-
Notifications
You must be signed in to change notification settings - Fork 18
/
Converter.cc
314 lines (251 loc) · 8.68 KB
/
Converter.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "Converter.h"
namespace ORB_SLAM3
{
std::vector<cv::Mat> Converter::toDescriptorVector(const cv::Mat &Descriptors)
{
std::vector<cv::Mat> vDesc;
vDesc.reserve(Descriptors.rows);
for (int j=0;j<Descriptors.rows;j++)
vDesc.push_back(Descriptors.row(j));
return vDesc;
}
g2o::SE3Quat Converter::toSE3Quat(const cv::Mat &cvT)
{
Eigen::Matrix<double,3,3> R;
R << cvT.at<float>(0,0), cvT.at<float>(0,1), cvT.at<float>(0,2),
cvT.at<float>(1,0), cvT.at<float>(1,1), cvT.at<float>(1,2),
cvT.at<float>(2,0), cvT.at<float>(2,1), cvT.at<float>(2,2);
Eigen::Matrix<double,3,1> t(cvT.at<float>(0,3), cvT.at<float>(1,3), cvT.at<float>(2,3));
return g2o::SE3Quat(R,t);
}
g2o::SE3Quat Converter::toSE3Quat(const Sophus::SE3f &T)
{
return g2o::SE3Quat(T.unit_quaternion().cast<double>(), T.translation().cast<double>());
}
cv::Mat Converter::toCvMat(const g2o::SE3Quat &SE3)
{
Eigen::Matrix<double,4,4> eigMat = SE3.to_homogeneous_matrix();
return toCvMat(eigMat);
}
cv::Mat Converter::toCvMat(const g2o::Sim3 &Sim3)
{
Eigen::Matrix3d eigR = Sim3.rotation().toRotationMatrix();
Eigen::Vector3d eigt = Sim3.translation();
double s = Sim3.scale();
return toCvSE3(s*eigR,eigt);
}
cv::Mat Converter::toCvMat(const Eigen::Matrix<double,4,4> &m)
{
cv::Mat cvMat(4,4,CV_32F);
for(int i=0;i<4;i++)
for(int j=0; j<4; j++)
cvMat.at<float>(i,j)=m(i,j);
return cvMat.clone();
}
cv::Mat Converter::toCvMat(const Eigen::Matrix<float,4,4> &m)
{
cv::Mat cvMat(4,4,CV_32F);
for(int i=0;i<4;i++)
for(int j=0; j<4; j++)
cvMat.at<float>(i,j)=m(i,j);
return cvMat.clone();
}
cv::Mat Converter::toCvMat(const Eigen::Matrix<float,3,4> &m)
{
cv::Mat cvMat(3,4,CV_32F);
for(int i=0;i<3;i++)
for(int j=0; j<4; j++)
cvMat.at<float>(i,j)=m(i,j);
return cvMat.clone();
}
cv::Mat Converter::toCvMat(const Eigen::Matrix3d &m)
{
cv::Mat cvMat(3,3,CV_32F);
for(int i=0;i<3;i++)
for(int j=0; j<3; j++)
cvMat.at<float>(i,j)=m(i,j);
return cvMat.clone();
}
cv::Mat Converter::toCvMat(const Eigen::Matrix3f &m)
{
cv::Mat cvMat(3,3,CV_32F);
for(int i=0;i<3;i++)
for(int j=0; j<3; j++)
cvMat.at<float>(i,j)=m(i,j);
return cvMat.clone();
}
cv::Mat Converter::toCvMat(const Eigen::MatrixXf &m)
{
cv::Mat cvMat(m.rows(),m.cols(),CV_32F);
for(int i=0;i<m.rows();i++)
for(int j=0; j<m.cols(); j++)
cvMat.at<float>(i,j)=m(i,j);
return cvMat.clone();
}
cv::Mat Converter::toCvMat(const Eigen::MatrixXd &m)
{
cv::Mat cvMat(m.rows(),m.cols(),CV_32F);
for(int i=0;i<m.rows();i++)
for(int j=0; j<m.cols(); j++)
cvMat.at<float>(i,j)=m(i,j);
return cvMat.clone();
}
cv::Mat Converter::toCvMat(const Eigen::Matrix<double,3,1> &m)
{
cv::Mat cvMat(3,1,CV_32F);
for(int i=0;i<3;i++)
cvMat.at<float>(i)=m(i);
return cvMat.clone();
}
cv::Mat Converter::toCvMat(const Eigen::Matrix<float,3,1> &m)
{
cv::Mat cvMat(3,1,CV_32F);
for(int i=0;i<3;i++)
cvMat.at<float>(i)=m(i);
return cvMat.clone();
}
cv::Mat Converter::toCvSE3(const Eigen::Matrix<double,3,3> &R, const Eigen::Matrix<double,3,1> &t)
{
cv::Mat cvMat = cv::Mat::eye(4,4,CV_32F);
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
cvMat.at<float>(i,j)=R(i,j);
}
}
for(int i=0;i<3;i++)
{
cvMat.at<float>(i,3)=t(i);
}
return cvMat.clone();
}
Eigen::Matrix<double,3,1> Converter::toVector3d(const cv::Mat &cvVector)
{
Eigen::Matrix<double,3,1> v;
v << cvVector.at<float>(0), cvVector.at<float>(1), cvVector.at<float>(2);
return v;
}
Eigen::Matrix<float,3,1> Converter::toVector3f(const cv::Mat &cvVector)
{
Eigen::Matrix<float,3,1> v;
v << cvVector.at<float>(0), cvVector.at<float>(1), cvVector.at<float>(2);
return v;
}
Eigen::Matrix<double,3,1> Converter::toVector3d(const cv::Point3f &cvPoint)
{
Eigen::Matrix<double,3,1> v;
v << cvPoint.x, cvPoint.y, cvPoint.z;
return v;
}
Eigen::Matrix<double,3,3> Converter::toMatrix3d(const cv::Mat &cvMat3)
{
Eigen::Matrix<double,3,3> M;
M << cvMat3.at<float>(0,0), cvMat3.at<float>(0,1), cvMat3.at<float>(0,2),
cvMat3.at<float>(1,0), cvMat3.at<float>(1,1), cvMat3.at<float>(1,2),
cvMat3.at<float>(2,0), cvMat3.at<float>(2,1), cvMat3.at<float>(2,2);
return M;
}
Eigen::Matrix<double,4,4> Converter::toMatrix4d(const cv::Mat &cvMat4)
{
Eigen::Matrix<double,4,4> M;
M << cvMat4.at<float>(0,0), cvMat4.at<float>(0,1), cvMat4.at<float>(0,2), cvMat4.at<float>(0,3),
cvMat4.at<float>(1,0), cvMat4.at<float>(1,1), cvMat4.at<float>(1,2), cvMat4.at<float>(1,3),
cvMat4.at<float>(2,0), cvMat4.at<float>(2,1), cvMat4.at<float>(2,2), cvMat4.at<float>(2,3),
cvMat4.at<float>(3,0), cvMat4.at<float>(3,1), cvMat4.at<float>(3,2), cvMat4.at<float>(3,3);
return M;
}
Eigen::Matrix<float,3,3> Converter::toMatrix3f(const cv::Mat &cvMat3)
{
Eigen::Matrix<float,3,3> M;
M << cvMat3.at<float>(0,0), cvMat3.at<float>(0,1), cvMat3.at<float>(0,2),
cvMat3.at<float>(1,0), cvMat3.at<float>(1,1), cvMat3.at<float>(1,2),
cvMat3.at<float>(2,0), cvMat3.at<float>(2,1), cvMat3.at<float>(2,2);
return M;
}
Eigen::Matrix<float,4,4> Converter::toMatrix4f(const cv::Mat &cvMat4)
{
Eigen::Matrix<float,4,4> M;
M << cvMat4.at<float>(0,0), cvMat4.at<float>(0,1), cvMat4.at<float>(0,2), cvMat4.at<float>(0,3),
cvMat4.at<float>(1,0), cvMat4.at<float>(1,1), cvMat4.at<float>(1,2), cvMat4.at<float>(1,3),
cvMat4.at<float>(2,0), cvMat4.at<float>(2,1), cvMat4.at<float>(2,2), cvMat4.at<float>(2,3),
cvMat4.at<float>(3,0), cvMat4.at<float>(3,1), cvMat4.at<float>(3,2), cvMat4.at<float>(3,3);
return M;
}
std::vector<float> Converter::toQuaternion(const cv::Mat &M)
{
Eigen::Matrix<double,3,3> eigMat = toMatrix3d(M);
Eigen::Quaterniond q(eigMat);
std::vector<float> v(4);
v[0] = q.x();
v[1] = q.y();
v[2] = q.z();
v[3] = q.w();
return v;
}
cv::Mat Converter::tocvSkewMatrix(const cv::Mat &v)
{
return (cv::Mat_<float>(3,3) << 0, -v.at<float>(2), v.at<float>(1),
v.at<float>(2), 0,-v.at<float>(0),
-v.at<float>(1), v.at<float>(0), 0);
}
bool Converter::isRotationMatrix(const cv::Mat &R)
{
cv::Mat Rt;
cv::transpose(R, Rt);
cv::Mat shouldBeIdentity = Rt * R;
cv::Mat I = cv::Mat::eye(3,3, shouldBeIdentity.type());
return cv::norm(I, shouldBeIdentity) < 1e-6;
}
std::vector<float> Converter::toEuler(const cv::Mat &R)
{
assert(isRotationMatrix(R));
float sy = sqrt(R.at<float>(0,0) * R.at<float>(0,0) + R.at<float>(1,0) * R.at<float>(1,0) );
bool singular = sy < 1e-6; // If
float x, y, z;
if (!singular)
{
x = atan2(R.at<float>(2,1) , R.at<float>(2,2));
y = atan2(-R.at<float>(2,0), sy);
z = atan2(R.at<float>(1,0), R.at<float>(0,0));
}
else
{
x = atan2(-R.at<float>(1,2), R.at<float>(1,1));
y = atan2(-R.at<float>(2,0), sy);
z = 0;
}
std::vector<float> v_euler(3);
v_euler[0] = x;
v_euler[1] = y;
v_euler[2] = z;
return v_euler;
}
Sophus::SE3<float> Converter::toSophus(const cv::Mat &T) {
Eigen::Matrix<double,3,3> eigMat = toMatrix3d(T.rowRange(0,3).colRange(0,3));
Eigen::Quaternionf q(eigMat.cast<float>());
Eigen::Matrix<float,3,1> t = toVector3d(T.rowRange(0,3).col(3)).cast<float>();
return Sophus::SE3<float>(q,t);
}
Sophus::Sim3f Converter::toSophus(const g2o::Sim3& S) {
return Sophus::Sim3f(Sophus::RxSO3d((float)S.scale(), S.rotation().matrix()).cast<float>() ,
S.translation().cast<float>());
}
} //namespace ORB_SLAM