-
Notifications
You must be signed in to change notification settings - Fork 3
/
pathtools.py
718 lines (605 loc) · 29.7 KB
/
pathtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
"""
pathtools.py provides functions handling IP hops, IXP detection and ASN information.
"""
import dbtools as db
import os
import copy
import logging
# load database from the local folder
cur_path = os.path.abspath(os.path.dirname(__file__))
as_rel = db.AsRelationDB(os.path.join(cur_path, "db/20161201.as-rel2.txt"))
ip2asn = db.AsnDB(main=os.path.join(cur_path, "db/ipasn.dat"),
reserved=os.path.join(cur_path, "db/reserved_ip.txt"))
ixp_pref = db.IxpPrefixDB(os.path.join(cur_path, "db/ixp_prefixes.txt"))
ixp_member = db.IxpMemberDB(os.path.join(cur_path, "db/ixp_membership.txt"))
def get_ip_info(ip):
"""Query the ASN and IXP information for a given IP address from various data source
Args:
ip (string): ip address, e.g. '129.250.66.33'
Returns:
addr (db.Addr): Addr object, with addr_type attribute set
"""
# first check if it is IXP interconnection
addr = ixp_member.lookup_interco(ip)
if addr is None:
# then check if it belongs to a certian IXP prefix
ixp = ixp_pref.lookup(ip)
if ixp is not None:
addr = db.Addr(addr=ip, addr_type=db.AddrType.IxpPref, ixp=ixp)
else: # finally check if can be found from ip2asn db
asn = ip2asn.lookup(ip)
if type(asn) is int: # if int then returns ASN
addr = db.Addr(addr=ip, addr_type=db.AddrType.Normal, asn=asn)
else: # other type either string for reserved IP blocks or none for not found
addr = db.Addr(addr=ip, addr_type=db.AddrType.Others, desc=asn)
return addr
def bridge(path):
"""given a sequence of IP hops, identify sub-sequences without ASN, and remove only those IPs other than
IXP IPs if the the ASes wrapping the sub-sequence have known relation ship
Args:
path (list of dbtools.Addr): a path composed of IP hops; sub-sequence without ASN can be composed of
IP hops of dbtools.AddrType.IxpPref or dbtools.AddrType.Others.
Return:
list of dbtools.Addr
"""
remove_flag = [False] * len(path) # hop flag to one meant to be removed
asn_path = [hop.asn for hop in path]
holes = find_holes(asn_path) # indexes of None (ASN) sub-sequences
last_idx = len(path) - 1
for start, end in holes:
# only check the sub-sequences having type dbtools.AddrType.Others hops
if start > 0 and end < last_idx and db.AddrType.Others in [hop.type for hop in path[start:end+1]]:
# if there is known relation between the two ASes wrapping the None sub-sequence
left_asn = path[start-1].asn
right_asn = path[end+1].asn
if left_asn == right_asn or as_rel.has_relation((left_asn, right_asn)) is not None:
# remove only the hop of type dbtools.AddrType.Others
for idx in range(start, end+1):
if path[idx].type == db.AddrType.Others:
remove_flag[idx] = True
return [path[idx] for idx in range(last_idx+1) if not remove_flag[idx]]
def find_holes(x):
"""find the beginning and end of continuous None in the given iterator
Args:
x (iterator): the input sequence
Returns:
list of (int, int) indicating the beginning and the end of a continuous None sub-sequence
"""
holes = []
in_hole = False
for idx, val in enumerate(x):
if not in_hole:
if val is None:
start = idx
in_hole = True
else:
if val is not None:
end = idx - 1
in_hole = False
holes.append((start, end))
# in case the iteration ends while still in hole
# test_case = [None, 1, 1, None, 1, None, None, None, 1, None]
if in_hole:
holes.append((start, idx))
return holes
def insert_ixp(path):
"""insert IXP hops according to the presence of IXP address and IXP memebership of surrounding AS
Args:
path (list of db.Addr): a list of hops
Returns:
list of db.Addr
"""
path_len = len(path)
ixp_insertion = []
for idx, hop in enumerate(path):
if (hop.type == db.AddrType.InterCo or hop.type == db.AddrType.IxpPref) and (0 < idx < path_len-1):
# Normal - Interco/IxpPref - Normal
if path[idx-1].type == db.AddrType.Normal and path[idx+1].type == db.AddrType.Normal:
left_hop = path[idx-1]
right_hop = path[idx+1]
# Normal - Interco - Normal
if hop.type == db.AddrType.InterCo:
# ASN: A - A - A -> A - A - A
if left_hop.get_asn() == hop.get_asn() == right_hop.get_asn():
pass
# ASN: A - A - B -> A - A - IXP - B
elif left_hop.get_asn() == hop.get_asn() != right_hop.get_asn():
ixp_insertion.append((idx+1, hop.ixp))
# ASN: A - B - B -> A - IXP - B - B
elif left_hop.get_asn() != hop.get_asn() == right_hop.get_asn():
ixp_insertion.append((idx, hop.ixp))
# ASN: A - B - C
elif left_hop.get_asn() != hop.get_asn() != right_hop.get_asn():
# check IXP member ship
left_is_member = ixp_member.is_member(ixp=hop.ixp, asn=left_hop.asn)
right_is_member = ixp_member.is_member(ixp=hop.ixp, asn=right_hop.asn)
# IXP membership: A -m- B -m- C -> A - IXP - B - IXP - C
if left_is_member and right_is_member:
ixp_insertion.append((idx, hop.ixp))
ixp_insertion.append((idx+1, hop.ixp))
# IXP membership: A -m- B - C -> A - IXP - B - C
elif left_is_member:
ixp_insertion.append((idx, hop.ixp))
# IXP membership: A - B -m- C -> A - B - IXP - C
elif right_is_member:
ixp_insertion.append((idx + 1, hop.ixp))
else:
pass # in this case no IXP hop will be seen in the path
# Normal - IxpPref - Normal
elif hop.type == db.AddrType.IxpPref:
left_is_member = ixp_member.is_member(ixp=hop.ixp, asn=left_hop.asn)
right_is_member = ixp_member.is_member(ixp=hop.ixp, asn=right_hop.asn)
# IXP membership: A -m- IxpPref -m- B -> A - IXP - IxpPref - IXP - B
if left_is_member and right_is_member:
ixp_insertion.append((idx, hop.ixp))
ixp_insertion.append((idx + 1, hop.ixp))
# IXP membership: A -m- IxpPref- B -> A - IXP - IxpPref - B
elif left_is_member:
ixp_insertion.append((idx, hop.ixp))
# IXP membership: A - IxpPref -m- B -> A - IxpPref- IXP - B
elif right_is_member:
ixp_insertion.append((idx + 1, hop.ixp))
else:
pass # in this case no IXP shop shall be seen in the path
# Interco/IxpPref - Inter/IxpPref
elif path[idx+1].type == db.AddrType.InterCo or path[idx+1].type == db.AddrType.IxpPref:
# belong to same IXP
if path[idx].ixp == path[idx+1].ixp:
ixp_insertion.append((idx + 1, hop.ixp))
else:
ixp_insertion.append((idx, hop.ixp))
ixp_insertion.append((idx+1, path[idx+1].ixp))
shift = 0
for ins in ixp_insertion:
path.insert(ins[0]+shift, db.Addr(addr=None, addr_type=db.AddrType.Virtual, ixp=ins[1]))
shift += 1
return path
def remove_repeated_asn(path):
""" remove repeated ASN in the give path
Args:
path (list of ASN): ASN can be int for str if IXP hop
Returns:
list of ASN
"""
removed = []
for idx, hop in enumerate(path):
if idx == 0:
removed.append(hop)
elif hop != path[idx-1]:
removed.append(hop)
return removed
def as_path_change(paths):
""" mark the idx at which AS path changes
Args:
paths (list of list of ASN): [[ASN,...],...]
Returns:
list of int, index of change is set to 1, otherwise 0
"""
change = [0] * len(paths)
for idx, path in enumerate(paths):
if idx > 0:
if path != paths[idx-1]:
change[idx] = 1
return change
def as_path_change_cl(paths):
"""" mark the idx at which there is surely an AS path change not related to timeout, private address etc.
Args:
paths (list of list of ASN): [[ASN,...],...]
Returns:
list of int, index of change is set to 1, otherwise 0
"""
change = [0] * len(paths)
for idx, path in enumerate(paths):
if idx > 0:
if len(path) > 0 and len(paths[idx-1]) > 0:
if path[-1] == paths[idx-1][-1] and path != paths[idx-1]: # exclude reachability issue
diff_as = set(path) ^ set(paths[idx-1])
if len(diff_as) > 0 and all([type(i) is int for i in diff_as]): # all difference is a valid ASN
change[idx] = 1
return change
def as_path_change_cs(paths):
""" mark the idx at which where AS path change happens
AS path change is where the FIRST different AS hops are both valid public ASN hop
avoid changes due to timeout, private address, reachability issues
Args:
paths (list of list of ASN): [[ASN,...],...]
Returns:
list of int, index of change is set to 1, otherwise 0
"""
change = [0] * len(paths)
for idx, path in enumerate(paths):
if idx > 0:
if len(path) > 0 and len(paths[idx-1]) > 0:
for hop_pair in zip(path, paths[idx-1]):
if hop_pair[0] != hop_pair[1]:
if type(hop_pair[0]) is int and type(hop_pair[1]) is int:
change[idx] = 1
break
return change
def is_ixp_asn_hop(x):
""" check the whether return value of db.Addr.get_asn() is an IXP or not
if the type(x) is str and the string is not Invalid IP or reserved IP, than it must be an IXP name
Args:
x (int, string, None)
Returns:
bool
"""
return type(x) is str and not is_bad_hop(x)
def is_bad_hop(x):
""" check the whether return value of db.Addr.get_asn() is an description string of reserved IP blocks or invalid IP address
Args:
x (int, string, None)
Returns:
bool
"""
return x == 'Invalid IP address' or ip2asn.reserved_des is None or x in ip2asn.reserved_des
def as_path_change_ixp(paths):
"""" mark the idx at which there is surely an AS path change related to IXP.
Args:
paths (list of list of ASN): [[ASN,...],...]
Returns:
list of int, index of change is set to 1, otherwise 0
"""
change = [0] * len(paths)
for idx, path in enumerate(paths):
if idx > 0:
if len(path) > 0 and len(paths[idx-1]) > 0:
if path[-1] == paths[idx-1][-1] and path != paths[idx-1]: # exclude reachability issue
diff_as = set(path) ^ set(paths[idx-1])
if len(diff_as) > 0 and \
any([is_ixp_asn_hop(i) for i in diff_as]):
change[idx] = 1
return change
def as_path_change_ixp_cs(paths):
""" mark the idx at which where path change is an IXP change
IXP change is where the FIRST different AS hops involve at least one IXP
if the previous AS hop differs already, it is not longer an IXP change
Args:
paths (list of list of ASN): [[ASN,...],...]
Returns:
list of int, index of change is set to 1, otherwise 0
"""
change = [0] * len(paths)
for idx, path in enumerate(paths):
if idx > 0:
if len(path) > 0 and len(paths[idx-1]) > 0:
for hop_pair in zip(path, paths[idx-1]):
if hop_pair[0] != hop_pair[1]:
if all([not is_bad_hop(i) for i in hop_pair]) and any([type(i) is str for i in hop_pair]):
change[idx] = 1
break
return change
def as_path_change_ixp_pu(paths):
""" mark the idx at which where path change is an pure IXP change
pure IXP change is where the FIRST different AS hops involve IXP in both AS paths
if the previous AS hop differs already, it is not longer a pure IXP change
Args:
paths (list of list of ASN): [[ASN,...],...]
Returns:
list of int, index of change is set to 1, otherwise 0
"""
change = [0] * len(paths)
for idx, path in enumerate(paths):
if idx > 0:
if len(path) > 0 and len(paths[idx-1]) > 0:
for hop_pair in zip(path, paths[idx-1]):
if hop_pair[0] != hop_pair[1]:
if all([is_ixp_asn_hop(i) for i in hop_pair]):
change[idx] = 1
break
return change
class IpForwardingPattern:
"""IpForwardingPattern describes the forwarding paths for all the paris-id in joining one destination
Attributes:
pattern (list of path): index of the list is the paris id; the element is a path composed of hops;
each path is a list of hop; two paths are equal if they contain the same hops following same order
"""
def __init__(self, size, paris_id=None, paths=None):
"""Initialize with size that the number of different paris id and optionally with paths taken by paris id
Args:
size (int): number of different paris id, in the case of RIPE Atlas, it is 16
paris_id (list of int): sequence of paris id
paths (list of path): path taken when the corresponding paris id in the paris_id list is used
"""
self.pattern = [None] * size
if paris_id is not None and paths is not None:
# NOTE: if a paris_id have different paths is not checked here
assert len(paris_id) == len(paths)
for pid, path in zip(paris_id, paths):
self.pattern[pid] = path
def update(self, paris_id, path):
"""update/complete the current pattern with new paris id and path taken
Return True if the input can be integrated into the existing pattern; False otherwise
Args:
paris_id (int): one single paris id
path (a path): a path taken by the paris id
Returns:
boolean
"""
assert paris_id < len(self.pattern)
# if the paris id has not yet path set, the input can always be integrated into existing pattern
if self.pattern[paris_id] is None:
self.pattern[paris_id] = path
return True
elif self.pattern[paris_id] == path:
return True
else:
return False
def is_complete(self):
"""test if the pattern has path set for each paris id"""
return None not in self.pattern
def is_match(self, paris_id, paths):
"""test if the input paris ids and paths are compatible with existing pattern
the difference with self.update() is that, is_match won't modify self.pattern is a paris id is not yet set
Args:
paris_id (list of int)
paths (list of path)
Returns:
boolean
"""
for pid, path in zip(paris_id, paths):
if self.pattern[pid] is not None and path is not None and self.pattern[pid] != path:
return False
return True
def is_match_pattern(self, pattern):
"""test if the input IpForwarding pattern is compatible with existing pattern
a variation of self.is_match()
Returns:
boolean
"""
if len(pattern.pattern) != len(self.pattern):
return False
else:
return self.is_match(range(len(pattern.pattern)), pattern.pattern)
def __repr__(self):
return "IpForwardingPattern(%r)" % dict(enumerate(self.pattern))
def __str__(self):
return "%s" % dict(enumerate(self.pattern))
def __hash__(self):
return hash(self.__repr__())
def __eq__(self, other):
return self.__repr__() == other.__repr__()
class PatternSegment:
"""PatternsSegment describes a subsequence of paths following a same IpFowardingPattern
Attributes:
begin (int): the beginning index of the path segment;
only meaningful when you know the sequence of paris_id and paths; the same for end
end (int): the index if last path of the segment, thus inclusive
pattern (IpForwardingPattern): the pattern followed by this segment
"""
def __init__(self, begin, end, pattern):
self.begin = begin
self.end = end
self.pattern = pattern
def get_len(self):
"""return the length of the segment"""
return self.end - self.begin + 1
def __repr__(self):
return "PatternSegment(begin=%r, end=%r, pattern=%r)" % (self.begin, self.end, self.pattern)
def __str__(self):
return "(%r, %r, pattern=%s)" % (self.begin, self.end, self.pattern)
def __hash__(self):
return hash(self.__repr__())
def __eq__(self, other):
return self.__repr__() == other.__repr__()
def ip_path_change_simple(paris_id, paths, size=16):
"""given a sequence paris_id and path, detect when a different path is take for a same paris id
the functions cuts the given paths sequence into segments where each following a same IpForwardingPattern
Args:
paris_id (list of int): Paris ID used when tracerouting
paths (list of path): path is composed of ip hops
size (int): number of different paris_ids
Returns:
list of PatternSegment
"""
assert (len(paris_id) == len(paths))
seg = []
cur_seg = PatternSegment(begin=0, end=0, pattern=IpForwardingPattern(size))
for idx, (pid, path) in enumerate(zip(paris_id, paths)):
if cur_seg.pattern.update(pid, path):
cur_seg.end = idx
else:
# once a paris id and the path take is not longer compatible with the current segment
# start a new segment
seg.append(cur_seg)
cur_seg = PatternSegment(begin=idx, end=idx, pattern=IpForwardingPattern(size))
cur_seg.pattern.update(pid, path)
# store the last segment
if cur_seg not in seg:
seg.append(cur_seg)
return seg
def ip_path_change_bck_ext(paris_id, paths, size=16):
""" maximize longest path segment with backward extension
after the ip_path_change_simple() extends segment in -> direction;
this function further checks if the longer segment of the two neighbouring ones
can be further extended in <- direction
the intuition behind is that most time measurement flows on dominant patterns
Args:
paris_id (list of int): Paris ID used when tracerouting
paths (list of path): path is composed of ip hops
size (int): number of different paris_ids
Returns:
list of PatternSegment
"""
seg = ip_path_change_simple(paris_id, paths, size) # simple segmentation
for idx, s in enumerate(seg[:-1]):
next_s = seg[idx + 1]
# | cur seg |<- next seg | extend later
# | cur seg ->| next seg | is already done with simple segmentation
# next segment can only be backwardly extended if:
# it's pattern is complete
# it's pattern has been repeated twice so that we are sure that it is a stable pattern
# it is longer than the previous pattern so that we maximizes the longest pattern
if next_s.pattern.is_complete() and next_s.get_len() >= 2 * size and next_s.get_len() > s.get_len():
next_s_cp = copy.deepcopy(next_s)
cur_s_cp = copy.deepcopy(s)
pos = cur_s_cp.end
while True:
# test if can be backwardly extended
if next_s.pattern.update(paris_id[pos], paths[pos]):
cur_s_cp.end = pos - 1
cur_s_cp.pattern = IpForwardingPattern(size,
paris_id[cur_s_cp.begin:cur_s_cp.end+1],
paths[cur_s_cp.begin:cur_s_cp.end+1])
next_s_cp.begin = pos
pos -= 1
else:
break
# if extended, change the both segments
if cur_s_cp != s:
seg[idx] = cur_s_cp
seg[idx+1] = next_s_cp
return seg
def ip_path_change_split(paris_id, paths, size):
"""pattern change detection with finer granilarity
for segments with short length, < 2 * size, chances are that there is a short deviation inside
while backward extension might find the end of the short deviation but not necessary the beginning,
thus the need for further finer split.
the intuition is that if a short segment have a sub-segment at 2 in length that matches with same popular patterns
we further split the short segment
Args:
paris_id (list of int): Paris ID used when tracerouting
paths (list of path): path is composed of ip hops
size (int): number of different paris_ids
Returns:
list of PatternSegment
"""
seg = ip_path_change_bck_ext(paris_id, paths, size)
# find relatively popular IpForwarding pattern: any patter that ever lasts more than 2 paris id iteration
# not different segment can have same pattern at different places in the path sequences
long_pat = set([s.pattern for s in seg if s.get_len() > 2*size and s.pattern.is_complete()])
# {idx:(position, length)}
# idx: the idx of seg to be split
# position and length of the longest sub-segment that matches popular patterns
split = dict()
# new segmentation after split
split_seg = []
# try to further split short segments by finding the longest sub-segment that matches with popular patterns
for idx, s in enumerate(seg):
# the segment should at least 3 in length and it's pattern has not been repeated
# and it's pattern doesn't match with any of the popular ones
if 2 < s.get_len() < 2 * size:
# logging.debug("Split short seg %d th: %r" % (idx, s))
any_match = False
for lp in long_pat:
if lp.is_match_pattern(s.pattern):
any_match = True
# logging.debug("\tShort seg match with popular pattern %r, thus skipped" % (lp))
if not any_match:
max_len_per_pos = []
# iterate over all the idx from the beginning to one before last of the short segment
# and store the longest match with popular patterns for each position
for pos in range(s.begin, s.end):
# logging.debug("\tInspect pos %d" % pos)
l = 2 # starting from match length 2
while pos+l <= s.end+1: # iterate till the end of current segment
any_match = False # the number of matched long pattern
for lp in long_pat:
if lp.is_match(paris_id[pos:pos+l], paths[pos:pos+l]):
any_match = True
break
if any_match: # if pos:pos+l matches at least one long pattern, further extend the length
l += 1
else: # record last successful try
max_len_per_pos.append((pos, l-1))
break
# this is case when the end of sub-segment reaches the end of the short segment
if (pos, l-1) not in max_len_per_pos:
max_len_per_pos.append((pos, l-1))
# logging.debug("\t\tlongest sub seg %s" % str(max_len_per_pos[-1]))
max_len_per_pos = sorted(max_len_per_pos, key=lambda e: e[1], reverse=True)
longest_cut = max_len_per_pos[0]
if longest_cut[1] > 1: # further split only if the length of the longest match > 1 in length
split[idx] = longest_cut
# logging.debug("\t cut at %s" % str(longest_cut))
# split the segments
for idx, s in enumerate(seg):
if idx in split:
cut_begin = split[idx][0]
cut_end = cut_begin + split[idx][1] - 1
# three possible cases: 1/ at match at beginning; 2/ the match in the middle; 3/ the match at the end
if cut_begin == s.begin:
split_seg.append(PatternSegment(begin=cut_begin,
end=cut_end,
pattern=IpForwardingPattern(size,
paris_id[cut_begin:cut_end + 1],
paths[cut_begin:cut_end + 1])))
split_seg.append(PatternSegment(begin=cut_end + 1,
end=s.end,
pattern=IpForwardingPattern(size,
paris_id[cut_end + 1:s.end + 1],
paths[cut_end + 1:s.end + 1])))
elif cut_begin > s.begin and cut_end < s.end:
split_seg.append(PatternSegment(begin=s.begin,
end=cut_begin - 1,
pattern=IpForwardingPattern(size,
paris_id[s.begin:cut_begin],
paths[s.begin:cut_begin])))
split_seg.append(PatternSegment(begin=cut_begin,
end=cut_end,
pattern=IpForwardingPattern(size,
paris_id[cut_begin:cut_end + 1],
paths[cut_begin:cut_end + 1])))
split_seg.append(PatternSegment(begin=cut_end + 1,
end=s.end,
pattern=IpForwardingPattern(size,
paris_id[cut_end + 1:s.end + 1],
paths[cut_end + 1:s.end + 1])))
elif cut_end == s.end:
split_seg.append(PatternSegment(begin=s.begin,
end=cut_begin - 1,
pattern=IpForwardingPattern(size,
paris_id[s.begin:cut_begin],
paths[s.begin:cut_begin])))
split_seg.append(PatternSegment(begin=cut_begin,
end=cut_end,
pattern=IpForwardingPattern(size,
paris_id[cut_begin:cut_end + 1],
paths[cut_begin:cut_end + 1])))
else:
split_seg.append(s)
# after the above split, the new neighbouring segments could again math popular pattern, merge them
# {idx: new segment}
# idx: the first idx of the two neighbour segment in split_seg that meant to be merged
# maps to the new merged segment
merge = dict()
for idx, s in enumerate(split_seg[:-1]):
next_s = split_seg[idx+1]
# if the two neighbour segments are short test if them can be merged
if s.get_len() < 2 * size or next_s.get_len() < 2 * size:
# if the neighbouring seg matches with each other then test if merged seg matches with popular pattern
if s.pattern.is_match_pattern(next_s.pattern):
merge_pat = IpForwardingPattern(size, paris_id[s.begin:next_s.end+1], paths[s.begin:next_s.end+1])
any_match = False
for lp in long_pat:
if lp.is_match_pattern(merge_pat):
any_match = True
break
if any_match:
merge[idx] = PatternSegment(begin=s.begin, end=next_s.end, pattern=merge_pat)
# in general consecutive merge, e.g. 1 merge 2 and 2 merge 3, is not possible
# log it when happens
for i in merge:
if i+1 in merge:
logging.error("IP change split: consecutive merge possible: %r, %r" % (paris_id, paths))
return split_seg
mg_seg = []
for idx, seg in enumerate(split_seg):
if idx in merge:
mg_seg.append(merge[idx])
elif idx not in merge and idx-1 not in merge:
mg_seg.append(seg)
return mg_seg
def ifp_change(seg, seq_len):
""" mark the idx at which IpForwardingPattern changes, i.e. the beginning of a new segment
Args:
seg (list of PatternSegment): the out put of ifp change detection algos
seq_len: the total length of the path sequence
Returns:
list of int, index of change is set to 1, otherwise 0
"""
change = [0] * seq_len
if len(seg) > 1:
for s in seg[1:]:
change[s.begin] = 1
return change