmrcrij2tLB7zn68AAF584DUnK5lG5hi1v3wuizXe8eErub96nZKa//7+x52srISe+/ZOb87y05/dRIXR3pyvZBytjofDvs221DX5H9psTF9Kcp1o932p7fd58mtONmkcadF/ccrnnOy0aWdsxRUJFj422jHo2ZonnWznsl0AAJXwY18s1eHKb9VRtOg9q/bLOI+wdei6ta6cuvEKAMDqBxY4WThC97WuzpuI7XEKaXPTj9zpZKqsHABw/jf/6GQ3XOHHwXX307tt7F4TnazpUycBAIp29zL1sQPpd0/3766R1Lb91Vqtbl3uyvcsI21+U6fXQs2oIJOo6jHeEuPep18FALy+yB+7/InF9of9ydn4ecgJ+wIAXnzlXSebOoHmF8+u8++02vZ7AAD7j5nrZPuM2h8AUJhT3K9rEgRhaCIaLEEQBEEQBEEQhCwx5DRYnKAVuLfqaHXvK/+92smWr6px5VEVZOfe0tzuZLFO8sGaNtE7l1500z8AAAceNMfJnljwHgDggLH7ONneoz4GwDuQA0AYg+dcPJyIWCfrXP+dvngpmabmf2a2k33irMMAAGG22vfIM69nnrAyzxVnTh+fzaru8GyJ1QEA9rr6807WGafnvrqq3MlyozkAgLKyIicbezxpC9vavLYjEs58xosLC1y5cq8SAEBFRYmTtZrj95zj/ec6OkhT9v07/+Zkvxl9HwBg/lf9Sr7QN0HjYU4ox5XtKj7XdP154d9dOTdMwz3XYAld0SwoiAoIItF6xrG0Lde/OmMbSbM7+YQ9nCyxjnxw1jzrtR7pOPnLhaMssMHosQCAG65jflkfen8sq7nKvfYfTha5509U100+aNPrF/0ZALDPm284Wfji31FdS70vtk6nzbWNrLXVFc2kvX14ldfmF+fSeFYW9ZqipGn/nxzoNe5/K34IALCm0WvwT798LwDAJ2ce52TrW/085OqX7gcA7L3HTk52xTFfBABsiXm/yLgJhrGw7gMne7mGNKFfm+19WblfpSAIw4ORNcoKgiAIgiAIgiAMIvKBJQiCIAiCIAiCkCWGjImgNWvRPFcSyCTmBy9c5mQ3PUQOokWF3qG0rLjQla1TfkGhNzd793/GIbWIXa7uuj8AfGz2TADAoyufdTJrIhiSb9EMTp1+IgDgUuWDXBQVULvEpvh7/fjNz1Ah7E2cItO92VpxER2zZZ0PaVxeJg6+W8N5T/8CALBxk7+HM6dlmlmmkmQCk0yw3GU51FbcbDASIfOoVMoHzYjm+YAW9jx1dd7cJWTMjtJpf4w1axvDnMY3bqQ6bu7Y4GSj8sf2dnlCD7SyPGR3LLkbAHDIeG8COLbIm4eFRlDQg4ESZBaYvPnnrpw3xdzP6mov25veEdjkn+fUB48AAA74lDdBTzaS2fqKGx92somzyPQr70Af5GDhA++58vhx9G7LP/s0Jyv4wqeprjEfQGOfrx1BhU4vS/2HAmdEvno5u77M99j2CNX/UdCaaHblm9+7HQAwtWyck+VFyFQzaLxa1rTCyU6YTkEn7nr/BSd7ajGFZH91nc+XNYqZUNvx8ex9feh021dr2+t8HcI0ppYW+vddQQ7NXa5760Yn++G+FK6/MOLHaKFngp7prz9zMQCgzZjOA8Btx13vyjaf50DSlQhCEPLVIAiCIAiCIAiCkCWGzKc611x155l3vQNovIVW6PIrfLb7iZP8aqJdsXh3oU9a6zRXLQkv66DVihfufMmJ7r2LwrEW5XjH/e7nFTyj84zWYYVfKUyX04prTsSvBOfNpVXDCJN1sjDh8bhpl4RfSZw9Wpx6t4Z5ry4EABQX+1XUdhNggt/3XKOtslorwGue4nGv1UokUmabf+5TbX513Gp+wywYRipFx/BMC3Z1uLPD9z0bfOPmRf90sh/uc0lflygw3m0gR/iX17/lZB1Jar+3N3sNyJZO3zff2ECr7YeOe9/JZpTuOqj1HC70psWpueURV67em8J4h9b7gAZtz5CmqOgzn3CyvGMPosLSpU4WW1MPANjpwk85WejkL9Pv1/vzzfnYYb5e/72tS/0AQK9dZY71iW/1bTfQ32Yfcjx0hA801J2gkP/DmaDreXDVA042sYTmCNGw18InWUATJ0vROJXLgsc0dJKW/guzj3KyxpkU8KIl7jXIpVGvXRo1hzSdrYlWJ6vroPbnQTXaEh1d/gJegzWtbIKTPbf+aQDAiZNPzaizQPCk62GjhXp0zYNOtrqR2rGiwL8jv/SkTyj992OvAbDj9Q3ho0M0WIIgCIIgCIIgCFlCPrAEQRAEQRAEQRCyxJAxEewtE/suU72zftTk8UmnvRq3nAW5eOYFMplJJL26uGIMBVRoK/EmTknjhJrW3iztwBspT8W737kvow6iNs4kP1KQIeswOce4yae9d7yNU8yx2JqtWbNNANizeues1nVHp3kp5d0p39Wby65fT7JpU71jt20LHuTCBq8IB+S+4s89J6gP2F2DnMabW3xeunyTB+i+N7152w996jmhBzqT/h4+t/ZFAEBRrg/2U20C/9z8wjwnO2CXaa5s2/I/H3rTqe/vORUAEA37oEAjkcDnOUV9pHquN9UKW9P0lDcvK9iFTKWTr/kcVI88QCa7n3z7GScrut/kgpu1p/+Nho30t8Obkm3+wS9cuepECrAQqqz0xxhTp/TDt/nKGjNfNXmSlxWX0f6b1/jrHGW2c5NDu20Yv9d43es7NwEA3tnk84nNKKc5BDfFK8yh/sKDGoTNO4qfLxqi8XFj2yYnyzE55aryfbCmWMoHT1jRtAoAkGb32Qa0aE/6eYglBP979j3ZnvD7LdxMQTX2Hb3eyarzJVck4Me1cEBwip8+6vvIG+f9J2P75F8e68oL9iQXERvYDPDzw97mp4LQE/LUCIIgCIIgCIIgZIkho8GycI2SXTX40u5+leGc164FAFSUekfR5156x5XjZmW+goX5bthsQkmzVanRo2nlqbDAr9zWmpDT/17mVz0+O+PzA7ySEUQ+C3TQbIJX5Phvd5VH27sEMkn5ckIZbUrSy8YVeq2LEIxdqQUANNPqaQ7XQhnZisV+BXvyLrQaz4OQ2FDsfNXWaoi5NipIm8UDaAQtgHeaQBsdMb+6W5hPGqxVazYGXZbQAxs7fCCEBxbTmHfu3oc72fv1FFq6oCDqZLtUeu1LZT6Fx3/ifR/k4syd1wIAphbPzH6FhwHumTbvHR6mXa8kLVS41FtIJDdtAQCkmrw2Me+0EwAA7f+4x8mO2W8iAKD5nC84WdGPLqRCrn/nqErSfunFrztZQanXSnbMXwQAyD/uEF9poz0LnejfTekn7qLCMh/cSc+fR9tafCqF8GGTzHX68bknLfVw5al1TwIAxhdXOVlHMpaxn9Oux7z2sNBohIMCYPDx0W7nWqskC7LAg2RY4mkKoGHDwwNAp6kXl+UajVkh007bwBfPrX/OyWRuQqQ0tUVE+ensixvnAQB+dOyngg5xPHL+b1z5/uWPA+iqwbJzULFgEgaCaLAEQRAEQRAEQRCyhHxgCYIgCIIgCIIgZIkhYyLYm5nCMROOd+XPHPkyAODZt72ZizVDAgC0k5o+lu9V96UVlNcqL9er7WtXUwCAr5z1cSf777PzAQA/u+8uJzv1e6fRsSygQ285U0YiNjcMANQuNE64o715g46b/Ej8oDgzPQub+8jMCqcVT4PQO7UdGzJk5cw0dlM+5V3BZu/Y3dBIeXKKC337RI2JoM7NNGtJMWd+a0oIAEmTJ6tLji0TgCYe8zmvmpopT0xbu3fYLjJmuS1NPoeMDeCQFxA4RSBaEj6n1Y3HfQ8A8J2n/8/JmkzbXn3i152M96PH15Dp1G+OPcLJrDmSEBDkonY1AKDm+SVOZgNe1H5Y52SxX1LwiqkHTnWyyF67AwDmX3m3k+3/NOXTCp39Lf8bdWa83OzNZaOTfUCLzhX0nlJTd/IVK6d+Hf/lD/3vjTXHTJ/uZKEjTgEApO/5uz/2sEyTqR3hPdaZ8mNckzH542Z61jw9nvJjU44JisBN8cKKxrP2lB+vIsZslAei6CtQhb2nKebyYM0AW+PevLQ8j+Ym+RFfh03t9GzFkr6uxbk0Lta21TtZqxkPgvJ27uhwVxIbpISbaH79jusAAIsufAC9UZ0/xpWPmkS561Y0+9x100qo36Xhfy+MzGBQQQTNaXeEvpYNgubQ1tRTBQR84TnOkjqzfN1b/j2435g5AIBjJ56Q8XucoLaYV/MUAGBaiR9HJxZO7XH/vhANliAIgiAIgiAIQpYYMhosS1A4TP7leN2hv6LCob2fZ13bKleeecEnAQBTDtjFyWo/pBXDPxz2aye7738UTKO62odetV/VQs9ceLJfKbhk4V8BADl5fmU80WJW+1hofYTYaoAVN3mt47hCFm5YCGRVy2r/H3MPQ2HWf3LNSlvCr761mHDpIebknjCBYXLifsU0EskcGrg2y64I8XQJRYWkmQrzABoBYeH5MZaVLeScv2v5nIxtArF7xV6ZsurRrjx2Oo1vt7z7kJP97tCLXbk8j0KM71a+u5MV55ZlvZ7DER70wbGKwnyPO5HlEBhN93vS3ns40ZY7ngAAtC+rdbJoK415B7z8oJOl/0tjI/K9llm/Pw8AEPrMt50s58i1rhx++l7ab95Tvg4m8Ez7Ch/kpmQcBXQIHX2aP3fz/7d35mF2VVXaf+9c81yppFKZCRlMSEKYJAwBISACakNLi/KJigPyIGlsEW3Up9uptbVt+2tpRVFslEkQBJEWxTCGMCRAyAxJhYyV1Dze+d7+Y+2916qck6okFm3dqvX7Jyfr3DPUmfY5e737XSbb0c+Z4nw/GV4ESvm8jwVFxh2b73DTbXH6G+uK+W+0maukyGDZbJDNWgHAzCpvu2MzI/L4VMboHAalMZBPL3lMvM9Yi/iSMJuclEXKPMvYjEx/jrNyfudmzQFS85zXdKFn3ljH7z3xP9ZzFiMj1BYWP8t1ae3+YguVDbGGIgAwcz5lsOQ14offPVTI99PbDWd4+Z0iY0xgZMmQP+0h45Fvr2YlwNfO/oibvuHhWwEA6x9Y62IlSygr2f4tfi8d6lzcue0ON/3gViq1MauavwE+OPdiAMCJdacO+Tf5oRksRVEURVEURVGUEUI/sBRFURRFURRFUUaIUSMRPNJ06pHKGfb1c80YtCXMsoM2SDFhvbDnK0KGMQSa+h3M5bPe56a/0P2fAAbXT0JsmEGhfUa2UV889O+UQbQOtHli8tqMFZNMc1AFGCPNlOYUFinds+dPri8kamzZ+zAY5GWSKZLSlAmzjLg1oBmQEkFzbYhaaNt7qIaTSgSPjNfaScrQWM6GCPUlJGv4uzo2RPjR6z9z0w+8SDKKU69mqcN4lwgO9SzP790DAOh84lUXKzUGFNvXcG25khK63svL+bqvvOWrtP4wx0LX/wtNdLKhRb6a1pdb+4SLZX59Dy8z2QzCr+OaTsGLrqBtLHqWd3bA1HISMl50kIQwMJONTnKb1tB6TxayMlvzKTRqXgeOmk8vuNZNv3CQjss9Wx5zsUlldG+09HW62BsdVBfuqoVcY6yln45ZaJihCpZkJuWJyd8mRD2tiM/xrS+m8/pCyzoXW7t/JwBgSQPLFVuMnHF29TQXO6vxXN9tFyJWvpcX5hW2dZCSvqHqUv3jl3/sYt/9JktueRtZz/re6GYDm9+/sdGsj5f5xHzvvmadZFTWkrP7LQwaTP5iUH1JH5lioXK00uJ0ju8Vu2w0xPXf7PtFc+8bLnblj+iZueam21zsuZbVbrq+ntqvy1eyHPD+O+lZ+oPXfuBinz3hswCAVI7fhu7ffh8A4F9+96CLffBMqoG2oI7rQq7a/RwAYGHNkmH/xkMp/LOsKIqiKIqiKIoySijcLiuBtOy0PQPSthUzycY0GPR+ab/cusZNnzLhdM/6rGWkZq0OT4u0C6/0sX22mZHDHUN7XoSduDI8qVzaE4sLO/SSYuodSqa9A35D4lywYYX8HfUmDep9E/OtZXso5DXLyIkBxvGk6TGKcwYrmTb7LTKbb/Xs9eyjcnhipufvrMmnudivt1GP/fuO44yF7Ok9bR5Zz77Vt9PFxruZTN5man1MLpLrqSe1t4d7XmMdZBgRDInMbpima5bN4YVbyIAmN9DL27r9X2nZKz7hYoGZlLFtfvdlLjb9G6L3fZrJRq5/wYVyTzxEyy5cyut+5AGaaGKreDQZq2FhAY82MW0JHpntdKFw6oQzBv0LcFbr+X0vu5g14Fl/kG08SY5PAAAgAElEQVS5p1RQxjAl7pviMPeyW9LGLONw7wU2LjNh1hY+nuFe9G1dZO5z/6u8X++cNR0A0J1ic5L/N+8DAIAZ5dyzXuhIgwNnInGEmR153K05AppKXey6hdd5lgkHvWVI3iEUEwP99P4hlRptCbpf6orYzl0aY/AOeffbZrpCAf59oWeuhiqnBAg7dal8Mec2MkxJkCsfWwkAePDhZ1ysqJLKE6y4daWL1dZWummbwepM8HvP979I2ezP33Gni93cTNnNqaex/fquraRQOHU5GxbNrqb2MCHKNJSZEgnD/e1+FPbZVhRFURRFURRFGUXoB5aiKIqiKIqiKMoIURASwWNJzc2qOM5NW2lgMsmSqtJGkg1mfGRWflXC/eYXerp3pLjpCR6ACD/FhE0X57xSNQBAiTnGQl64voMG5J9Qs9RvCQVAc9c+T2wgzvKTrh4z8F3KWHpJ7pSuZHmGrYkVzHtNLuS9N1w1dFsnS+5DPmW208v3mV1NTJhhNHcJmakyLPduo/pKJzUscLEvnnQDAODba//DxebVTnfTc8x0b4pla8pg8skBnjamLfUzuCZK8YplAID0d3lgdN2MGort73CxyDYzYL6Slw2cRmYK+R0beYNZ2sb0H33dhYKzud5ZvpVqYuWnszQsYI0s3truYh1rSGpWM3k9r/vl5+n3M7ktzO9gOZxb3ziQv/vJBruSZBzxg9d+5GK2VpWUBeaM3UJYtPf2vcDWyAL8jRey4l3C1smSxhixGNXBuuuyf3axptLpR/6HFSD2/cmvtpQc2tGWoLpyz+1/zsVebtkCAEgJM5dHnycTmmAJtydn3PFhAIONzSoqSULY38fbyGR4PW1t3QCA1o5uFzv74KcAANeed76L7TBt1fE1TS72oTlXAgDKIyxf85MSFmrNuay4zh3WKE6YY/m9L1ve6N7kppt7mgEAX191r4u99LCpZdXIUs/qCro/4km+Z3bv5fp/px1PkugnX9viYvcnSW57w2UrXOxnfyDZ4a43eCjCzPkkB/z8me93MSvjjQg5ada8C6Xz3m+F4dAvBEVRFEVRFEVRlBGiIDJYw33tB3zSJo0lPHi7tJgqQ6dT/AXq18Pkt72c33zfNM345blHXuL/VFAWKit6hmCzGBHxPS8suhHyxm74H7J7X3Xlz0dyV8cUrx44wP+poB6XTpu1AhCL0rl412e49+3RW6kUQWRavYulbW+gz0D/rDCs8DO8CIoeK/vLzm7OkJx6GmVYXtjNg/TtasLCIGNLe7tn28rh2dFJx6sswlmMriT1vN775IsutvJitnGfbSyhf7WJLcFXTGF723HJoW1LnK/doul0j+z8E/eOzjzrIgDAcU88z787fTGtaibb46OGls0//ghvauZc+reBrbYDZcYmPysyvD18LwTqJtNErMTFcs/9GQAQuvofXCx6B2XUOh54infhineZHeTyF4EFnB0bT/ipTjpTlHEcSHPG3ZpSyAyWn2V7whhVFInfpeU59MlU+K17QytlHs9qZKv4sUg+L0p7mOOwp3+nm3/FfbcAADZu4VgybrIW8hZNmrZKGjeZd47SYj6ua9eZTG1avIdYwuJ8yvvfGNeERDu4403KeHz+lZ8M/mMO2Ye/r6T5S09nX/evnkdZrfObLhKbM1mfY1Bl/TXxNfaw+LwOy8zub3eSAc81t/0nzzfvhxmRiaxeQEYiJUV8Hg+0dQEAVl5+gYv9ZjWXNLDZy6ULOUv/8B/IuK6jvcfFLjmTlFA5cdzfPEhlbv71WVYjfGQp3Yd7evjd6p5n6d0ldZFmsBRFURRFURRFUf5q6AeWoiiKoiiKoijKCFEQEsFjQabme3tp4HKVGTAn5/el+zAUamRxBLRxzQDMNoM8ZQbcnoqMSOvL+XY6zOds67ZdI7iDY5P2Nh6Ma2USqTgPBp01k+RFVy88z8UezT0OAIjF2FBkwEj6IhF+HMjBv5agj4RQKh0ipn5I+wFOzX/kKkq5v/Dgi55lwmHeXl+f1kA7GqZXkrTsnCnLXKyuiGRpt7yfrwFZcyds6h2VR4euRzKukc/740nyN2lfpwsNfPXLAIBsDz/zQh+7GQCQ+/1/87Km3lTL42w60fgZkkHlt3LNo8DJF1LMmFkcSm6rkV9XTXCxAw9QTadJH/6si5Vf87dmZ4RxQJWRh5bzwPvUbVQPJtrRyvv/fqobU2iypb8UW1NqIM3Sn4ZSMiWJhbz3SCbHz8S0kUCFc3y8c6JRC9pnnKgxNpBJeGJ2iepYnWd7fqYZhUog4P0b3nP7jW562ys7AAC1M1i6XlxE50C2RakYHXdpkGTp7ec2JBKj+cWVbJgQDtNxDw2qocXvJNYETdZLDZWSvDY6kc+ZNVzoj/MzIG/kgmtXs5HDpb+hv+/Jn1a4mDVZyaOw7rUtXa8DAH615TcuZu8RKY19vZUMKFpa+ZnZ0kJS3MoyljnbWlYlJSwHrKu2xnN8TiZ2kYFQQwlL3VecxMZOj6x+BQCwr423t/REem5ve3OPi9n3C1nL077PNDSwEdFd60n63d3F3wW79tGz8uldfG6PFP16UBRFURRFURRFGSHGRAZruN6dExfTF+2ePWzvGDU9IGsPbHCxd0+9BMBg+9BUlnqAz/vVJ1zsxjMvBQC8b8blf8luj038LNltTA5MlafM/jbGx71zdweUoekSvSwoNz2uvZy9KDa9Q3VFtRiKtOkhlBmsVIZ6CmXWKiZ6x21PUFYMUo2ZXkN0ctbk5AlmUL0wOOkfoJ6/8jIefN/Xx/bYyvAsqKfe92SWj/XzLdT79qNn/uRiHzv9bDf91G7KIjaUco/qeOfQtiN76z+56dRmshLe/Dxnl+acSAOxX9jAbcl5/ZRJzm/itiRwEVn/TrxQZOKtmYKwNc69ST2wgdpJLpY/yMsEZy2iWBdnnBouMKYawvii9795oLal7P3n0rI9nFHOdNAzI9o41fP7Qs+SDMVQSpQJJeVuOutTSsTPCCvoY5I1KANo5keEOUBngs7DlHI+112JhNmujw32GCWZpb95WzNbZpdMpGdSIsHPs5QxqCgR5hWTTJYjKLNQxoiprITbE5utkhkS277ZecBgEyc7HRLmS8kEtadJYZBWZEwY5PY6jAokXCYylsa067zv3ORivd9dbfZ/9Oc2elO9eGb/KgDAdfdR6Y8icS7s8ZIZv5TJAspnSWNj7aDfA8D2Zioxs+gENqe4agG1VfduftbF6hobzL70834l+RpZccpCAMDPH1rlYsuXLwEATJvS4GIdHXTvzZw12cXqy8s86+vuoe2UineTxQtnAQCqiopwtIz+s6woiqIoiqIoilIg6AeWoiiKoiiKoijKCDEmJIISv/oTp8+mas937WpxMTvQsT8tDBoMn3qCU7pPrtsMAOju5RTlhBX1nmXGI/3pXm/QHvZBda4Cg/8FgKCcNt/5sk7WHj7eij99AzyoN2rkD6kExxonUmq+KlblWVZK+/zI5ex9xOdRSmDSPsu7gcdCAmWNF4baBsDSAuXIWHeAajMVh4s986wcAgBOqOO6LHt6qbbH5naWt/nVBxrPJDfucNNFFy4HAGx4/DYXC71Gx/D001liF6hroommJhfL3/8rmqhj84LcL00dGCE1CSw6iX4fZ7lv+nbeXngGrXPLL552sXlfuIKWaWn27P+2TW1uesmZNB1YuNjFSs4xNXnaWjCe8HsvsMyqnuKmW/rpmGXz/HwLmUKNg2taUSxzGGnfUHLLdI6fdVEju87mx49EcEMH1S6SUvJUHR2HCbVsyJJM0zGJx0WdMvOuII9v1MQiQvpnz3dG1MGKGwMo+TuJrckk62Cl0t7zYttauQ/lxsChV0rdS+h3mW5+x7RS0CHrSo0S9vd34JvP3wPA/3q2wwSiwjTJyjD7evk47NtHdf2klHBCLb2TPLfmdReb30BGPj1Csnegk9qy3hTHmndz+1U/gdbz4UtZCv/LR+lZedayRS5WY64rK/kEgDd30zNQDrWoNKYobrgD2KRjXx2bYRwp2qoqiqIoiqIoiqKMEPqBpSiKoiiKoiiKMkKM/jzlCHD94o8CAO5b9YKLVVWSg8jTW7e72HFPk3xCygFrjWuNdCRZXHfS27ezBURfpscTC5n0ezbpI0ETkjBZ88oR0e/9o0HWdHByO5HKn1JB125l1CsRlLVFrJxCSgBzPm5aEKVHrCOQdAayMgnEed1dKVOfoo5lURlbQ6iEYwmVCB4VtlZIf5qfVVFTl2Ttjb9ysdUt7MiUNBKYhlKuDaPSQCLfQzKWu/+41cWuKqfrsyLMx+iNfrp2q5vZ5bSklVz/Vn3tHhc75wPkZIVuUauusREAkN3E2wjt308TM2dyrFjcaEZ+M/ucWS7Ue89jAIDyuSe4WOn5pwAATvwgS3IDy0yNrXXP8N/5a1OrSziC5s8lyWEg6C+dGuuEhrkHUqbOT8inDmDuMLXDEqb+nKx5ZesGJURtunm1JE/c2MkOlGdMXH4Ee11YdCY78MCOewEAH/4M1ZLDPK/kSrYntVXk7pgR9ZOszCwkZX625lhESgTt+kTtMtPmSUdAW2sLAKJGthcXMjK/tjFh6mDJfS0tpmeFdEFMm/eZ/D5+Rp/2kw8BAF761L0Y7eRzeSfPDBpnxRLRZvcYx734AP/NfaYWWUoc4zJTS0zKLe0xlE6Mq16l4TgLjp/mYic00Ht3SYTdC/uSfH7qTVv2nlmnutjGheRQ2Nba5WL2umlv53dW6yZZW8uuutZBsqqqXCxLsVMap7vYwzgytHVVFEVRFEVRFEUZIcZcBstvMN7UMuodlB74e/dQXZFt68VAYdNTOe24RheyHRclpfzlXhLmHuDxzIH4EAOlZbbKOl/IkDTBCHizL5aMGBAcDnqrt49nSoq4V6ff9iKJXjU7gFoOqvbDDvqVnbF5n57ZZFqcC7OMrWl1OHb3UQ2hGTP4nmp+iYwEwk3c4ygHwCrD89p+uvfm1013sfk18wAAq/Y+4WIlwgTj+BoyTGjpa/8/2MPCIvfHuwEAV39sGQfD1DxWiGxPtRnE3SkG6Df98OsAgEUzRKbYZKsC77rEhQLFpJoIzOEMFvZR9iu/g5UUoU9/zk0H51BmKmjqZQFA6Bf/n5ZZ85SLxZ9eBwAoWXmti+W3UAzFnAEIXEFqjtS/f4/34csfpz/3G3dgrDKU6cTmdjY2qSmmwfCyFmYu4J+lAgbXuZLGGLbvWj5Hi0wGa0AYa8XCFGuLt+FQxlJdskgwismlpg1ooGeSbL9cdkm0MbYmkc2AAJy5kjUb7XGSGSVXejPFWZMJxhBhfhPXIXviJc4cWpMmmdWySo+seJ/h08LrjprsWUUZvxvaOl7pcl7fhlfeRKHQUFaFzy2jmq8f/ynVwcoK5UvEHK+oMISoNcdOmkl0dZOJhDTGKjLLVojsZEsrqV0aJnHdzplVdM66E2yasX8v3ys9ZXSNfK35PheLD9jacnzObCZT1lSz22ms4gxW1tyvsh5exrz7L6pnw6gjRTNYiqIoiqIoiqIoI4R+YCmKoiiKoiiKoowQo0Yi6CdJGqkUeWeSUooHW3hgck0NDWJ74Yd/dLHqGNUs6UvzQLjlt18DAGgXA+YUotVH1uCQEkErBxykQQt454e857s/w7W2KqM1x7KbY5ZymV5vM2YSwlwkYqRN3akju3alsYVNr4f9zEjAdeSkWYafzK8nRedv0mQefN/8nFcmEQ6NzwH2R4OtWQUAZ00n2fN9m150sTV7SXr23tlnuJh8hvYkSU6xrmWvi3Wn6Jk43u+t/d+7EwDQcoClKEtup8H4VXe95GKzZtPA/J07hHlFGUn/YiUsBXImEuKcZW/9DgAgePH7+Hez5tK/mza6UO63bFISuJ5kn/kMS25g6sQEL7rChYJr1tNERtTtKTLSqiquxYV2kpaGK1l2FXjHQox1/Oq9pbJ0HA/0cx2ciaV1OBxSNpQ3evcsfMyAxPxkls9bRZSuk7gwubDvPVs7WKaIGT7rG6KOVyEQRACxkJFnmUM26Hiav0+aHtj2SJpSuHmD5IBeiaBti4qEJOzkGVS7rijMr72TRbs0YKRlYWGgkTBSt4wwaLByRvk6Y40QSkt4e+222ZXmXXsLp75nVawKl0z/GwDA6ptIHvfwjsfc/G/c+yAAoFQcY1u7zJp+AEDUyAGDGT4OAZ/3B2swsUHUIuzppuMla1Xt2sd1sKoqSJIpTbJsjS0p9bTXlxzSYKWEe8R12GlMMMor+N2qtIyuydIIx44UzWApiqIoiqIoiqKMEH+VDNbRZqtkz23AGCbI38v5todqb/9bLnbcZecDAK6+6f0u9l/nfvuw2yuL8KA3u51wZNQk+0YNQw7MzfiYWKT9e/usuQjC3u/9/QPc2z7ee9kPpaqGrURz20xPkDjutoewM9npWTbjk63Ki/sobXqi7MDfQ/G7X13vkOix29G1BwCwZDIPLF4dp3XLjJmaXAxPKsc937VmMP4EYbn+1Ctkc/uO+iYXO7fpTDdd3UTZl7vWrHGxUGAcP9fyeZcZspmrxZ88h2evo7IeRTFheGAGri9YyeYVltKzF7npzKY3AADhdjYU2fj7LQCA4/b+3MWKzjwRABA4i7e7fuW/u+kTLjGD8EVmqmfdTgBAxeMPuFjxNyk7Fv/STbz/pke/6KR5Lhb6xBdp3vq1/LutdN3kU3HP3zSWseqIGVWcxfDLPPm9c9iYfPfwQ5pl2HXnIQ0TaD29Kc6cWrMMuWyhk81n0Z0yWd9Wus4yEzgjkDVmFGmRKbKGBF2ibI7NUqXE/WDbkXDQmyEJitiDz6w1MT6PNTX8rmezJP1xznIM9a4qM2Z2H6KivYyad8ZUkTiPmaGvl9FEPs/X4sRiMihZuegGN//GxX8PADgQ53e0217/BQDgzidXu9juN8k2He3CECth3lfKxfGaSm1aTqifWlro+SkN6m6+hBUA08upzEFtMRtjWNVMVbTSxVK5lNkFfh5HjGmaNAGrL6ZnwdSy6TiUSODoTdY0g6UoiqIoiqIoijJC6AeWoiiKoiiKoijKCPG260NcbYi8TIvTd50ccJrNZXAoIVNjQv7Opmz9ZIEAkDapwBU//qyL/fD7JJv42LxrPNvI573peknKDJ6bPbPRM2+809I/hMmFH1I2GBTT5ioMCEMFO3d9++suNrdq7A/GPhrqK1ki6O4vIUGwdbASGW+tKnnd22kpG7T3V97nvgW4XoSUEPaaKu4y7b+/j0wUplawDMeeXDnAVRkeK0sCgJ4kyVmmV3Ltpb/7wCcBAGv2cc2k3X173PSmdpKtrVjEkrG2BA0YlrLocUMmifyBnQCAadPoXkqs3eJmx9voGHcMsISk2shbi19a72KRJTQAPLBwsYvltlB9xcDipS52/E4ymHjxKR7EfeYNnwEABOed4mJb+77lpk/opHqN+ZeedbHS2Q207omiTcrQPnbvZjlwaVWx2YeTXCx7x3dpQtQbQpEZkN5zlM/zAkK+I1g2dpL8UkqjSyN0zLqSbK4UNVKihI85xSDZoJi28webatAxj4VEnSXz3lNfUu1iXUmSMdUWTTiCv6wwCAfDTn5lGSSvNOZMrZ1sHlOVJVOQgTgfdyshTIu2w0r1rEmCjGVzwoTJnAu53X272DBB7CxP23OaEm2VNeUSUrbeSjqnsraXW0VEvr96NzdaCQRYpmrbh7bEATffth22ziwAfOnkLwAAvnzKyMpbZY25tgTXX62OkinN3oFdLtZYQhL5WJDPRUucZIrHV3Lb1+Nj/hU23xyy/mpfmtqBskjZUe+3ZrAURVEURVEURVFGiGPOYPn14PgN+Ayab7iAzyD2u964003/sflVAEBvinsrLphJGYsPHf8hFysJ01ek7M2V1H/xXADA/DnTXMxmrg6X9RqKhbPJ2rNeDCZXiNYBr3mCY5Aluze7gqj3+Pv17mzv3H2Mezf2WTBhopt+zFRTz4pjWBal3ti+9NDWsPYelveyvT9klikmjF4SPta5btCv6LHb30e9PwsnzPT8XlqrVteMwwzKUdKT4vttawf1Hp45hXvk7tvyJADgnGkLXOyhN55x02s2kj3+hIlsFnPjkvH7XMt3dyD32N0AgIp5ZMLSt2W/m582vdYTKrkntH4ptQcPPfCai13QQr3uZZ9jk4toPV3PgRPPcrFYL/3ujDM4o5T/3W/o3ylzXOydUzmbETzl3QCA7FOP8zL2Jp/NGf3cfbcDABq+/UX+A7u5LIklcOFlNLGay5Pkd+6kdfzhHs/vxzL7+qlXW2aUBtKU7ZeZ+0wu64lZpBFFTli2+xlU2OXDQZ6XMplEmR2zZTX8MljH8g4zGogEY2gqpXeywHy6vvOysSql9isn3hE6uymLGA5xu5MyGSzZVlkzCWmvbucPKj3islociwg7cUvaR1kRKuVjbbcj98HG5DViTZ/yQrlTezq/lxYidUUNnmmbcQWAeIbeNWx2CwA6kvQcKo1wW2MNI5LCuGmKuT5+2/ywiy2qo7asqWyKi/3+rf9x01fOpm+Dg3HOrFVGSdXRK8otWYOVKaXTXWyfMVCzZhcAUBNjswxLkzG8iAajnnnDUTh3qKIoiqIoiqIoyihHP7AURVEURVEURVFGiLfF5MIvdd2f4UrMVz12MwCgU9Q3OHsWSYgOiqrqf965CQCwq+d7LvbBOeSBP7+a5Rg/2/xTN51sJhnN6m/zoGDL4WSFQ2GTyTVF41dKczgSGa8xiS82RS4lASFxLnI+8w2x8NGnZccLM6u4NkTWyhoqON1tB2w3d+/BocQTXOclaKQOcpCwHUwsZRdSAOxqj4j5bjCyOI/2Gqkv9qbe0/0sD1g8dbJnvjIYWQdudjUNGO9MsAzi6gUkJ0tk2dRkTi0P5D3jQjJj2NPDcgr52/FGIBJFYCINiM7FqUZOcRMf4/0v0X3zaie3SceVUzvwN58TdbBazKDrLpbKBC56LwAg/+KfXSz3Ksng+zfw/Vgyl6SJ4aks9aybwfuQ30eyToSE/MlIcAMTp7tY+i2SNuZ+/BMXi55MEsLAjNm8r7tpffk+/psC894BAAhe/hn+3Se/gbFOR5xkQ3ZgOwCkzOB2P8OrHLztkxx8L8nk6bkXEfI2u85oyFtPR27PGnX5UUiyQEkoEEJFhKRbNVUkn3V1E8FSyVCYj1dxEbX9UuZXHDMxse60j2zQtmVFwoTJrid7GGOzlJG9h0U7GHBto5Qf0r9SMRo3bV9SSOdtbS/E+T2pu2douX4hUuUjq/tLDFr8zOgkH537cU/s1AlneH8o/EYaS6d6Zp9U/86j3rejpTDvVkVRFEVRFEVRlFHIMWew7Je9HNTn17vyyE4axHv35qddbHszDS49eR4PfN/bSz2xMdFT0JWgHo5ntje72An1lNWyAyYB4Lpb/s1NP3/bLzz7MJQhx7FktRQiFPSebzcId5Dfic1QiaDMVllb1JzXJCXrE1OI2ZWz+D/GRCbQ6M207uxu5f9MIZMYaa9u7w95L9v5kYj/IyJozr00vrDZrE5hjVsWpR7HxtJJnnWESzg72VTu7QVTBnPAWM0CwG/WrgMA1E9gQ4RljScDAC78FhsdXHzBaW76mkUXAABe3r/Nxbb3UEZjStmMt2GPRzmVdQhdTL2hxebffJZ7m+d+4zqK3b3GxVpWbQYA1C9pcrFQhbnnprNRRWACDcrOhza6WPADxqxp03d42eXnAAByxi4eAGKnsEkJkgP0by/bhltzgPyTD7lYZBnZvOd3bHexzEY6z5GzLuD1ZeneDF1/Je9rcGQtlQuFnhRlE6TpRNjnWNh2LpT3ZjYOh9/8uDGyyEqjCvP+Ic0rDpgB+3Oq+DoYbnujnUCA/4b2F8hSOziXn125NP39uW1szOK1UQJc3rVEtEtmWffv24E8/NawTSY0fQxQ6t9J76hhkZUbSCQ9v1PGLprBUhRFURRFURRFGSH0A0tRFEVRFEVRFGWEOGaJoE1p+8kCN3S84qZvXfcHAMDk8nIXq6mrBAB8cP75LnbDff8FACgtK3axmKntc/Ag13/58ct/AgD89JVVLjb33PluenHtyYfdZymBstJAv+rrMhYx8oBo6G3xAyloinyOiatjIeWANqUuZYGiNgQitk6WdxuyPogymAU1bPTiN/DWHrtHnl3HwbY4AKC7SEhhktnB/wJO4jlQLgZk5+T5ox/0yvp2ppYJDgy40J9feB0A8A8ncy07TC83q+NrJBb2DvxWBiPr7ESNhHN+XZ2L7e8ns4XqWq4p1trN0rJJRqa5rZ3NGFqb2t6enS0Q8kaCHDDP+YB4poW/8mMAwMKv8O8z37kBAJBYt4V/d+GFtK6H7nax/ldJ1l567VW8sJHnlS1fzLF5S+j31/LA7dZd3W56xkdvAgAkm1tcLDaFznnwApb55ePmPK9/zsUiVSS7DS06B0ORN5Le8SAVlKYUefP8CYv6NtYIQb4DOGmfkKvnzHrSUg4d4XcXt2yOjRyKI1RzKSj0ZmVRkpcmsmxs0ZPie3YsEn90KwAgkY27WCJDbcae/l0u1pagZ9OLLVxzrj1OQ0kqYyUuNqWC6kFOKWOjpKIQHetUTpo50fVdHOLaV7I2kyUm54dpfijAz4WQNUURja01JimN8LO3JKzGaOMdzWApiqIoiqIoiqKMEMeclhnKLvT2Dfd7YnvFIN0d26mC8ruu5MG3L19/JgDgvQ+tdLG2VrIYLi/n3oqdzWRHmxB2mKtu+IFne7KnylZVzx/GntNie6Vkb4W1sI74WKuOd17abwbdR8W1YAealvkcL2FXCpFBCZYb61WR+bCsa9n7F+/nWKVM9JaVmor0/XHuMe1LUw/hzlv+4GLPtjwJAKiKVrrYQIZ+15vmezRuYpkcn7O8GNXrZxJTGqH79GCcsyIXTFkBAOhOsV04rM20WHZKudcEQxnM0/uecdPHT8sXmg4AAATASURBVG4AAFwya7mLvdZGBkBXvsvffvaeLQ8DAGZV8+DyBTXvGOndLCgCPkY9QxG+idqaops5M5XfvIHWdekHXKz0TGMsI7NCAzREf+sv+TzOnTodAFByw7Uu1nj3XW4610KZsOgEvtcDH/okzXvk57zu2XQeQytExmwIBrWFYzRz5dfe58R7QUWMDH9SWX6XKAoLb2e7HvPckxksa4Yh3yP81BZyfUUhaudktiqQ9pqFjRfjraJQsWfaz/J7eeP5npiiFAKawVIURVEURVEURRkh9ANLURRFURRFURRlhDhmieBr7S8DAD52n6jpYSpg79570MUmNVDK981mruGSNvK+s+/8iIs11lKV77Vi8HB/h6l6LTLmk6ZQhehHr/uWi82uZJMLm2q3skCJvywwJ+Z7vzcTGZJIpbN+VRnGN4saSKa0KiUMLVqMzG/Ax7FC0u8qWmCo6hXPvch1ZHDpUe7gOMLWpco397iYNDOwnDFx+f/VLg1CDjZGhxk0HuF7qivZc+giyiFsauN6gPc89iwAYE8XGyIsmkSDvX/+e645ePHyk9y0redz9/cedrH6fybDka+ecsLbsMeFjZ/pUT5BbVJ8G7dngSi1d8UzjuOF+831LMxbko8/BQCIRETblPG2K68/znXKln6BpFOBuVxjq+/mWwAApStO5YWefYL27/ilvF/VEw/3pxV8XaVjJZllCXXbAMmWc0L6nMzQcyoWlsYXJCuU9av603TebK1OAJhUVuamK2NkcJASddXiQf6tJRL0voINelYewnDDHBRFGT1oBktRFEVRFEVRFGWEOOYM1qJa6hl96pqfulgqRz3TkQD32g1kqcdPDtxsN/abnUm2X7e9MZ9depmLNRRTD5y0Jz6uYu6Q+2UHpMqenqEMOeQ8mc2yvHsWWeqeM3n5kNsdj3zr9H8CAFx+57td7O4tvwMAvPzWHhf720Vknb+ongfU7+jm3vgHt1I29MFLf+jZRn+mzxNTvKxYRtdp5CzuHf/qO6/1/C6To57XoE+G14/hBlzn4a1gL2M2k9xUOt3Frvs0pSJf28/W0+c1nXtE+zOeuWnp9W76xiWfBgCUR9is5I4tvwAAfP/qj7pYRZTLY1TF6Lf/9vCXXKw1zudAGZ5AEWUmimc1uFg2bjIOZXysA4vIaCRQw7+LdlPGpDElsvs19Z5tLFn5Hv5PmtadWfc6r2cincfAsvP4d3vpeZpPs9GCvXPzwpzhaE09xhrSwKo8SqY80yrZ3tuv/EzKmFLIDJY1/5FZJKmaseZY8vkZNSYX6RxnLTMmO9aXZoOnVPbwGSzNWilK4TC+n7aKoiiKoiiKoigjiH5gKYqiKIqiKIqijBABKaUb9seBQCuAt96+3SlopuXzea/e46+MnrMh0XNWeOg5Kzz0nBUeo/KcAXrehkDPWWEyKs+bnrMhOaJzdlQfWIqiKIqiKIqiKMrhUYmgoiiKoiiKoijKCKEfWIqiKIqiKIqiKCOEfmApiqIoiqIoiqKMEPqBpSiKoiiKoiiKMkLoB5aiKIqiKIqiKMoIoR9YiqIoiqIoiqIoI4R+YCmKoiiKoiiKoowQ+oGlKIqiKIqiKIoyQugHlqIoiqIoiqIoygjxvz1lhu1UhCaIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# How many images to display.\n", + "numbers_to_display = 64\n", + "\n", + "# Calculate the number of cells that will hold all the images.\n", + "num_cells = math.ceil(math.sqrt(numbers_to_display))\n", + "\n", + "# Make the plot a little bit bigger than default one.\n", + "plt.figure(figsize=(15, 15))\n", + "\n", + "# Go through the first images in a test set and plot them.\n", + "for plot_index in range(numbers_to_display):\n", + " # Extract digit data.\n", + " digit_label = y_test[plot_index, 0]\n", + " digit_pixels = x_test[plot_index, :]\n", + " \n", + " # Predicted label.\n", + " predicted_label = y_test_predictions[plot_index][0]\n", + "\n", + " # Calculate image size (remember that each picture has square proportions).\n", + " image_size = int(math.sqrt(digit_pixels.shape[0]))\n", + " \n", + " # Convert image vector into the matrix of pixels.\n", + " frame = digit_pixels.reshape((image_size, image_size))\n", + " \n", + " # Plot the image matrix.\n", + " color_map = 'Greens' if predicted_label == digit_label else 'Reds'\n", + " plt.subplot(num_cells, num_cells, plot_index + 1)\n", + " plt.imshow(frame, cmap=color_map)\n", + " plt.title(label_map[predicted_label])\n", + " plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False)\n", + "\n", + "# Plot all subplots.\n", + "plt.subplots_adjust(hspace=0.5, wspace=0.5)\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}