-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtone2vec.py
491 lines (379 loc) · 18.6 KB
/
tone2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
"""
tone2vec.py
Tone2Vec Module: Map Transcriptions into Representations
"""
import re
import os
import umap
import numpy as np
import pandas as pd
from typing import List, Callable
from collections import Counter
from typing import List, Dict, Tuple, Optional
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from scipy.stats import mode
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
def pitch_curve(seq: List[float]) -> Callable[[np.ndarray], np.ndarray]:
"""
Generates a simulated smooth pitch variation curve based on the given tone transcription sequence.
The pitch variation curve depends on the length of the sequence:
- For sequences of length 2, a straight line connecting the points (1, x1) and (3, x2) is generated.
- For sequences of length 3, a quadratic curve is fitted to represent the smooth variation of pitch.
Args:
seq (List[float]): A list of pitch levels represented by numbers in the range [1, 5].
Returns:
Callable[[np.ndarray], np.ndarray]: A function that, when provided an array of x values, returns the corresponding y values representing the pitch curve.
"""
if len(seq) == 2:
# For a sequence of length 2, use a straight line connecting (1, x1) and (3, x2)
coeffs = np.polyfit([1, 3], seq, 1)
return np.poly1d(coeffs)
elif len(seq) == 3:
# For a sequence of length 3, fit a quadratic curve to represent pitch variations
coeffs = np.polyfit([1, 2, 3], seq, 2)
return np.poly1d(coeffs)
else:
raise ValueError("Sequence length must be 2 or 3.")
def curve_simi(seq1: List[float], seq2: List[float]) -> float:
"""
Calculates the area of the absolute difference between two pitch curves over the domain [1, 3].
Args:
seq1 (List[float]): The first sequence of pitch levels.
seq2 (List[float]): The second sequence of pitch levels.
Returns:
float: The area representing the difference between the two pitch curves.
"""
# Calculate the pitch curves for both sequences
curve1 = pitch_curve(seq1)
curve2 = pitch_curve(seq2)
diff_curve = lambda x: np.abs(curve1(x) - curve2(x))
# Use numerical integration to estimate the area using the trapezoidal rule
x = np.linspace(1, 3, 1000) # Generate 1000 points between 1 and 3
y = diff_curve(x)
area = np.trapz(y, x) # Numerical integration using the trapezoidal rule
return area
def cal_simi(save_dir: str) -> np.ndarray:
"""
Calculate the similarity between sequences of pitch levels.
This function iterates through all possible combinations of sequences,
computes their similarity using the `curve_simi` function, and stores
the results in a 6-dimensional tensor.
Args:
save_dir (str): The directory where the similarity results will be saved.
Returns:
np.ndarray: A 6D array containing the similarity values for the sequences.
"""
# Initialize a 6D array to hold similarity values
similarity_tensor = np.zeros((6, 6, 6, 6, 6, 6))
# Iterate through all possible combinations of sequences
for i1 in range(1, 6):
for i2 in range(1, 6):
for i3 in range(1, 6):
for j1 in range(1, 6):
for j2 in range(1, 6):
for j3 in range(1, 6):
seq1 = [i1, i2, i3]
seq2 = [j1, j2, j3]
# Remove trailing zeros, if any
seq1 = [x for x in seq1 if x != 0]
seq2 = [x for x in seq2 if x != 0]
# Calculate similarity if both sequences are non-empty
if seq1 and seq2:
similarity = curve_simi(seq1, seq2)
# Fill the tensor, considering symmetry
similarity_tensor[i1][i2][i3][j1][j2][j3] = similarity
similarity_tensor[j1][j2][j3][i1][i2][i3] = similarity
# Save the results to the specified directory if it exists
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Define the path for saving the similarity tensor
np.save(os.path.join(save_dir, 'similarity_tensor.npy'), similarity_tensor)
return similarity_tensor
def Levenshtein_distance(list1, list2, transition_matrix=False):
"""
A General Extension to Levenshtein Distance (Edit Distance).
See Wieling, M., Margaretha, E., & Nerbonne, J. (2012). Inducing a measure of phonetic similarity from pronunciation variation. J. Phonetics, 40, 307-314.
Args:
transition_matrix: np.array [n+1, n+1]; (i, j) represents the cost transferring i to j.
The transition_matrix for edit distance is np.ones((n+1, n+1)) - np.identity(n+1)
list1, list2: the elements are from 1 to n (1-based indexing)
Output:
returns the segment x segment frequency matrix and the overall cost
"""
transition_matrix = np.ones((100, 100)) - np.identity(100) if not transition_matrix else transition_matrix
len1, len2 = len(list1), len(list2)
dp = np.zeros((len1 + 1, len2 + 1))
count_joint_p = np.zeros((transition_matrix.shape[0], transition_matrix.shape[0]))
# Initialize dp array for deletions and insertions
for i in range(1, len1 + 1):
dp[i][0] = dp[i-1][0] + transition_matrix[list1[i-1], 0]
for j in range(1, len2 + 1):
dp[0][j] = dp[0][j-1] + transition_matrix[0, list2[j-1]]
# Dynamic programming to solve subproblems
for i in range(1, len1 + 1):
for j in range(1, len2 + 1):
replace_cost = dp[i-1][j-1] + transition_matrix[list1[i-1], list2[j-1]]
insert_cost = dp[i][j-1] + transition_matrix[0, list2[j-1]]
delete_cost = dp[i-1][j] + transition_matrix[list1[i-1], 0]
# Choose the minimum cost
dp[i][j] = min(replace_cost, insert_cost, delete_cost)
# Update the count_joint_p based on the chosen operation
if dp[i][j] == replace_cost:
count_joint_p[list1[i-1], list2[j-1]] += 1
elif dp[i][j] == insert_cost:
count_joint_p[0, list2[j-1]] += 1
elif dp[i][j] == delete_cost:
count_joint_p[list1[i-1], 0] += 1
return dp[len1][len2], count_joint_p
def loading(file_path: str, column_name: str = None) -> list:
"""
Read data from a CSV or XLSX file. If a column name is specified, return that column as a list.
Otherwise, return the data as a list of lists, skipping the first column of each row.
Parameters:
file_path (str): The path to the file including the filename and extension.
column_name (str, optional): Name of the column to extract. If None, skip the first column of each row.
Returns:
list: Depending on the input, returns a single column or all data with the first column skipped.
"""
# Determine the file type and read the file accordingly
if file_path.endswith('.xlsx'):
df = pd.read_excel(file_path)
elif file_path.endswith('.csv'):
df = pd.read_csv(file_path)
else:
raise ValueError("Unsupported file format. Please use '.xlsx' or '.csv'.")
# Check if a specific column name has been provided
if column_name:
if column_name in df.columns:
return df[column_name].tolist()
else:
raise ValueError(f"Column name '{column_name}' not found in the file.")
else:
# Return all data except the first column in list of lists format
return df.iloc[:, 1:].values.tolist()
def parse_phonemes(data: List[List[str]]) -> Tuple[List[List[List[int]]], List[List[List[int]]], List[List[List[int]]], List[List[List[int]]]]:
"""
Parses lists of speech strings into structured phoneme data.
Args:
data (List[List[str]]): Each sublist represents dialect speeches in the format 't ɔ 55'.
Returns:
Tuple of lists for initials, finals, tones, and combined phoneme data, each structured as nested lists.
"""
phoneme_counter = Counter()
special_chars = [ '-', '\x8d', ')', '无', '?', '\uf179', '͊', ')', '(', '̥', '̱', '\x8d', '̍', '\uf179', ')']
for dialect_list in data:
for phoneme_str in dialect_list:
for char in special_chars:
phoneme_str = phoneme_str.replace(char, '')
raw_phonemes = phoneme_str.split()[:-1]
for phoneme in raw_phonemes:
for ele in phoneme:
phoneme_counter[ele] += 1
unique_phonemes_list = sorted(phoneme_counter.items(), key=lambda x: x[1])
unique_phonemes = []
for phoneme, count in phoneme_counter.items():
if count > 10:
unique_phonemes.append(phoneme)
print(f"There are {len(unique_phonemes)} unique phonemes")
print("Filtered phonemes:", unique_phonemes)
phoneme2num = {}
for index in range(len(unique_phonemes)):
phoneme2num[unique_phonemes[index]] = index + 1
initials_lists, finals_lists, tones_lists, all_lists = [], [], [], []
for dialect in data:
initials, finals, alls, tones = [], [], [], []
for speech in dialect:
if validate_speech(speech, phoneme2num, special_chars):
all_phonemes, initial_phonemes, final_phonemes, tone_phonemes = validate_speech(speech, phoneme2num, special_chars)
initials.append(initial_phonemes)
finals.append(final_phonemes)
alls.append(all_phonemes)
tones.append(tone_phonemes)
else:
initials.append([])
finals.append([])
alls.append([])
tones.append([])
initials_lists.append(initials)
finals_lists.append(finals)
all_lists.append(alls)
tones_lists.append(tones)
return initials_lists, finals_lists, all_lists, tones_lists
def validate_speech(speech: str, phoneme_to_num: Dict[str, int], special_chars: List[str]) -> Optional[Tuple[List[int], List[int], List[int], List[int]]]:
"""
Validates the format of a speech string and returns its components if valid.
Args:
speech (str): Speech string to be validated.
phoneme_to_num (Dict[str, int]): Mapping of phonemes to numbers.
special_chars (List[str]): Characters that invalidate the speech.
Returns:
A tuple of lists for all phonemes, initials, finals, and tones if valid, otherwise None.
"""
if any(char in speech for char in special_chars) or len(speech.split()) != 3:
return None
parts = speech.split()
initials_part, finals_part, tone_string = parts
initials = [phoneme_to_num[phon] for phon in initials_part if phon in phoneme_to_num]
finals = [phoneme_to_num[phon] for phon in finals_part if phon in phoneme_to_num]
if not initials or not finals or not re.fullmatch(r'[1-5]{1,3}', tone_string):
return None
tones = [int(tone) for tone in tone_string]
all_phonemes = initials + finals
return all_phonemes, initials, finals, tones
def calculate_sparsity(phoneme_lists: List[List[List[int]]]):
"""
Calculates and prints the sparsity of the phoneme data.
Args:
phoneme_lists (List[List[List[int]]]): Nested list of phoneme data.
"""
total = sum(len(sublist) for phoneme_list in phoneme_lists for sublist in phoneme_list)
non_empty = sum(bool(item) for phoneme_list in phoneme_lists for sublist in phoneme_list for item in sublist)
sparsity = non_empty / total if total else 0
print(f"The data sparsity is {sparsity:.6f}.")
def fill_with_mode(tone_list):
"""
Fill empty lists in tone_list with the most common non-empty list of their respective columns.
Removes columns that are entirely empty after this processing.
Parameters:
tone_list (list of list of list): A 2D list where each element is a list that might be empty.
Returns:
list: The tone_list with empty lists filled with the most common non-empty list of their respective columns,
and columns that remain entirely empty are removed.
"""
num_rows = len(tone_list)
num_cols = len(tone_list[0]) if num_rows > 0 else 0
# Get the modes for each column
column_modes = []
for col in range(num_cols):
# Collect all non-empty lists in the column
column_data = [tuple(tone_list[row][col]) for row in range(num_rows) if tone_list[row][col]]
# Calculate mode using Counter, directly on tuples for simplicity
if column_data:
most_common_structure = Counter(column_data).most_common(1)[0][0]
else:
most_common_structure = ()
column_modes.append(list(most_common_structure)) # Convert tuple back to list
# Fill empty lists with the mode of their respective column
for row in range(num_rows):
for col in range(num_cols):
if not tone_list[row][col]:
if column_modes[col]: # Only fill if there is a mode to fill with
tone_list[row][col] = column_modes[col].copy() # Copy to prevent aliasing
# Remove columns that are still entirely empty
columns_to_remove = [col for col in range(num_cols) if not any(tone_list[row][col] for row in range(num_rows))]
for row in range(num_rows):
for col in sorted(columns_to_remove, reverse=True): # Reverse to avoid shifting indices
del tone_list[row][col]
return tone_list
def tone_feats(tone_list, method='PCA', dim=2):
"""
Apply PCA, t-SNE, or UMAP to reduce the dimensionality of the data and extract tone features based on indices.
Parameters:
tone_list (list of list of tuples): Indices in the format [(x, y, z), ...] for each dialect and word.
method (str): The dimensionality reduction method to use ('PCA', 't-SNE', 'UMAP').
dim (int): The target dimensionality for reduction.
Returns:
np.ndarray: The extracted tone features reshaped based on the input indices.
"""
# Load and reshape the data
data_tone2vec = np.load('tonelab/weights/tone2vec.npy')
reshaped_data = data_tone2vec.reshape(-1, 216) # Assuming data_tone2vec is originally (6, 6, 6, 6, 6, 6)
# Choose and initialize the dimensionality reduction model
if method == 'PCA':
model = PCA(n_components=dim)
elif method == 't-SNE':
model = TSNE(n_components=dim, learning_rate='auto', init='random')
elif method == 'UMAP':
model = umap.UMAP(n_components=dim)
else:
raise ValueError("Unsupported dimensionality reduction method specified.")
# Fit and transform the data
reduced_data = model.fit_transform(reshaped_data)
reduced_data = reduced_data.reshape(6, 6, 6, dim) # Reshaping back assuming the original shape
tone_list = fill_with_mode(tone_list)
num_dialect, num_word = len(tone_list), len(tone_list[0])
tone_feats = np.zeros((num_dialect, num_word, dim))
# Populate the tone_feats array with reduced data based on indices from tone_list
for i in range(num_dialect):
for j in range(num_word):
indices = tone_list[i][j]
if len(indices) == 3:
x, y, z = indices
elif len(indices) == 2:
x, y, z = indices[0], indices[1], 0 # Handle cases where z index is missing
else:
x, y, z = indices[0], 0, 0 # Handle cases where z index is missing
# Assigning the reduced features to the tone_feats array
tone_feats[i, j] = reduced_data[x, y, z]
tone_feats = tone_feats.reshape(num_dialect, num_word * dim)
return tone_feats
def plot(feats, labels, method='PCA'):
"""
Reduces the dimensionality of the feature array to 2D and visualizes the results,
coloring the points according to the provided labels.
Parameters:
feats (np.ndarray): An array of shape (n, m) with n samples and m features.
labels (list): A list of length n with string labels for each sample.
method (str): The method used for dimensionality reduction ('PCA', 't-SNE', 'UMAP').
Returns:
None: This function visualizes the 2D projection of the data.
"""
# Convert labels to integers
le = LabelEncoder()
labels_encoded = le.fit_transform(labels)
num_classes = len(np.unique(labels_encoded))
print(f"Number of unique labels (k): {num_classes}")
# Initialize the dimensionality reduction model
if method == 'PCA':
model = PCA(n_components=2)
elif method == 't-SNE':
model = TSNE(n_components=2)
elif method == 'UMAP':
model = umap.UMAP(n_components=2)
else:
raise ValueError("Unsupported dimensionality reduction method specified.")
# Reduce dimensions
reduced_data = model.fit_transform(feats)
# Plotting
plt.figure(figsize=(8, 6))
scatter = plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=labels_encoded, cmap='viridis', edgecolor='k', s=50)
plt.colorbar(scatter, ticks=range(num_classes), label='Label classes')
plt.title(f'{method} Reduction of Features to 2D')
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.grid(True)
plt.show()
def phoneme_feats(all_list):
"""
Computes a symmetric matrix of Levenshtein distances between the phoneme lists of different dialects.
Parameters:
all_list (list of list of str): List of dialects, each containing a list of phoneme strings.
Returns:
np.ndarray: A square matrix of Levenshtein distances.
"""
num_dialects = len(all_list)
all_feats = np.zeros((num_dialects, num_dialects))
for dialect_1 in range(num_dialects):
for dialect_2 in range(dialect_1 + 1, num_dialects):
cost = 0
for index in range(len(all_list[0])):
str1, str2 = all_list[dialect_1][index], all_list[dialect_2][index]
cost_, _ = Levenshtein_distance(str1, str2)
cost += cost_
all_feats[dialect_1][dialect_2] = all_feats[dialect_2][dialect_1] = cost
return all_feats
def feats(all_list, tone_list):
"""
Combines phoneme and tone features into a single feature set.
Parameters:
all_list (np.ndarray): Array containing phoneme features.
tone_list (np.ndarray): Array containing tone features.
Returns:
np.ndarray: The concatenated features.
"""
feats_1 = phoneme_feats(all_list) # Assumes this function is defined elsewhere and returns an np.ndarray
feats_2 = tone_feats(tone_list) # Assumes this function is defined elsewhere and returns an np.ndarray
feats = np.concatenate((feats_1, feats_2), axis=-1)
return feats