|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "# K-Means Clustering\n", |
| 12 | + "\n", |
| 13 | + "# Importing the libraries" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": null, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "# Importing the cars.csv dataset\n", |
| 23 | + "\n", |
| 24 | + "#print first 10 rows of X\n", |
| 25 | + "\n", |
| 26 | + "\n", |
| 27 | + "#construct X\n", |
| 28 | + "\n", |
| 29 | + "\n", |
| 30 | + "# X = pd.DataFrame(X)\n", |
| 31 | + "# X = X.convert_objects(convert_numeric=True)\n", |
| 32 | + "\n", |
| 33 | + "#allot column names to X" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": null, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [], |
| 41 | + "source": [ |
| 42 | + "#print first 5 rows of X" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": null, |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "#describe X" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": null, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "# Eliminating null values" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "# Using the elbow method to find the optimal number of clusters\n", |
| 70 | + "\n", |
| 71 | + "#import kmeans \n", |
| 72 | + "\n", |
| 73 | + "\n", |
| 74 | + "wcss = []\n", |
| 75 | + "for i in range(1,11):\n", |
| 76 | + " #initialise k means instance\n", |
| 77 | + " \n", |
| 78 | + " #fit the data\n", |
| 79 | + " \n", |
| 80 | + " \n", |
| 81 | + " wcss.append(kmeans.inertia_)\n", |
| 82 | + " \n", |
| 83 | + "#plot cluster vs wcss" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": { |
| 90 | + "collapsed": true |
| 91 | + }, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "# Applying k-means to the cars dataset\n", |
| 95 | + "kmeans = KMeans(n_clusters=3,init='k-means++',max_iter=300,n_init=10,random_state=0) \n", |
| 96 | + "y_kmeans = kmeans.fit_predict(X)\n", |
| 97 | + "\n", |
| 98 | + "X = X.as_matrix(columns=None)" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": null, |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "y_kmeans" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": null, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "# Visualising the clusters\n", |
| 117 | + "plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0,1],s=100,c='red',label='US')\n", |
| 118 | + "plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1,1],s=100,c='blue',label='Japan')\n", |
| 119 | + "plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2,1],s=100,c='green',label='Europe')\n", |
| 120 | + "plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=300,c='yellow',label='Centroids')\n", |
| 121 | + "plt.title('Clusters of car brands')\n", |
| 122 | + "plt.legend()\n", |
| 123 | + "plt.show()" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": null, |
| 129 | + "metadata": { |
| 130 | + "collapsed": true |
| 131 | + }, |
| 132 | + "outputs": [], |
| 133 | + "source": [] |
| 134 | + } |
| 135 | + ], |
| 136 | + "metadata": { |
| 137 | + "kernelspec": { |
| 138 | + "display_name": "Python 3", |
| 139 | + "language": "python", |
| 140 | + "name": "python3" |
| 141 | + }, |
| 142 | + "language_info": { |
| 143 | + "codemirror_mode": { |
| 144 | + "name": "ipython", |
| 145 | + "version": 3 |
| 146 | + }, |
| 147 | + "file_extension": ".py", |
| 148 | + "mimetype": "text/x-python", |
| 149 | + "name": "python", |
| 150 | + "nbconvert_exporter": "python", |
| 151 | + "pygments_lexer": "ipython3", |
| 152 | + "version": "3.6.3" |
| 153 | + } |
| 154 | + }, |
| 155 | + "nbformat": 4, |
| 156 | + "nbformat_minor": 2 |
| 157 | +} |
0 commit comments