Skip to content

codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

License

Notifications You must be signed in to change notification settings

XuMayi/DLCF-DCA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DLCF-DCA (PyABSA-based)

Codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted to 《Neurocomputing》.

We exploit a efficient and easy-to-use aspect-based sentiment analysis framework PyABSA. Futhermore, we integrate the optimized DLCF-DCA model into this framework.

You can easily train our DLCF-DCA models and design your models based on PyABSA.

To use PyABSA, install the latest version from pip or source code:

pip install pyabsa==1.1.24

我们开发了一个高效易用的方面级情感分析框架PyABSA,并将优化后的DLCF-DCA模型整合到这个框架之中。

您可以基于PyABSA快速地开始训练DLCF-DCA模型并设计您自己的模型。

您可以通过以下代码来安装PyABSA :

pip install pyabsa==1.1.24

Requirement

  • Python >= 3.6
  • PyTorch >= 1.0
  • transformers >= 2.4.0
  • SpaCy >= 2.2

To use our models, you need download en_core_web_sm by python -m spacy download en_core_web_sm

Model Architecture

dlcf_dca

Note

Some important scripts to note:

  • dlcf_dca_bert.py: the source code of DLCF_DCA model.
  • apc_utils_for_dlcf_dca.py: preprocess the tokens and calculates the shortest distance to target words and cluster via the Dependency Syntax Parsing Tree.
  • apc_utils.py: calculates the SynRD from aspect term to target words via the Dependency Syntax Parsing Tree.
  • apc_trainer.py: training process instruction.

Dataset

Our code will automatically download the datasets in intergrated_datasets folder

  • integrated_datasets/apc_datasets/SemEval/laptop14/*.seg: Preprocessed training and testing sentences in SemEval-2014 laptop dataset.
  • integrated_datasets/apc_datasets/SemEval/restaurant14/*.seg: Preprocessed training and testing sentences in SemEval-2014 restaurant dataset.
  • integrated_datasets/apc_datasets/SemEval/restaurant15/*.seg: Preprocessed training and testing sentences in SemEval-2015 restaurant dataset.
  • integrated_datasets/apc_datasets/SemEval/restaurant16/*.seg: Preprocessed training and testing sentences in SemEval-2016 restaurant dataset.
  • integrated_datasets/apc_datasets/TShirt/*.seg: Preprocessed training and testing sentences in Tshirt dataset.
  • integrated_datasets/apc_datasets/Television/*.seg: Preprocessed training and testing sentences in Television dataset.

Quick Start of Training and Testing

1. Import necessary entries

from pyabsa.functional import Trainer
from pyabsa.functional import APCConfigManager
from pyabsa.functional import ABSADatasetList
from pyabsa.functional import APCModelList

2. Choose a base param_dict

apc_config_english = APCConfigManager.get_apc_config_english()

3. Specify an APC model and alter some hyper-parameters

apc_config_english.model = APCModelList.DLCF_DCA_BERT
apc_config_english.lcf = "cdm" # or "cdw"
apc_config_english.dlcf_a = 2
apc_config_english.dca_p = 1
apc_config_english.dca_layer = 3
apc_config_english.dropout = 0.5
apc_config_english.num_epoch = 10
apc_config_english.l2reg = 0.00001
apc_config_english.seed = {0, 1, 2, 3}
apc_config_english.evaluate_begin = 0

4. Configure runtime setting and running training

dataset_path = ABSADatasetList.Restaurant14
sent_classifier = Trainer(config=apc_config_english,
                          dataset=dataset_path,  # train set and test set will be automatically detected
                          checkpoint_save_mode=1,  # =None to avoid save model
                          auto_device=True  # automatic choose CUDA or CPU
                          )

Quick Start of Inferring

We share some checkpoints for the DLCF-DCA models in Google drive.

Our codes will automatically download the checkpoint.

checkpoint name Laptop14 (acc) Laptop14 (f1)
'dlcf-dca-bert1' 81.50 78.03
checkpoint name Restaurant14 (acc) Restaurant14 (f1)
'dlcf-dca-bert2' 86.79 80.53

1. Import necessary entries

import os
from pyabsa import APCCheckpointManager, ABSADatasetList
os.environ['PYTHONIOENCODING'] = 'UTF8'

2. Assume the sent_classifier and checkpoint

sentiment_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive', -999: ''}

sent_classifier = APCCheckpointManager.get_sentiment_classifier(checkpoint='dlcf-dca-bert1', #or 'dlcf-dca-bert2'
                                                                auto_device='cuda',  # Use CUDA if available
                                                                sentiment_map=sentiment_map
                                                                )

3. Configure inferring setting

# batch inferring_tutorials returns the results, save the result if necessary using save_result=True
inference_sets = ABSADatasetList.Laptop14
results = sent_classifier.batch_infer(target_file=inference_sets,
                                      print_result=True,
                                      save_result=True,
                                      ignore_error=True,
                                      )

4. some inferring cases

Apple is unmatched in  product quality  , aesthetics , craftmanship , and customer service .  
product quality --> Positive  Real: Positive (Correct)
 Apple is unmatched in product quality ,  aesthetics  , craftmanship , and customer service .  
aesthetics --> Positive  Real: Positive (Correct)
 Apple is unmatched in product quality , aesthetics ,  craftmanship  , and customer service .  
craftmanship --> Positive  Real: Positive (Correct)
 Apple is unmatched in product quality , aesthetics , craftmanship , and  customer service  .  
customer service --> Positive  Real: Positive (Correct)
It is a great size and amazing  windows 8  included !  
windows 8 --> Positive  Real: Positive (Correct)
 I do not like too much  Windows 8  .  
Windows 8 --> Negative  Real: Negative (Correct)
Took a long time trying to decide between one with  retina display  and one without .  
retina display --> Neutral  Real: Neutral (Correct)
 I was also informed that the  components  of the Mac Book were dirty .  
components --> Negative  Real: Negative (Correct)
 the  hardware  problems have been so bad , i ca n't wait till it completely dies in 3 years , TOPS !  
hardware --> Negative  Real: Negative (Correct)
 It 's so nice that the  battery  last so long and that this machine has the snow lion !  
battery --> Positive  Real: Positive (Correct)
 It 's so nice that the battery last so long and that this machine has the  snow lion  !  
snow lion --> Positive  Real: Positive (Correct)

Training on our checkpoint

1. Import necessary entries

from pyabsa.functional import APCCheckpointManager
from pyabsa.functional import Trainer
from pyabsa.functional import APCConfigManager
from pyabsa.functional import ABSADatasetList
from pyabsa.functional import APCModelList

2. Choose a base param_dict

apc_config_english = APCConfigManager.get_apc_config_english()

3. Specify an APC model and alter some hyper-parameters

apc_config_english.model = APCModelList.DLCF_DCA_BERT
apc_config_english.lcf = "cdw" # or "cdm"
apc_config_english.dlcf_a = 2
apc_config_english.dca_p = 1
apc_config_english.dca_layer = 3
apc_config_english.max_seq_len = 80
apc_config_english.dropout = 0.5
apc_config_english.num_epoch = 10
apc_config_english.l2reg = 0.00001
apc_config_english.seed = {0, 1, 2, 3}
apc_config_english.evaluate_begin = 0

4. Assume the sent_classifier and checkpoint

checkpoint_path = APCCheckpointManager.get_checkpoint('dlcf-dca-bert1')
Laptop14 = ABSADatasetList.Laptop14
sent_classifier = Trainer(config=apc_config_english,
                          dataset=Laptop14,
                          from_checkpoint=checkpoint_path,
                          checkpoint_save_mode=1,
                          auto_device=True
                          )

Acknowledgement

We have based our model development on PyABSA. Thanks for their contribution.

About

codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages