Skip to content

Commit

Permalink
fix Vonng#89 可伸缩=>可扩展
Browse files Browse the repository at this point in the history
  • Loading branch information
Vonng committed Oct 23, 2020
1 parent 2dc147e commit b1d9998
Show file tree
Hide file tree
Showing 17 changed files with 84 additions and 83 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@

### [第一部分:数据系统的基石](part-i.md)

* [第一章:可靠性、可扩展性、可维护性](ch1.md)
* [第一章:可靠性、可伸缩性、可维护性](ch1.md)
* [第二章:数据模型与查询语言](ch2.md)
* [第三章:存储与检索](ch3.md)
* [第四章:编码与演化](ch4.md)
Expand Down
2 changes: 1 addition & 1 deletion SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
* [简介](README.md)
* [序言](preface.md)
* [第一部分:数据系统的基石](part-i.md)
* [第一章:可靠性、可扩展性、可维护性](ch1.md)
* [第一章:可靠性、可伸缩性、可维护性](ch1.md)
* [第二章:数据模型与查询语言](ch2.md)
* [第三章:存储与检索](ch3.md)
* [第四章:编码与演化](ch4.md)
Expand Down
46 changes: 23 additions & 23 deletions ch1.md

Large diffs are not rendered by default.

10 changes: 5 additions & 5 deletions ch10.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ z

​ 流处理介于在线和离线(批处理)之间,所以有时候被称为**准实时(near-real-time)****准在线(nearline)**处理。像批处理系统一样,流处理消费输入并产生输出(并不需要响应请求)。但是,流式作业在事件发生后不久就会对事件进行操作,而批处理作业则需等待固定的一组输入数据。这种差异使流处理系统比起批处理系统具有更低的延迟。由于流处理基于批处理,我们将在[第11章](ch11.md)讨论它。

​ 正如我们将在本章中看到的那样,批处理是构建可靠,可扩展和可维护应用程序的重要组成部分。例如,2004年发布的批处理算法Map-Reduce(可能被过分热情地)被称为“造就Google大规模可扩展性的算法”【2】。随后在各种开源数据系统中得到应用,包括Hadoop,CouchDB和MongoDB。
​ 正如我们将在本章中看到的那样,批处理是构建可靠,可伸缩和可维护应用程序的重要组成部分。例如,2004年发布的批处理算法Map-Reduce(可能被过分热情地)被称为“造就Google大规模可伸缩性的算法”【2】。随后在各种开源数据系统中得到应用,包括Hadoop,CouchDB和MongoDB。

​ 与多年前为数据仓库开发的并行处理系统【3,4】相比,MapReduce是一个相当低级别的编程模型,但它使得在商用硬件上能进行的处理规模迈上一个新的台阶。虽然MapReduce的重要性正在下降【5】,但它仍然值得去理解,因为它描绘了一幅关于批处理为什么有用,以及如何实用的清晰图景。

Expand Down Expand Up @@ -126,7 +126,7 @@ top5.each{|count, url| puts "#{count} #{url}" } # 5

​ 另一方面,如果作业的工作集大于可用内存,则排序方法的优点是可以高效地使用磁盘。这与我们在“[SSTables和LSM树](ch3.md#SSTables和LSM树)”中讨论过的原理是一样的:数据块可以在内存中排序并作为段文件写入磁盘,然后多个排序好的段可以合并为一个更大的排序文件。 归并排序具有在磁盘上运行良好的顺序访问模式。 (请记住,针对顺序I/O进行优化是[第3章](ch3.md)中反复出现的主题,相同的模式在此重现)

​ GNU Coreutils(Linux)中的`sort `程序通过溢出至磁盘的方式来自动应对大于内存的数据集,并能同时使用多个CPU核进行并行排序【9】。这意味着我们之前看到的简单的Unix命令链很容易扩展到大数据集,且不会耗尽内存。瓶颈可能是从磁盘读取输入文件的速度。
​ GNU Coreutils(Linux)中的`sort `程序通过溢出至磁盘的方式来自动应对大于内存的数据集,并能同时使用多个CPU核进行并行排序【9】。这意味着我们之前看到的简单的Unix命令链很容易伸缩至大数据集,且不会耗尽内存。瓶颈可能是从磁盘读取输入文件的速度。



Expand Down Expand Up @@ -217,7 +217,7 @@ top5.each{|count, url| puts "#{count} #{url}" } # 5

​ 为了容忍机器和磁盘故障,文件块被复制到多台机器上。复制可能意味着多个机器上的相同数据的多个副本,如[第5章](ch5.md)中所述,或者诸如Reed-Solomon码这样的纠删码方案,它允许以比完全复制更低的存储开销以恢复丢失的数据【20,22】。这些技术与RAID相似,可以在连接到同一台机器的多个磁盘上提供冗余;区别在于在分布式文件系统中,文件访问和复制是在传统的数据中心网络上完成的,没有特殊的硬件。

HDFS已经扩展的很不错了:在撰写本书时,最大的HDFS部署运行在上万台机器上,总存储容量达数百PB【23】。如此大的规模已经变得可行,因为使用商品硬件和开源软件的HDFS上的数据存储和访问成本远低于专用存储设备上的同等容量【24】。
HDFS的可伸缩性已经很不错了:在撰写本书时,最大的HDFS部署运行在上万台机器上,总存储容量达数百PB【23】。如此大的规模已经变得可行,因为使用商品硬件和开源软件的HDFS上的数据存储和访问成本远低于专用存储设备上的同等容量【24】。

### MapReduce作业执行

Expand Down Expand Up @@ -676,11 +676,11 @@ top5.each{|count, url| puts "#{count} #{url}" } # 5

​ 然而数据流引擎已经发现,支持除连接之外的更多**声明式特性**还有其他的优势。例如,如果一个回调函数只包含一个简单的过滤条件,或者只是从一条记录中选择了一些字段,那么在为每条记录调用函数时会有相当大的额外CPU开销。如果以声明方式表示这些简单的过滤和映射操作,那么查询优化器可以利用面向列的存储布局(参阅“[列存储](ch3.md#列存储)”),只从磁盘读取所需的列。 Hive,Spark DataFrames和Impala还使用了向量化执行(参阅“[内存带宽和向量处理](ch3.md#内存带宽和向量处理)”):在对CPU缓存友好的内部循环中迭代数据,避免函数调用。Spark生成JVM字节码【79】,Impala使用LLVM为这些内部循环生成本机代码【41】。

​ 通过在高级API中引入声明式的部分,并使查询优化器可以在执行期间利用这些来做优化,批处理框架看起来越来越像MPP数据库了(并且能实现可与之媲美的性能)。同时,通过拥有运行任意代码和以任意格式读取数据的可扩展性,它们保持了灵活性的优势。
​ 通过在高级API中引入声明式的部分,并使查询优化器可以在执行期间利用这些来做优化,批处理框架看起来越来越像MPP数据库了(并且能实现可与之媲美的性能)。同时,通过拥有运行任意代码和以任意格式读取数据的可伸缩性,它们保持了灵活性的优势。

#### 专业化的不同领域

尽管能够运行任意代码的可扩展性是很有用的,但是也有很多常见的例子,不断重复着标准的处理模式。因而这些模式值得拥有自己的可重用通用构建模块实现,传统上,MPP数据库满足了商业智能分析和业务报表的需求,但这只是许多使用批处理的领域之一。
尽管能够运行任意代码的可伸缩性是很有用的,但是也有很多常见的例子,不断重复着标准的处理模式。因而这些模式值得拥有自己的可重用通用构建模块实现,传统上,MPP数据库满足了商业智能分析和业务报表的需求,但这只是许多使用批处理的领域之一。

​ 另一个越来越重要的领域是统计和数值算法,它们是机器学习应用所需要的(例如分类器和推荐系统)。可重用的实现正在出现:例如,Mahout在MapReduce,Spark和Flink之上实现了用于机器学习的各种算法,而MADlib在关系型MPP数据库(Apache HAWQ)中实现了类似的功能【54】。

Expand Down
4 changes: 2 additions & 2 deletions ch11.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
​ 日常批处理中的问题是,输入的变更只会在一天之后的输出中反映出来,这对于许多急躁的用户来说太慢了。为了减少延迟,我们可以更频繁地运行处理 —— 比如说,在每秒钟的末尾 —— 或者甚至更连续一些,完全抛开固定的时间切片,当事件发生时就立即进行处理,这就是**流处理(stream processing)**背后的想法。

​ 一般来说,“流”是指随着时间的推移逐渐可用的数据。这个概念出现在很多地方:Unix的stdin和stdout,编程语言(惰性列表)【2】,文件系统API(如Java的`FileInputStream`),TCP连接,通过互联网传送音频和视频等等。
在本章中,我们将把**事件流(event stream)**视为一种数据管理机制:无界限,增量处理,与[上一章](ch10.md)中批量数据相对应。我们将首先讨论怎样表示、存储、通过网络传输流。在“[数据库和流](#数据库和流)”中,我们将研究流和数据库之间的关系。最后在“[流处理](#流处理)”中,我们将研究连续处理这些流的方法和工具,以及它们用于应用构建的方式。
在本章中,我们将把**事件流(event stream)**视为一种数据管理机制:无界限,增量处理,与[上一章](ch10.md)中批量数据相对应。我们将首先讨论怎样表示、存储、通过网络传输流。在“[数据库和流](#数据库和流)”中,我们将研究流和数据库之间的关系。最后在“[流处理](#流处理)”中,我们将研究连续处理这些流的方法和工具,以及它们用于应用构建的方式。



Expand Down Expand Up @@ -142,7 +142,7 @@

​ 同样的结构可以用于实现消息代理:生产者通过将消息追加到日志末尾来发送消息,而消费者通过依次读取日志来接收消息。如果消费者读到日志末尾,则会等待新消息追加的通知。 Unix工具`tail -f` 能监视文件被追加写入的数据,基本上就是这样工作的。

为了扩展到比单个磁盘所能提供的更高吞吐量,可以对日志进行**分区**(在[第6章](ch6.md)的意义上)。不同的分区可以托管在不同的机器上,且每个分区都拆分出一份能独立于其他分区进行读写的日志。一个主题可以定义为一组携带相同类型消息的分区。这种方法如[图11-3](img/fig11-3.png)所示。
为了伸缩超出单个磁盘所能提供的更高吞吐量,可以对日志进行**分区**(在[第6章](ch6.md)的意义上)。不同的分区可以托管在不同的机器上,且每个分区都拆分出一份能独立于其他分区进行读写的日志。一个主题可以定义为一组携带相同类型消息的分区。这种方法如[图11-3](img/fig11-3.png)所示。

​ 在每个分区内,代理为每个消息分配一个单调递增的序列号或**偏移量(offset)**(在[图11-3](img/fig11-3.png)中,框中的数字是消息偏移量)。这种序列号是有意义的,因为分区是仅追加写入的,所以分区内的消息是完全有序的。没有跨不同分区的顺序保证。

Expand Down
Loading

0 comments on commit b1d9998

Please sign in to comment.