Skip to content

Commit

Permalink
Advance llvm-project and stablehlo. (llvm#2619)
Browse files Browse the repository at this point in the history
llvm-project: bbd2b08
stablehlo: ab709fe48de88c67717abfbd7ef17425eb95ddaf

These commits were chosen in order to account for an MLIR API break from
llvm/llvm-project@3dbac2c
which required a patch to stablehlo. We integrate a bit beyond that
commit to deal with some revert/reapply cycles in the intervening range
which were discovered in another downstream.

Further, it requires adaptation to the stablehlo API breaks introduced
from openxla/stablehlo#1872 which are along for
the ride.

Since some stablehlo builders were changed to directly take int64_t
array refs, also traced that up some call stacks to eliminate some
signed/unsigned mismatches that result.

Also adds a few TOSA tests to the passing set that seem to work now.
  • Loading branch information
stellaraccident authored and mgehre-amd committed Feb 23, 2024
1 parent ed593aa commit 6690708
Show file tree
Hide file tree
Showing 7 changed files with 60 additions and 53 deletions.
3 changes: 1 addition & 2 deletions e2e_testing/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
from .xfail_sets import (
LINALG_XFAIL_SET,
MAKE_FX_TOSA_PASS_SET,
MAKE_FX_TOSA_CRASHING_SET,
STABLEHLO_PASS_SET,
STABLEHLO_CRASHING_SET,
TOSA_PASS_SET,
Expand Down Expand Up @@ -98,7 +97,7 @@ def main():
elif args.config == "make_fx_tosa":
config = TosaBackendTestConfig(LinalgOnTensorsTosaBackend(), use_make_fx=True)
xfail_set = all_test_unique_names - MAKE_FX_TOSA_PASS_SET
crashing_set = MAKE_FX_TOSA_CRASHING_SET
crashing_set = set()
elif args.config == "native_torch":
config = NativeTorchTestConfig()
xfail_set = set()
Expand Down
59 changes: 41 additions & 18 deletions e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@
from torch_mlir_e2e_test.test_suite import COMMON_TORCH_MLIR_LOWERING_XFAILS
from torch_mlir._version import torch_version_for_comparison, version

print(f"TORCH_VERSION_FOR_COMPARISON =", torch_version_for_comparison())

LINALG_XFAIL_SET = COMMON_TORCH_MLIR_LOWERING_XFAILS | {
"Conv1dNoPaddingModule_basic",
"Conv1dNoPaddingTransposeModule_basic",
Expand All @@ -30,6 +32,15 @@
"Conv2dWithPaddingDilationStrideStaticModule_depthwise_multiplier",
}

if torch_version_for_comparison() >= version.parse("2.2.0.dev20230926"):
LINALG_XFAIL_SET |= {
"Conv2dWithPaddingDilationStrideStaticModule_grouped",
"Conv2dWithPaddingDilationStrideStaticModule_grouped_multiplier",
"Convolution2DGroupsStatic_basic",
"ConvolutionModule2DGroups_basic",
}


TORCHDYNAMO_XFAIL_SET = {
#### General TorchDynamo/PyTorch errors

Expand Down Expand Up @@ -326,10 +337,12 @@
"IndexSelectStaticModule_basic",
}

if torch_version_for_comparison() < version.parse("2.1.0.dev"):
TORCHDYNAMO_XFAIL_SET -= {
"ScaledDotProductAttentionSameModule_basic",
"ScaledDotProductAttentionDifferentModule_basic",
if torch_version_for_comparison() >= version.parse("2.2.0.dev20230926"):
TORCHDYNAMO_XFAIL_SET |= {
"Conv2dWithPaddingDilationStrideStaticModule_grouped",
"Conv2dWithPaddingDilationStrideStaticModule_grouped_multiplier",
"Convolution2DGroupsStatic_basic",
"ConvolutionModule2DGroups_basic",
}

TORCHDYNAMO_CRASHING_SET = {
Expand Down Expand Up @@ -1428,6 +1441,22 @@
"SoftmaxIntNegDimModule_basic",
"_LogSoftmaxModule_basic",
"_SoftmaxModule_basic",
"ElementwiseAddScalarInt8Module_basic",
"ElementwiseSubTensorInt8Module_basic",
"AtenEyeMModuleCPUDevice_basic",
"AtenEyeMModuleDefaultDtype_basic",
"AtenEyeMModuleFalsePinMemory_basic",
"AtenEyeMModuleFloat2D_basic",
"AtenEyeModuleCPUDevice_basic",
"AtenEyeModuleDefaultDtype_basic",
"AtenEyeModuleFalsePinMemory_basic",
"AtenEyeModuleFloat2D_basic",
"ArangeStartOutModule_basic",
"ArangeStartOutViewModule_basic",
"Conv2dBiasNoPaddingModule_basic",
"Conv2dNoPaddingModule_basic",
"Conv2dWithPaddingDilationStrideModule_basic",
"Conv2dWithPaddingModule_basic",
}

MAKE_FX_TOSA_PASS_SET = (TOSA_PASS_SET | {
Expand Down Expand Up @@ -1460,22 +1489,16 @@

# RuntimeError: The size of tensor a (7) must match the size of tensor b (3) at non-singleton dimension 1
"Add_Module_basic",
}

if torch_version_for_comparison() < version.parse("2.1.0.dev"):
MAKE_FX_TOSA_PASS_SET -= {
# 'tensor.expand_shape' op expected rank expansion, but found source rank 1 >= result rank 1
"ReshapeCollapseModule_basic",

# failed to lower torch.aten.empty.memory_format
"BatchNorm1DModule_basic",
"BatchNorm1DWith2DInputModule_basic",
"BatchNorm2DModule_basic",
"BatchNorm3DModule_basic",
"BatchNorm1DStaticShapeModule_basic",
}
# failed to legalize operation 'torch.aten.to.dtype' that was explicitly marked illegal
"AtenEyeModuleInt2D_basic",
"AtenEyeMModuleInt2D_basic",

MAKE_FX_TOSA_CRASHING_SET = {"CumsumModule_basic"}
"Conv2dBiasNoPaddingModule_basic",
"Conv2dNoPaddingModule_basic",
"Conv2dWithPaddingDilationStrideModule_basic",
"Conv2dWithPaddingModule_basic",
}

LTC_CRASHING_SET = {
# TODO: update test to move all inputs to the lazy device. Otherwise test fails with:
Expand Down
2 changes: 1 addition & 1 deletion externals/stablehlo
Submodule stablehlo updated 311 files
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ Value promoteType(PatternRewriter &rewriter, Location loc, Value input,
Value promoteAndBroadcast(ConversionPatternRewriter &rewriter, Value input,
TensorType outType);

SmallVector<size_t> toPositiveDims(ArrayRef<int64_t> dims, int64_t rank);
SmallVector<int64_t> toPositiveDims(ArrayRef<int64_t> dims, int64_t rank);

// Get the dimension sizes of the input tensor, given the dimension axes
FailureOr<SmallVector<Value, 4>> getDimSizesOfTensor(PatternRewriter &rewriter,
Expand Down
15 changes: 3 additions & 12 deletions lib/Conversion/TorchToStablehlo/Basic.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -615,12 +615,8 @@ class ConvertAtenTransposeIntOp
SmallVector<int64_t> permValues(inputRank);
std::iota(std::begin(permValues), std::end(permValues), 0);
std::swap(permValues[dim0], permValues[dim1]);
DenseIntElementsAttr permutation = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<long int>(permValues.size())},
rewriter.getI64Type()),
permValues);
rewriter.replaceOpWithNewOp<stablehlo::TransposeOp>(op, outType, self,
permutation);
permValues);
return success();
}
};
Expand Down Expand Up @@ -793,12 +789,8 @@ LogicalResult ConvertAtenOp<AtenPermuteOp>::matchAndRewrite(
return op.emitError("not all dims are valid");
}

DenseIntElementsAttr permutation = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<long int>(permValues.size())},
rewriter.getI64Type()),
permValues);
rewriter.replaceOpWithNewOp<stablehlo::TransposeOp>(op, outType, self,
permutation);
permValues);
return success();
}

Expand Down Expand Up @@ -1750,8 +1742,7 @@ LogicalResult ConvertAtenOp<AtenFlipOp>::matchAndRewrite(
}
}

rewriter.replaceOpWithNewOp<stablehlo::ReverseOp>(
op, outType, self, rewriter.getI64TensorAttr(dims));
rewriter.replaceOpWithNewOp<stablehlo::ReverseOp>(op, outType, self, dims);
return success();
}

Expand Down
16 changes: 5 additions & 11 deletions lib/Conversion/TorchToStablehlo/Linear.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -62,13 +62,9 @@ Value getPermutedTensor(PatternRewriter &rewriter, Operation *op, Value input,
newShape.push_back(inpShape[d]);
}

auto attrTy = RankedTensorType::get({static_cast<int64_t>(transDims.size())},
rewriter.getIntegerType(64));
auto permuteAttr = DenseIntElementsAttr::get(attrTy, transDims);

auto outTy = RankedTensorType::get(newShape, inputTy.getElementType());
auto result = rewriter.create<stablehlo::TransposeOp>(op->getLoc(), outTy,
input, permuteAttr);
input, transDims);
return result.getResult();
}

Expand Down Expand Up @@ -500,8 +496,8 @@ class ConvertAtenConvolutionOp : public ConvertAtenOp<AtenConvolutionOp> {
for (int64_t i = 0; i <= rank; i++)
transposeDims[i] = i;
std::swap(transposeDims[rank - 1], transposeDims[rank - 2]);
weight = rewriter.create<stablehlo::TransposeOp>(
op->getLoc(), weight, rewriter.getI64TensorAttr(transposeDims));
weight = rewriter.create<stablehlo::TransposeOp>(op->getLoc(), weight,
transposeDims);

// 3. [H, W, ..., G, OC, IC//G] => [H, W, ..., G*OC, IC//G]
weightShapeInt.erase(weightShapeInt.end() - 2);
Expand Down Expand Up @@ -546,12 +542,10 @@ class ConvertAtenConvolutionOp : public ConvertAtenOp<AtenConvolutionOp> {
}
auto transposeTy =
RankedTensorType::get(transposeShape, weightTy.getElementType());
DenseIntElementsAttr permAttr = DenseIntElementsAttr::get(
RankedTensorType::get({nDims}, rewriter.getI64Type()), perm);
auto transposeOp = rewriter.create<stablehlo::TransposeOp>(
op->getLoc(), transposeTy, weight, permAttr);
op->getLoc(), transposeTy, weight, perm);
auto reverseOp = rewriter.create<stablehlo::ReverseOp>(
op->getLoc(), transposeOp, rewriter.getI64TensorAttr({0, 1}));
op->getLoc(), transposeOp, ArrayRef<int64_t>{0, 1});

// Prepare for transposed convolution
SmallVector<int64_t> stablehloStrideVec(nSpatialDims, 1);
Expand Down
16 changes: 8 additions & 8 deletions lib/Conversion/TorchToStablehlo/StablehloLegalizeUtils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -250,12 +250,12 @@ Value promoteAndBroadcast(ConversionPatternRewriter &rewriter, Value input,
return bcast_op.getResult();
}

SmallVector<size_t> toPositiveDims(ArrayRef<int64_t> dims, int64_t rank) {
SmallVector<size_t> posDims;
SmallVector<int64_t> toPositiveDims(ArrayRef<int64_t> dims, int64_t rank) {
SmallVector<int64_t> posDims;
posDims.reserve(rank);
std::transform(
dims.begin(), dims.end(), std::back_inserter(posDims),
[rank](int64_t d) -> size_t { return toPositiveDim(d, rank); });
[rank](int64_t d) -> int64_t { return toPositiveDim(d, rank); });
return posDims;
}

Expand Down Expand Up @@ -316,10 +316,10 @@ FailureOr<Value> unsqueezeTensor(PatternRewriter &rewriter, Operation *op,
op, "failed to get dimension sizes of the input");

auto dimSizes = *dimSizesInfo;
auto rank = dimSizes.size();
size_t newRank = rank + inputUnsqzDims.size();
int64_t rank = dimSizes.size();
int64_t newRank = rank + inputUnsqzDims.size();
auto unsqzDims = toPositiveDims(inputUnsqzDims, newRank);
for (size_t k = 0, sz = unsqzDims.size(); k < sz; ++k)
for (int64_t k = 0, sz = unsqzDims.size(); k < sz; ++k)
if (k > 1 && unsqzDims[k] <= unsqzDims[k - 1])
return rewriter.notifyMatchFailure(
op, "unsqueeze dimensions must be specified in order");
Expand All @@ -335,8 +335,8 @@ FailureOr<Value> unsqueezeTensor(PatternRewriter &rewriter, Operation *op,
std::vector<int64_t> newShape;
newDimSizes.reserve(newRank);
newShape.reserve(newRank);
for (size_t k = 0, i = 0, j = 0; k < newRank; ++k) {
if (j < unsqzDims.size() && unsqzDims[j] == k) {
for (int64_t k = 0, i = 0, j = 0; k < newRank; ++k) {
if (j < static_cast<int64_t>(unsqzDims.size()) && unsqzDims[j] == k) {
newDimSizes.push_back(one);
newShape.push_back(1);
j++;
Expand Down

0 comments on commit 6690708

Please sign in to comment.