CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--master_port 123227 \
main.py \
--distributed --multiGPU \
--task beauty \
--seed 2022 \
--warmup_prop 0.05 \
--lr 1e-3 \
--clip 1.0 \
--model_type 't5-small' \
--epochs 20 \
--gpu '0,1' \
--logging_step 1000 \
--logging_dir 'log/pretrain_t5_small_beauty_random.log' \
--model_dir 'model/pretrain_t5_small_beauty_random.pt' \
--train_sequential_item_batch 64 \
--whole_word_embedding shijie \
--item_representation random_number \
--data_order random \
--random_initialization_embedding \
--min_random_number 1000 \
--max_random_number 13000
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--master_port 123227 \
main.py \
--distributed --multiGPU \
--task beauty \
--seed 2022 \
--warmup_prop 0.05 \
--lr 1e-3 \
--clip 1.0 \
--model_type 't5-small' \
--epochs 20 \
--gpu '0,1' \
--logging_step 1000 \
--logging_dir 'log/pretrain_t5_small_beauty_independent.log' \
--model_dir 'model/pretrain_t5_small_beauty_independent.pt' \
--train_sequential_item_batch 64 \
--whole_word_embedding shijie \
--item_representation no_tokenization \
--data_order random
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--master_port 123227 \
main.py \
--distributed --multiGPU \
--task beauty \
--seed 2022 \
--warmup_prop 0.05 \
--lr 1e-3 \
--clip 1.0 \
--model_type 't5-small' \
--epochs 20 \
--gpu '0,1' \
--logging_step 1000 \
--logging_dir 'log/pretrain_t5_small_beauty_title.log' \
--model_dir 'model/pretrain_t5_small_beauty_title.pt' \
--train_sequential_item_batch 64 \
--whole_word_embedding shijie \
--item_representation title \
--data_order random
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--master_port 123227 \
main.py \
--distributed --multiGPU \
--task beauty \
--seed 2022 \
--warmup_prop 0.05 \
--lr 1e-3 \
--clip 1.0 \
--model_type 't5-small' \
--epochs 20 \
--gpu '0,1' \
--logging_step 1000 \
--logging_dir 'log/pretrain_t5_small_beauty_sequential_time_sensitive.log' \
--model_dir 'model/pretrain_t5_small_beauty_title.pt' \
--train_sequential_item_batch 64 \
--whole_word_embedding shijie \
--item_representation None \
--data_order remapped_sequential \
--remapped_data_order original
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--master_port 123227 \
main.py \
--distributed --multiGPU \
--task beauty \
--seed 2022 \
--warmup_prop 0.05 \
--lr 1e-3 \
--clip 1.0 \
--model_type 't5-small' \
--epochs 20 \
--gpu '0,1' \
--logging_step 1000 \
--logging_dir 'log/pretrain_t5_small_beauty_CF.log' \
--model_dir 'model/pretrain_t5_small_beauty_CF.pt' \
--train_sequential_item_batch 64 \
--whole_word_embedding shijie \
--item_representation CF \
--data_order remapped_sequential \
--remapped_data_order original \
--cluster_size 500 \
--cluster_number 20
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--master_port 123227 \
main.py \
--distributed --multiGPU \
--task beauty \
--seed 2022 \
--warmup_prop 0.05 \
--lr 1e-3 \
--clip 1.0 \
--model_type 't5-small' \
--epochs 20 \
--gpu '0,1' \
--logging_step 1000 \
--logging_dir 'log/pretrain_t5_small_beauty_semantics.log' \
--model_dir 'model/pretrain_t5_small_beauty_semantics.pt' \
--train_sequential_item_batch 64 \
--whole_word_embedding shijie \
--item_representation content_based \
--data_order random
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--master_port 123227 \
main.py \
--distributed --multiGPU \
--task beauty \
--seed 2022 \
--warmup_prop 0.05 \
--lr 1e-3 \
--clip 1.0 \
--model_type 't5-small' \
--epochs 20 \
--gpu '0,1' \
--logging_step 1000 \
--logging_dir 'log/pretrain_t5_small_beauty_CID+IID.log' \
--model_dir 'model/pretrain_t5_small_beauty_CID_IID.pt' \
--train_sequential_item_batch 64 \
--whole_word_embedding shijie \
--item_representation CF \
--data_order remapped_sequential \
--cluster_size 500 \
--cluster_number 20 \
--last_token_no_repetition