diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 5a5b4e8ba3434..382897d59fce5 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -9316,6 +9316,30 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten return false; } } break; + case GGML_OP_CPY: + { + ggml_type src0_type = op->src[0]->type; + ggml_type src1_type = op->src[1]->type; + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) { + return true; + } + if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { + return true; + } + return false; + } break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: @@ -9331,7 +9355,6 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: - case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 138fd298271c7..0273a4309fd1d 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -70,23 +70,27 @@ static std::vector tensor_to_float(const ggml_tensor * t) { std::vector buf(ggml_nbytes(t)); ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t)); + ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type); + // access elements by index to avoid gaps in views for (int64_t i3 = 0; i3 < t->ne[3]; i3++) { for (int64_t i2 = 0; i2 < t->ne[2]; i2++) { for (int64_t i1 = 0; i1 < t->ne[1]; i1++) { - for (int64_t i0 = 0; i0 < t->ne[0]; i0++) { + for (int64_t i0 = 0; i0 < t->ne[0]; i0 += ggml_blck_size(t->type)) { size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0*t->nb[0]; - float v; if (t->type == GGML_TYPE_F16) { - v = (float) ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]); + tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i])); } else if (t->type == GGML_TYPE_F32) { - v = *(float *) &buf[i]; + tv.push_back(*(float *) &buf[i]); } else if (t->type == GGML_TYPE_I32) { - v = *(int32_t *) &buf[i]; + tv.push_back((float)*(int32_t *) &buf[i]); + } else if (ggml_is_quantized(t->type)) { + std::vector vq(ggml_blck_size(t->type)); + tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type)); + tv.insert(tv.end(), vq.begin(), vq.end()); } else { GGML_ASSERT(false); } - tv.push_back(v); } } } @@ -320,7 +324,7 @@ struct test_case { for (size_t i = 0; i < f1.size(); i++) { // check for nans if (std::isnan(f1[i]) || std::isnan(f2[i])) { - printf("[%s] NaN at index %zu ", ggml_op_desc(t1), i); + printf("[%s] NaN at index %zu (%f %f) ", ggml_op_desc(t1), i, f1[i], f2[i]); ud->ok = false; return true; } @@ -1253,7 +1257,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2})); test_cases.emplace_back(new test_dup()); - test_cases.emplace_back(new test_cpy()); + + for (ggml_type type : all_types) { + test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 100, 100, 1})); + } + test_cases.emplace_back(new test_cont()); auto add_test_bin_bcast = [&](ggml_type type, std::array ne, std::array nr) {