-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_model.py
881 lines (801 loc) · 43.5 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
import argparse
import logging.handlers
import math
import os.path
import pickle
import random
from pathlib import Path
import wandb
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from sklearn.neighbors import BallTree
from torch.utils.data import DataLoader, WeightedRandomSampler
from tqdm import tqdm
from model import ByT5ClusteredClassifierDataset, ByT5_classifierNew, DistanceBasedLoss, calculate_smooth_labels, \
ModifiedCharCNN, MultiLayerCharLSTM, deleteEncodingLayers, deleteEncodingLayersDeberta, ByT5_regressorNew, haversine_loss_with_penalty
from transformers import AutoModelForSequenceClassification
# Util imports
from utils import read_csv_data, read_train_test_data, true_distance_from_pred, true_distance_from_pred_cluster, true_distance_from_coords
def validate_rel(epoch, model, valid_generator, logger, show_progress=False, no_save=False, smooth_labels=False,
steps=0, smooth_labels_test=False):
"""
Validates the model on a validation dataset and computes evaluation metrics.
Parameters:
-----------
epoch : int
The current epoch number of the training process.
model : torch.nn.Module
The neural network model to be validated.
valid_generator : torch.utils.data.DataLoader
The data loader for the validation dataset.
logger : logging.Logger
The logger object to record the validation metrics.
show_progress : bool, optional
Whether to display the validation progress bar. Default is False.
no_save : bool, optional
Whether to skip saving the validation results. Default is False.
smooth_labels : bool, optional
Are ground truth labels smoothed or not. Default is False.
steps : int, optional
Current step number in the training process.
smooth_labels_test : bool, optional
Whether the validation data has smooth labels. Default is False.
Returns:
--------
tuple
A tuple containing true latitudes, longitudes, clusters, predicted clusters, input texts, and confidence scores.
"""
model.eval()
loss_ls = []
texts = []
true_distance_ls = []
true_clusters = []
pred_clusters = []
true_lats = []
true_lngs = []
if show_progress:
generator = tqdm(valid_generator)
else:
generator = valid_generator
for batch in generator:
te_feature, te_label_true, text, te_lat, te_lng, te_langs, int_label, confidence_weight, te_intermediate_cluster, te_mask = batch
te_feature = te_feature.to(device)
te_label_true = te_label_true.to(device)
te_intermediate_cluster = te_intermediate_cluster.to(device)
te_langs = te_langs.to(device)
te_mask = te_mask.to(device)
with torch.no_grad():
te_predictions = model(te_feature, te_mask)
if args.model_type == 'bert':
te_predictions = te_predictions.logits
if args.regression:
pred_lats = te_predictions[:, 0]
pred_lons = te_predictions[:, 1]
te_loss = haversine_loss_with_penalty(te_lat.to(device), te_lng.to(device), pred_lats, pred_lons, device)
elif args.intermediate_clustering is not None:
te_loss = custom_loss(te_predictions[0], te_label_true) + custom_loss(te_predictions[1], te_intermediate_cluster)
te_predictions = te_predictions[0]
else:
te_loss = custom_loss(te_predictions, te_label_true)
texts.append(text)
loss_ls.append(te_loss.item())
true_lats.append(te_lat.detach().cpu())
true_lngs.append(te_lng.detach().cpu())
if smooth_labels and smooth_labels_test:
te_label_true_index = torch.argmax(te_label_true, dim=1)
else:
te_label_true_index = te_label_true
true_clusters.append(te_label_true_index.detach().cpu())
if not args.regression:
pred_clusters.append(te_predictions.detach().cpu())
true_distance_ls.append(
true_distance_from_pred(te_predictions.detach().cpu(), te_lat.detach().cpu(), te_lng.detach().cpu(),
cluster_df))
else:
true_distance_ls.append(true_distance_from_coords(pred_lats, pred_lons, te_lat, te_lng))
loss_ls.append(te_loss.item())
te_loss = sum(loss_ls) / len(loss_ls)
true_distance_ls = torch.cat(true_distance_ls, 0)
true_distance_ls = pd.Series(true_distance_ls.numpy())
true_lats = torch.cat(true_lats, 0).numpy()
true_lngs = torch.cat(true_lngs, 0).numpy()
true_clusters = torch.cat(true_clusters, 0).numpy()
texts = [item for sublist in texts for item in sublist]
if not args.regression:
pred_clusters = torch.cat(pred_clusters, 0).numpy()
pred_cluster_ids = [pred_clusters[i].argmax() for i in range(len(pred_clusters))]
acc = len(true_clusters[true_clusters == pred_cluster_ids]) / len(true_clusters)
else:
acc = len(true_distance_ls[true_distance_ls < 161]) / len(true_distance_ls)
pred_cluster_ids = 0
try:
confidence = [pred_clusters[i].max() for i in range(len(pred_clusters))]
threshold = -1 * np.percentile(-1 * np.array(confidence), 10)
top_confidence_distances = true_distance_ls[confidence >= threshold]
except:
confidence = []
top_confidence_distances = pd.Series([])
logger.info(
f'Epoch {epoch} eval loss {te_loss} accuracy {acc} ' +
f'true distance avg {true_distance_ls.mean()} true distance median {true_distance_ls.median()}' +
f'top 10 avg {top_confidence_distances.mean()}, top 10 median {top_confidence_distances.median()}' +
f'top 10 count {len(top_confidence_distances)}, eval set count {len(true_distance_ls)}')
# , 'Metrics', test_metrics
if not no_save and steps % args.save_steps == 0:
model_name = "byt5"
filename = f"models/{model_name}-class-%d-%d" % (epoch, steps)
torch.save(model, filename)
logger.info(f"saved to {filename}")
else:
if not no_save:
model_name = "byt5"
filename = f"models/{model_name}-checkpoint"
torch.save(model, filename)
logger.info(f"saved to {filename}")
if args.wandb_project:
wandb.log({'eval_loss': te_loss, 'eval_accuracy': acc, 'distance_median': true_distance_ls.median(),
'distance_mean': true_distance_ls.mean(),
'distinct_true_clusters': len(pd.Series(true_clusters).unique()),
'distinct_pred_clusters': len(pd.Series(pred_cluster_ids).unique()),
'10_median': top_confidence_distances.median(),
'10_mean': top_confidence_distances.mean()})
return true_lats, true_lngs, true_clusters, pred_clusters, texts, np.array(confidence)
def train_epoch_rel(epoch, model, training_generator, valid_generator, optimizer, args, logger, smooth_labels=False):
"""
Trains the model for one epoch on a training dataset and runs validation after the epoch.
Parameters:
-----------
epoch : int
The current epoch number of the training process.
model : torch.nn.Module
The neural network model to be trained.
training_generator : torch.utils.data.DataLoader
The data loader for the training dataset.
valid_generator : torch.utils.data.DataLoader
The data loader for the validation dataset.
optimizer : torch.optim.Optimizer
The optimization algorithm used to update the model parameters.
args : argparse.Namespace
The command-line arguments used to configure the training process.
logger : logging.Logger
The logger object to record the training metrics.
smooth_labels : bool, optional
Are ground truth labels smoothed or not. Default is False.
Returns:
--------
None
"""
model.train()
losses = []
main_losses = []
intermediate_losses = []
max_steps = len(training_generator)
logger.info(f'training max_steps={max_steps}')
for iter, batch in tqdm(enumerate(training_generator), total=max_steps):
model.train()
feature, label_true, _, lat, lng, langs, int_label, confidence_weight, intermediate_cluster, mask = batch
if smooth_labels:
label_true = torch.argmax(label_true, dim=1)
if confidence_weight.max() > 1.0:
label_true = make_smooth_labels_for_confidence_weight(label_true, confidence_weight,
label_smoothing=args.label_smoothing,
num_classes=len(cluster_df))
feature = feature.to(device)
label_true = label_true.to(device)
intermediate_cluster = intermediate_cluster.to(device)
langs = langs.to(device)
mask = mask.to(device)
optimizer.zero_grad()
predictions = model(feature, mask)
if args.model_type == 'bert':
predictions = predictions.logits
if args.regression:
pred_lats = predictions[:, 0]
pred_lons = predictions[:, 1]
loss = haversine_loss_with_penalty(lat.to(device), lng.to(device), pred_lats, pred_lons, device)
elif args.intermediate_clustering is not None:
main_loss = custom_loss(predictions[0], label_true)
intermediate_loss = custom_loss(predictions[1], intermediate_cluster)
loss = main_loss + intermediate_loss
main_losses.append(main_loss.item())
intermediate_losses.append(intermediate_loss.item())
else:
loss = custom_loss(predictions, label_true)
losses.append(loss.item())
loss.backward()
if args.gradient_clipping is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.gradient_clipping)
optimizer.step()
if iter % args.log_steps == 0:
logger.info(f'Epoch {epoch} training loss {sum(losses) / len(losses)}')
if args.wandb_project:
if len(main_losses) == 0:
main_losses = [0]
intermediate_losses = [0]
wandb.log({'training_loss': sum(losses) / len(losses), 'main_loss': sum(main_losses) / len(main_losses),
'intermediate_loss': sum(intermediate_losses) / len(intermediate_losses)})
losses = []
main_losses = []
intermediate_losses = []
if iter % args.eval_steps == 0 or iter == max_steps - 1:
validate_rel(epoch=epoch, model=model, valid_generator=valid_generator, logger=logger,
smooth_labels=smooth_labels, steps=iter, smooth_labels_test=smooth_labels_test)
if iter == max_steps - 1:
break
# training loss display
logger.info(f'Epoch {epoch} training loss {sum(losses) / len(losses)}')
def make_smooth_labels_for_confidence_weight(label_true, confidence_weight, label_smoothing, num_classes):
"""
Modifies the true labels based on the confidence weight and label smoothing parameters.
This function adjusts the true labels using label smoothing and confidence weights.
It increases the label smoothing effect for samples with high confidence weights.
Parameters:
-----------
label_true : torch.Tensor
A tensor of true labels.
confidence_weight : torch.Tensor
A tensor representing the confidence weight for each sample.
label_smoothing : float
The label smoothing parameter.
num_classes : int
The number of classes in the classification task.
Returns:
--------
torch.Tensor
A tensor of modified true labels after applying label smoothing and confidence weight adjustments.
"""
label_smoothing_increased = 1.0
device = label_true.device
label_true = label_true.to(device)
label_true_one_hot = torch.zeros(label_true.shape[0], num_classes).to(device)
label_true_one_hot.scatter_(1, label_true.view(-1, 1), 1)
# Apply label smoothing to all labels
label_true_one_hot = label_true_one_hot * (1 - label_smoothing) + label_smoothing / num_classes
# For samples with confidence_weight > 1.0, apply special label smoothing
high_confidence_indices = (confidence_weight > 1.0).nonzero(as_tuple=True)[0]
for i in high_confidence_indices:
true_class = label_true[i].item()
label_true_one_hot[i] = label_smoothing_increased / num_classes
label_true_one_hot[i, true_class] = 1 - label_smoothing_increased
return label_true_one_hot
def show_metrics(true_lats, true_lngs, true_clusters, pred_clusters, min_distance, logger,
all_thresholds=False, smooth_labels=False):
"""
Computes and logs various evaluation metrics for model performance.
This function calculates metrics like mean absolute error, median, accuracy, precision,
recall, F1-score, and others for different threshold values. It is used for evaluating
the model's performance on a validation or test dataset.
Parameters:
-----------
true_lats : list or numpy.ndarray
The true latitude values of the dataset.
true_lngs : list or numpy.ndarray
The true longitude values of the dataset.
true_clusters : list or numpy.ndarray
The true cluster IDs of the dataset.
pred_clusters : list or numpy.ndarray
The predicted cluster IDs of the dataset.
min_distance : float
The minimum distance threshold used for computing some evaluation metrics.
logger : logging.Logger
The logger object for logging the computed metrics.
all_thresholds : bool, optional
Whether to compute evaluation metrics for a range of thresholds. Default is False.
smooth_labels : bool, optional
Indicates if smooth labels were used. Affects the accuracy calculation. Default is False.
Returns:
--------
None
The function logs the evaluation metrics using the provided logger object.
"""
# displays metrics, for different thresholds
MAEs = []
Medians = []
F1s = []
percentages = []
Acc5 = []
Acc20 = []
Acc100 = []
thresholds = [j / 20.0 for j in range(0, 20)] if all_thresholds else [0, 0.75]
for threshold in thresholds:
part_true_distance_ls = []
acc = []
acc5 = []
acc20 = []
acc100 = []
vals = []
tp = 0
fp = 0
fn = 0
for i in range(true_clusters.shape[0]):
pred_cluster_proba = torch.nn.Softmax(dim=0)(torch.tensor(pred_clusters[i])).numpy()
pred = pred_clusters[i].argmax()
# sort pred by value, and store indexes to pred_sorted, so that pred_sorted[0]==pred, and pred_sorted[1] is the next
pred_sorted = np.argsort(pred_cluster_proba)[::-1]
pred_val = pred_cluster_proba[pred]
dist = true_distance_from_pred_cluster(pred, true_lats[i], true_lngs[i], cluster_df)
if dist < min_distance and pred_val >= threshold:
tp += 1
elif dist >= min_distance and pred_val >= threshold:
fp += 1
elif dist < min_distance and pred_val < threshold:
fn += 1
if pred_val < threshold:
continue
vals.append(pred_val)
if smooth_labels:
acc.append(1 if pred == true_clusters[i].argmax() else 0)
else:
acc.append(1 if pred == true_clusters[i] else 0)
acc5.append(1 if true_clusters[i] in pred_sorted[:5] else 0)
acc20.append(1 if true_clusters[i] in pred_sorted[:20] else 0)
acc100.append(1 if true_clusters[i] in pred_sorted[:100] else 0)
part_true_distance_ls.append(dist)
part_true_distance_ls = pd.Series(part_true_distance_ls)
MAEs.append(part_true_distance_ls.mean())
Medians.append(part_true_distance_ls.median())
percentages.append(len(part_true_distance_ls) / true_clusters.shape[0])
Acc5.append(pd.Series(acc5).mean())
Acc20.append(pd.Series(acc20).mean())
Acc100.append(pd.Series(acc100).mean())
if tp > 0:
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = tp / (tp + 0.5 * (fp + fn))
else:
precision = 0
recall = 0
f1 = 0
F1s.append(f1)
logger.info(f'threshold {threshold} MAE {part_true_distance_ls.mean()} ' +
f'Median {part_true_distance_ls.median()} ' +
f'Accuracy@5 {pd.Series(acc5).mean()} ' +
f'Accuracy@20 {pd.Series(acc20).mean()} ' +
f'Accuracy@100 {pd.Series(acc100).mean()} ' +
f'percentage {len(part_true_distance_ls) / true_clusters.shape[0]} ' +
f'acc {pd.Series(acc).mean()} ' +
f'precision {precision} recall {recall} ' +
f'f1@{min_distance} {f1}')
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def calculate_sampling_weights(df_train, args, tree, country_by_coordinates, lang_home_country, cluster_df):
"""
Calculates sampling weights for training data based on language, country, and cluster distribution.
Parameters:
-----------
df_train : pandas.DataFrame
The training dataframe.
args : argparse.Namespace
The command-line arguments for configuration.
tree : sklearn.neighbors.BallTree
BallTree for efficient distance queries.
country_by_coordinates : dict
A dictionary mapping coordinates to country codes.
lang_home_country : dict
A dictionary mapping language codes to home countries.
cluster_df : pandas.DataFrame
DataFrame containing cluster information.
Returns:
--------
pandas.DataFrame
The updated dataframe with a new 'weight' column containing the calculated weights.
"""
logger.info("calculating weights")
if not smooth_labels and not 'label' in df_train.columns:
labels = []
for i, row in tqdm(df_train.iterrows(), total=len(df_train)):
coords = [[np.deg2rad(row['lat']), np.deg2rad(row['lon'])]]
labels.append(tree.query(coords, k=1)[1][0][0])
logger.info("labels done")
df_train['label'] = labels
if 'weight' in df_train.columns:
sampler = WeightedRandomSampler(torch.tensor(df_train['weight'].round(decimals=1).values), len(df_train))
logger.info('initialize sampler')
else:
if not 'country' in df_train.columns:
df_train['country'] = [country_by_coordinates[c] if c in country_by_coordinates else '' for c in
df_train['coordinates']]
logger.info("countries done")
if not 'is_external' in df_train.columns:
df_train['is_external'] = [
0 if (df_train.iloc[i]['country'] in (lang_home_country[df_train.iloc[i]['lang']])) else 1 for i in
range(len(df_train))]
logger.info("is_external done")
lang_weights = {}
top_language_count = df_train['lang'].value_counts().max()
for lang in lang_home_country.keys():
if len(df_train[df_train['lang'] == lang]) > 0:
lang_weights[lang] = 1.0 + math.log(
top_language_count / len(df_train[df_train['lang'] == lang])) * args.rare_language_factor
logger.info("lang_weights", lang_weights)
cluster_weights = {}
top_cluster_count = df_train['label'].value_counts().max()
for cluster_id, count in df_train['label'].value_counts().iteritems():
cluster_weights[cluster_id] = 1.0 + math.log(top_cluster_count / count) * args.rare_cluster_factor
logger.info("cluster_weights", cluster_weights)
weights = []
for i in range(len(df_train)):
row = df_train.iloc[i]
w = 1.0 \
* (1 + (args.external_factor if row['is_external'] else 0)) * lang_weights[row['lang']] * \
cluster_weights[row['label']]
if w > args.weight_max:
w = args.weight_max
weights.append(w)
sampler = WeightedRandomSampler(torch.tensor(weights), len(weights))
df_train['weight'] = weights
logger.info(f"number of weights {len(weights)} max {max(weights)} min {min(weights)}")
# df_train.to_csv('df_train_weights.csv')
return df_train
def handle_confident_errors(df_train, model, args, device, tokenizer_name, tree, max_length, smooth_labels_train, intermediate_cluster_df, training_params):
"""
Upsamples confident errors in the training data based on model predictions and confidence.
Parameters:
-----------
df_train : pandas.DataFrame
The training dataframe.
model : torch.nn.Module
The trained model for making predictions.
args : argparse.Namespace
The command-line arguments for configuration.
device : torch.device
The device (CPU/GPU) to be used for the model.
tokenizer_name : str
The name of the tokenizer used in the dataset.
tree : sklearn.neighbors.BallTree
BallTree for efficient distance queries.
max_length : int
Maximum sequence length for the model inputs.
smooth_labels_train : torch.Tensor or None
Smoothed labels for the training data, if applicable.
intermediate_cluster_df : pandas.DataFrame or None
DataFrame containing intermediate cluster information, if applicable.
model_type : str
The type of model used.
Returns:
--------
pandas.DataFrame
The updated training dataframe with adjusted weights for confident errors.
"""
if args.upsample_confident_errors > 0.0:
df_train['confidence_weight'] = 1.0
if args.max_train_steps_epoch is not None:
df_train_part = df_train.sample(n=args.max_train_steps_epoch * args.batch_size).reset_index(drop=True)
training_set = ByT5ClusteredClassifierDataset(df_train_part, tokenizer_name, tree, max_length,
None,
smooth_labels_train, intermediate_cluster_df, args.model_type)
training_generator = DataLoader(training_set, **training_params)
training_generator_not_sampled = DataLoader(training_set, **test_params)
if args.upsample_confident_errors > 0.0 and epoch > 0:
logger.info(f"upsample_confident_errors={args.upsample_confident_errors}")
logger.info(f"old max weight={df_train_part['weight'].max()}")
# do predictions for training set
true_lats, true_lngs, true_clusters, pred_clusters, texts, confidences = validate_rel(
epoch=args.num_epochs, model=model,
valid_generator=training_generator_not_sampled,
logger=logger, show_progress=True,
no_save=True,
smooth_labels=smooth_labels, smooth_labels_test=smooth_labels)
percentage_upsample_confidence_weight, percentage_upsample_weight = [int(x) for x in
args.upsample_confident_thresholds.split(
",")]
pred_cluster_ids = [pred_clusters[i].argmax() for i in range(len(pred_clusters))]
if percentage_upsample_confidence_weight > 0:
# increase sampling weight if prediction is confident and wrong
# for top 5% of confident errors increase confidence_weight:
threshold = -1 * np.percentile(-1 * np.array(confidences),
percentage_upsample_confidence_weight)
logger.info(f"threshold for top {percentage_upsample_confidence_weight}%={threshold}")
indexes_to_increase = (np.array(confidences) > threshold) & (
np.array(true_clusters) != np.array(pred_cluster_ids))
logger.info(
f"top {percentage_upsample_confidence_weight} % confidence upsample count={indexes_to_increase.sum()}")
df_train_part.iloc[indexes_to_increase].to_csv('indexes_to_increase.csv')
if indexes_to_increase.sum() >= 10:
df_train_part.iloc[indexes_to_increase, df_train_part.columns.get_loc(
'confidence_weight')] *= 1.0 + args.upsample_confident_errors
# display 10 random samples from those with increased weight:
indexes_to_display = np.random.choice(np.where(indexes_to_increase)[0], size=10)
for i in indexes_to_display:
logger.info(
f"index={indexes_to_increase[i]} true={true_clusters[i]}, pred={pred_cluster_ids[i]}, "
f"confidence={confidences[i]}, text={texts[i]}")
else:
threshold = max(confidences)
if args.upsample_nonconfident_true > 0:
threshold20 = -1 * np.percentile(-1 * np.array(confidences), 30)
threshold10 = -1 * np.percentile(-1 * np.array(confidences), 10)
indexes_to_increase = (np.array(confidences) > threshold20) & (
np.array(confidences) < threshold10) & np.array(true_clusters) == np.array(
pred_cluster_ids)
logger.info("upsample_nonconfident_true count={}".format(indexes_to_increase.sum()))
df_train_part.loc[indexes_to_increase, 'weight'] *= (1 + args.upsample_nonconfident_true)
# for top 5..10% of confident errors, increase weight
threshold_for_weight = -1 * np.percentile(-1 * np.array(confidences), percentage_upsample_weight)
logger.info(f"threshold={threshold} for top {percentage_upsample_weight}%")
logger.info(f"true_clusters {np.array(true_clusters).shape}")
logger.info(f"pred_cluster_ids {np.array(pred_cluster_ids).shape}")
acc = (np.array(true_clusters) == np.array(pred_cluster_ids)).sum() / len(df_train_part)
logger.info(f"accuracy on all samples={acc}")
# now we pick by confidence between old a new threshold
indexes_to_increase = (np.array(confidences) > threshold_for_weight) & (
np.array(confidences) <= threshold) & (
np.array(true_clusters) != np.array(pred_cluster_ids))
# logger.info(f"indexes_to_increase={indexes_to_increase}")
logger.info(f"upsample count={np.count_nonzero(indexes_to_increase)} / {len(df_train_part)}")
# acc_part = (true_clusters[indexes_to_increase] == pred_cluster_ids[indexes_to_increase]).sum() / len(indexes_to_increase)
# logger.info(f"accuracy on part={acc_part}")
# display 10 random samples from those with increased weight:
if np.count_nonzero(indexes_to_increase) >= 10:
indexes_to_display = np.random.choice(np.where(indexes_to_increase)[0], size=10)
for i in indexes_to_display:
logger.info(
f"index={indexes_to_increase[i]} true={true_clusters[i]}, pred={pred_cluster_ids[i]}, "
f"confidence={confidences[i]}, text={texts[i]}")
df_train_part.loc[indexes_to_increase, 'weight'] *= (1 + args.upsample_confident_errors)
logger.info(f"new max weight={df_train_part['weight'].max()}")
sampler = WeightedRandomSampler(torch.tensor(df_train_part['weight']), len(df_train_part))
training_params = {"batch_size": args.batch_size,
"shuffle": True if sampler is None else False,
"num_workers": 0, "sampler": sampler}
logger.info(f"selected {len(df_train_part)} samples from train df {len(df_train)}")
else:
df_train_part = df_train
return df_train_part
def configure_argparse():
"""
Configures argparse for command-line argument parsing.
Returns:
--------
argparse.ArgumentParser
The configured argparse.ArgumentParser instance.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--train_test_input_file', type=str, help='Source csv file')
parser.add_argument('--train_input_file', type=str, help='Source csv file')
parser.add_argument('--test_input_file', type=str, help='Source csv file for test')
parser.add_argument('--max_test', type=int, help='Limit number of testing samples')
parser.add_argument('--do_train', type=bool)
parser.add_argument('--do_test', type=bool)
parser.add_argument('--load_model_dir', type=str, help='Load model from dir and continue training')
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--num_epochs', type=int, default=3)
parser.add_argument('--max_length', type=int, default=140)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--load_clustering', type=str, help='Load cluster centers from directory')
parser.add_argument('--max_train', type=int, help='Limit number of training samples')
parser.add_argument('--train_skiprows', type=int, help='Skip first N training samples')
parser.add_argument('--random_state', type=int, default=300)
parser.add_argument('--eval_batches', type=int, default=32, help='Number of batches for evaluation')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--log_steps', type=int, default=50)
parser.add_argument('--eval_steps', type=int, default=500)
parser.add_argument('--save_steps', type=int, default=500)
parser.add_argument('--min_distance', type=int, default=500)
parser.add_argument('--byt5_model_name', type=str, default='google/byt5-small')
parser.add_argument('--wandb_project', type=str)
parser.add_argument('--wandb_resume', type=bool, default=False)
parser.add_argument('--use-language', type=str)
parser.add_argument('--all_thresholds', type=bool, default=False)
parser.add_argument('--label_smoothing', type=float, default=0)
parser.add_argument('--country_by_coordinates', type=str)
parser.add_argument('--lang_home_country', type=str)
parser.add_argument('--external_factor', type=float, default=0.0)
parser.add_argument('--rare_language_factor', type=float, default=0.0)
parser.add_argument('--rare_cluster_factor', type=float, default=0.0)
parser.add_argument('--weight_max', type=float, default=16.0)
parser.add_argument('--weight_stats', type=str)
parser.add_argument('--distance_based_smoothing', type=float, default=0.0)
parser.add_argument('--keep_layer_count', type=int)
parser.add_argument('--lr_epoch', type=str)
parser.add_argument('--smooth_labels', type=bool, default=False)
parser.add_argument('--loss', type=str)
parser.add_argument('--nearest_count', type=int)
parser.add_argument('--nearest_weight', type=float, default=0.0)
parser.add_argument('--author_weight', type=float, default=0.0)
parser.add_argument('--nearest_distance', type=float)
parser.add_argument('--nearest_weight_epoch_increase', type=float, default=0.0)
parser.add_argument('--confidence_loss_weight', type=float)
parser.add_argument('--confidence_loss_warmup_steps', type=int, default=10000)
parser.add_argument('--gradient_clipping', type=float)
parser.add_argument('--upsample_confident_errors', type=float, default=0.0)
parser.add_argument('--upsample_confident_thresholds', type=str, default="5,10",
help="Percentage how many confident errors to upsample by confidence_weight and by weights")
parser.add_argument('--max_train_steps_epoch', type=int, help='Limit number of training steps per epoch')
parser.add_argument('--upsample_nonconfident_true', type=float, default=0.0)
parser.add_argument('--intermediate_clustering', type=str, default=None)
parser.add_argument('--top100_wrong', type=str, default=None)
parser.add_argument('--wrong_weight', type=float, default=None)
parser.add_argument('--model_type', type=str, default='byt5')
parser.add_argument('--bert_model_name', type=str)
parser.add_argument('--regression', type=bool, default=False)
return parser
if __name__ == "__main__":
parser = configure_argparse()
args = parser.parse_args()
smooth_labels = False
smooth_labels_train = None
smooth_labels_test = None
args = parser.parse_args()
Path('logs').mkdir(exist_ok=True)
Path('models').mkdir(exist_ok=True)
logger = logging.getLogger("")
logging.basicConfig(level=logging.INFO)
logger.addHandler(logging.StreamHandler())
logger.addHandler(logging.FileHandler("logs/debug.log"))
logger.info("start")
if args.wandb_project:
wandb.init(project=args.wandb_project, resume=args.wandb_resume)
df_train = None
distance_between_clusters = None
if args.load_clustering is not None:
with open(args.load_clustering + 'clustering.pkl', 'rb') as fin:
cluster_df, merges = pickle.load(fin)
if os.path.exists(args.load_clustering + 'distance_between_clusters.pkl'):
with open(args.load_clustering + 'distance_between_clusters.pkl', 'rb') as fin:
distance_between_clusters = pickle.load(fin)
logger.info('loaded distance_between_clusters')
tree = BallTree(np.deg2rad(cluster_df[['lat', 'lng']].values), metric='haversine')
intermediate_cluster_df = None
if args.intermediate_clustering is not None:
with open(args.intermediate_clustering + 'clustering.pkl', 'rb') as fin:
intermediate_cluster_df, _ = pickle.load(fin)
top100_wrong = None
if args.top100_wrong is not None:
with open(args.top100_wrong, 'rb') as fin:
top100_wrong = pickle.load(fin)
if args.train_test_input_file is not None:
df_train, df_test = read_train_test_data(args.train_test_input_file)
logger.info("finish reading train, test file")
if args.test_input_file is not None:
df_test = read_csv_data(args.test_input_file, nrows=args.max_test)
logger.info("finish reading test file")
if args.smooth_labels and 'author_id' in df_test.columns:
smooth_labels_test = calculate_smooth_labels(df_test, cluster_df, tree, args.nearest_count,
args.nearest_weight, args.author_weight,
args.nearest_distance, top100_wrong, args.wrong_weight)
print('calculated smooth_labels_test')
smooth_labels = True
with open('smooth_labels_test.pkl', 'wb') as fout:
pickle.dump(smooth_labels_test, fout)
if args.train_input_file is not None:
df_train = read_csv_data(args.train_input_file, nrows=args.max_train, skiprows=(
lambda x: x > 0 and x < args.train_skiprows) if args.train_skiprows is not None else None)
logger.info("finish reading train file")
logger.info(df_train.columns)
if args.smooth_labels:
smooth_labels_train = calculate_smooth_labels(df_train, cluster_df, tree, args.nearest_count,
args.nearest_weight, args.author_weight,
args.nearest_distance, top100_wrong, args.wrong_weight)
print('calculated smooth_labels_train')
smooth_labels = True
with open('smooth_labels_train.pkl', 'wb') as fout:
pickle.dump(smooth_labels_train, fout)
language_df = None
if args.use_language is not None:
language_df = pd.read_csv(args.use_language)
logger.info("language_df", len(language_df))
max_length = args.max_length
device = args.device
n_clusters_ = len(cluster_df)
# calculate weights for sampling
if args.country_by_coordinates is not None and args.lang_home_country is not None:
with open(args.country_by_coordinates, 'rb') as fin:
country_by_coordinates = pickle.load(fin)
with open(args.lang_home_country, 'rb') as fin:
lang_home_country = pickle.load(fin)
df_train = calculate_sampling_weights(df_train, args, tree, country_by_coordinates, lang_home_country, cluster_df)
else:
sampler = None
tokenizer_name = args.bert_model_name if args.bert_model_name is not None else args.byt5_model_name
training_params = {"batch_size": args.batch_size,
"shuffle": True if sampler is None else False,
"num_workers": 0, "sampler": sampler}
test_params = {"batch_size": args.batch_size,
"shuffle": False,
"num_workers": 0}
if args.do_train:
training_set = ByT5ClusteredClassifierDataset(df_train,tokenizer_name, tree, max_length, None,
smooth_labels_train, intermediate_cluster_df, args.model_type)
full_test_set = ByT5ClusteredClassifierDataset(df_test, tokenizer_name, tree, max_length, None,
smooth_labels_test, intermediate_cluster_df, args.model_type)
test_set = torch.utils.data.Subset(full_test_set,
random.choices(range(0, len(df_test)),
k=args.eval_batches * test_params['batch_size']))
random.seed(args.random_state)
valid_set = torch.utils.data.Subset(full_test_set,
random.choices(range(0, len(df_test)), k=test_params['batch_size']))
if args.load_model_dir is not None:
model = torch.load(args.load_model_dir, map_location=torch.device(device))
logger.info("model loaded")
else: # train from pre-trained
if args.model_type == 'byt5':
if args.regression:
model = ByT5_regressorNew(model_name=args.byt5_model_name,
keep_layer_count=args.keep_layer_count, intermediate_cluster_df=intermediate_cluster_df)
else:
model = ByT5_classifierNew(n_clusters=len(cluster_df), model_name=args.byt5_model_name,
keep_layer_count=args.keep_layer_count, intermediate_cluster_df=intermediate_cluster_df)
elif args.model_type == 'charcnn':
model = ModifiedCharCNN(n_clusters_=len(cluster_df))
elif args.model_type == 'charlstm':
model = MultiLayerCharLSTM(n_clusters_=len(cluster_df))
elif args.model_type == 'bert':
model = AutoModelForSequenceClassification.from_pretrained(args.bert_model_name, num_labels=len(cluster_df))
if args.keep_layer_count is not None:
model = deleteEncodingLayersDeberta(model, args.keep_layer_count)
logger.info(model)
if torch.cuda.is_available():
model.to(device)
if args.wandb_project:
wandb.watch(model, log_freq=100)
test_generator = DataLoader(test_set, **test_params)
valid_generator = DataLoader(valid_set, **test_params)
full_test_generator = DataLoader(full_test_set, **test_params)
if smooth_labels:
if args.loss == "bce":
custom_loss = torch.nn.BCEWithLogitsLoss(reduction='sum')
elif args.loss == "nll":
custom_loss = torch.nn.NLLLoss(reduction='mean')
elif args.loss == "ce":
custom_loss = torch.nn.CrossEntropyLoss(label_smoothing=args.label_smoothing, reduction='mean')
elif args.loss == "kl":
custom_loss = torch.nn.KLDivLoss(reduction="batchmean")
else:
raise NotImplementedError(f"Unknown loss: {args.loss}")
elif args.distance_based_smoothing == 0.0:
custom_loss = torch.nn.CrossEntropyLoss(label_smoothing=args.label_smoothing, reduction='mean')
else:
custom_loss = DistanceBasedLoss(label_smoothing=args.distance_based_smoothing,
distance_between_clusters=distance_between_clusters)
smooth_labels_test = 'author_id' in df_test.columns
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# Then call this function with your model
print(f'The model has {count_parameters(model):,} trainable parameters')
if args.do_train:
lr_epoch = [1e-3, 1e-4, 1e-5]
if smooth_labels:
lr_epoch = [1e-3, 1e-3, 1e-4]
if args.lr_epoch is not None:
lr_epoch = [float(x) for x in args.lr_epoch.split(",")]
logger.info(f"using lr_epoch {lr_epoch}")
num_epochs = args.num_epochs
for epoch in range(args.start_epoch, num_epochs):
df_train_part = handle_confident_errors(df_train, model, args, device, tokenizer_name, tree, max_length, smooth_labels_train, intermediate_cluster_df, training_params)
training_set = ByT5ClusteredClassifierDataset(df_train_part, tokenizer_name, tree, max_length, None,
smooth_labels_train, model_type=args.model_type)
training_generator = DataLoader(training_set, **training_params)
training_generator_not_sampled = DataLoader(training_set, **test_params)
model.train()
if args.nearest_weight_epoch_increase > 0.0:
smooth_labels_train = calculate_smooth_labels(df_train, cluster_df, tree, args.nearest_count,
args.nearest_weight + epoch * args.nearest_weight_epoch_increase,
args.author_weight,
args.nearest_distance)
logger.info(
f'recalculated smooth_labels_train with nearest_weight {args.nearest_weight + epoch * args.nearest_weight_epoch_increase}')
if epoch < len(lr_epoch):
logger.info(f"setting learning rate to {lr_epoch[epoch]}")
optimizer.param_groups[0]['lr'] = lr_epoch[epoch]
for g in optimizer.param_groups:
g['lr'] = lr_epoch[epoch]
# g['lr'] = min(g['lr'], lr_epoch[epoch])
train_epoch_rel(epoch=epoch, model=model, training_generator=training_generator,
valid_generator=test_generator, optimizer=optimizer, args=args, logger=logger,
smooth_labels=smooth_labels)
if args.do_test:
true_lats, true_lngs, true_clusters, pred_clusters, texts, confidences = validate_rel(epoch=args.num_epochs,
model=model,
valid_generator=full_test_generator,
logger=logger,
show_progress=True,
no_save=True,
smooth_labels=smooth_labels,
smooth_labels_test=smooth_labels_test)
test_results_filename = 'test_results.pkl'
with open(test_results_filename, 'wb') as fout:
pickle.dump((true_lats, true_lngs, true_clusters, pred_clusters, texts), fout)
show_metrics(true_lats, true_lngs, true_clusters, pred_clusters, args.min_distance, logger,
all_thresholds=args.all_thresholds, smooth_labels=smooth_labels)