-
Notifications
You must be signed in to change notification settings - Fork 6
/
data.py
235 lines (215 loc) · 8.54 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import numpy as np
import pandas as pd
import os, sys
import torch
from torch.utils.data.dataset import Dataset
import glob, re
import utils
import codecs, unicodedata
from config import ConfigArgs as args
class SpeechDataset(Dataset):
def __init__(self, data_path, metadata, model_name, mem_mode=False, ga_mode=False):
'''
Args:
data_path (str): path to dataset
meta_path (str): path to metadata csv file
model_name (str): {'Text2Mel', 'SSRN', 'All'}
'''
self.data_path = data_path
self.model_name = model_name
self.mem_mode = mem_mode
self.ga_mode = ga_mode
self.fpaths, self.texts, self.norms = read_meta(os.path.join(data_path, metadata))
if self.mem_mode:
self.mels = [torch.tensor(np.load(os.path.join(
self.data_path, args.mel_dir, path))) for path in self.fpaths]
if self.ga_mode:
self.g_att = [torch.tensor(np.load(os.path.join(
self.data_path, args.ga_dir, path))) for path in self.fpaths]
def __getitem__(self, idx):
text, mel, mag = None, None, None
text = torch.tensor(self.norms[idx], dtype=torch.long)
# Memory mode is faster
if not self.mem_mode:
mel_path = os.path.join(self.data_path, args.mel_dir, self.fpaths[idx])
mel = torch.tensor(np.load(mel_path))
else:
mel = self.mels[idx]
if self.model_name == 'Text2Mel':
if not self.ga_mode:
return (text, mel)
else:
# Guided attention mode
return (text, mel, self.g_att[idx])
mag_path = os.path.join(self.data_path, args.mag_dir, self.fpaths[idx])
mag = torch.tensor(np.load(mag_path))
return (text, mel, mag)
def __len__(self):
return len(self.fpaths)
def load_vocab():
char2idx = {char: idx for idx, char in enumerate(args.vocab)}
idx2char = {idx: char for idx, char in enumerate(args.vocab)}
return char2idx, idx2char
def text_normalize(text):
text = ''.join(char for char in unicodedata.normalize('NFD', text)
if unicodedata.category(char) != 'Mn') # Strip accents
text = text.lower()
text = re.sub(u"[^{}]".format(args.vocab), " ", text)
text = re.sub("[ ]+", " ", text)
return text
def read_meta(path):
'''
If we use pandas instead of this function, it may not cover quotes.
Args:
path: metadata path
Returns:
fpaths, texts, norms
'''
char2idx, _ = load_vocab()
lines = codecs.open(path, 'r', 'utf-8').readlines()
fpaths, texts, norms = [], [], []
for line in lines:
fname, text, norm = line.strip().split('|')
fpath = fname + '.npy'
text = text_normalize(text).strip() + u'E' # ␃: EOS
text = [char2idx[char] for char in text]
norm = text_normalize(norm).strip() + u'E' # ␃: EOS
norm = [char2idx[char] for char in norm]
fpaths.append(fpath)
texts.append(text)
norms.append(norm)
return fpaths, texts, norms
def collate_fn(data):
"""
Creates mini-batch tensors from the list of tuples (texts, mels, mags).
Args:
data: list of tuple (texts, mels, mags).
- texts: torch tensor of shape (B, Tx).
- mels: torch tensor of shape (B, Ty/4, n_mels).
- mags: torch tensor of shape (B, Ty, n_mags).
Returns:
texts: torch tensor of shape (batch_size, padded_length).
mels: torch tensor of shape (batch_size, padded_length, n_mels).
mels: torch tensor of shape (batch_size, padded_length, n_mags).
"""
# Sort a data list by text length (descending order).
data.sort(key=lambda x: len(x[0]), reverse=True)
texts, mels, mags = zip(*data)
# Merge (from tuple of 1D tensor to 2D tensor).
text_lengths = [len(text) for text in texts]
mel_lengths = [len(mel) for mel in mels]
mag_lengths = [len(mag) for mag in mags]
# (number of mels, max_len, feature_dims)
text_pads = torch.zeros(len(texts), max(text_lengths), dtype=torch.long)
mel_pads = torch.zeros(len(mels), max(mel_lengths), mels[0].shape[-1])
mag_pads = torch.zeros(len(mags), max(mag_lengths), mags[0].shape[-1])
for idx in range(len(mels)):
text_end = text_lengths[idx]
text_pads[idx, :text_end] = texts[idx]
mel_end = mel_lengths[idx]
mel_pads[idx, :mel_end] = mels[idx]
mag_end = mag_lengths[idx]
mag_pads[idx, :mag_end] = mags[idx]
return text_pads, mel_pads, mag_pads
def t2m_collate_fn(data):
"""
Creates mini-batch tensors from the list of tuples (texts, mels, mags).
Args:
data: list of tuple (texts).
- texts: torch tensor of shape (B, Tx).
- mels: torch tensor of shape (B, Ty/4, n_mels).
Returns:
texts: torch tensor of shape (batch_size, padded_length).
mels: torch tensor of shape (batch_size, padded_length, n_mels).
"""
# Sort a data list by text length (descending order).
data.sort(key=lambda x: len(x[0]), reverse=True)
texts, mels = zip(*data)
# Merge (from tuple of 1D tensor to 2D tensor).
text_lengths = [len(text) for text in texts]
mel_lengths = [len(mel) for mel in mels]
# (number of mels, max_len, feature_dims)
text_pads = torch.zeros(len(texts), max(text_lengths), dtype=torch.long)
mel_pads = torch.zeros(len(mels), max(mel_lengths), mels[0].shape[-1])
for idx in range(len(mels)):
text_end = text_lengths[idx]
text_pads[idx, :text_end] = texts[idx]
mel_end = mel_lengths[idx]
mel_pads[idx, :mel_end] = mels[idx]
return text_pads, mel_pads, None
def t2m_ga_collate_fn(data):
"""
Creates mini-batch tensors from the list of tuples (texts, mels, mags).
Args:
data: list of tuple (texts).
- texts: torch tensor of shape (B, Tx).
- mels: torch tensor of shape (B, Ty/4, n_mels).
- gas: torch tensor of shape (B, max_Tx, max_Ty).
Returns:
texts: torch tensor of shape (B, padded_length).
mels: torch tensor of shape (B, padded_length, n_mels).
gas: torch tensor of shape (B, Tx, Ty/4)
"""
# Sort a data list by text length (descending order).
data.sort(key=lambda x: len(x[0]), reverse=True)
texts, mels, gas = zip(*data)
# Merge (from tuple of 1D tensor to 2D tensor).
text_lengths = [len(text) for text in texts]
mel_lengths = [len(mel) for mel in mels]
# (number of mels, max_len, feature_dims)
text_pads = torch.zeros(len(texts), max(text_lengths), dtype=torch.long)
mel_pads = torch.zeros(len(mels), max(mel_lengths), mels[0].shape[-1])
ga_pads = torch.zeros(len(mels), max(text_lengths), max(mel_lengths))
for idx in range(len(mels)):
text_end = text_lengths[idx]
text_pads[idx, :text_end] = texts[idx]
mel_end = mel_lengths[idx]
mel_pads[idx, :mel_end] = mels[idx]
ga_pads[idx] = gas[idx][:max(text_lengths), :max(mel_lengths)]
return text_pads, mel_pads, ga_pads
class TextDataset(Dataset):
def __init__(self, text_path):
'''
Args:
text path (str): path to text set
'''
self.texts = read_text(text_path)
def __getitem__(self, idx):
text = torch.tensor(self.texts[idx], dtype=torch.long)
return text
def __len__(self):
return len(self.texts)
def read_text(path):
'''
If we use pandas instead of this function, it may not cover quotes.
Args:
path: metadata path
Returns:
fpaths, texts, norms
'''
char2idx, _ = load_vocab()
lines = codecs.open(path, 'r', 'utf-8').readlines()[1:]
texts = []
for line in lines:
text = text_normalize(line.split(' ', 1)[-1]).strip() + u'E' # ␃: EOS
text = [char2idx[char] for char in text]
texts.append(text)
return texts
def synth_collate_fn(data):
"""
Creates mini-batch tensors from the list of tuples (texts, mels, mags).
Args:
data: list of tuple (texts,).
- texts: torch tensor of shape (B, Tx).
Returns:
texts: torch tensor of shape (batch_size, padded_length).
"""
texts = data
# Merge (from tuple of 1D tensor to 2D tensor).
text_lengths = [len(text) for text in texts]
# (number of mels, max_len, feature_dims)
text_pads = torch.zeros(len(texts), max(text_lengths), dtype=torch.long)
for idx in range(len(texts)):
text_end = text_lengths[idx]
text_pads[idx, :text_end] = texts[idx]
return text_pads, None, None