forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph-valid-tree.py
75 lines (66 loc) · 2.34 KB
/
graph-valid-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Time: O(|V| + |E|)
# Space: O(|V| + |E|)
# BFS solution. Same complexity but faster version.
class Solution:
# @param {integer} n
# @param {integer[][]} edges
# @return {boolean}
def validTree(self, n, edges):
if len(edges) != n - 1: # Check number of edges.
return False
elif n == 1:
return True
visited_from, neighbors = 0, 1
# A structure to track each node's [visited_from, neighbors]
nodes = collections.defaultdict(lambda: [-1, []])
for edge in edges:
nodes[edge[0]][neighbors].append(edge[1])
nodes[edge[1]][neighbors].append(edge[0])
if len(nodes) != n: # Check number of nodes.
return False
# BFS to check whether the graph is valid tree.
visited = {}
q = collections.deque()
q.append(0)
while q:
i = q.popleft()
visited[i] = True
for node in nodes[i][neighbors]:
if node != nodes[i][visited_from]:
if node in visited:
return False
else:
visited[node] = True
nodes[node][visited_from] = i
q.append(node)
return len(visited) == n
# Time: O(|V| + |E|)
# Space: O(|V| + |E|)
# BFS solution.
class Solution2:
# @param {integer} n
# @param {integer[][]} edges
# @return {boolean}
def validTree(self, n, edges):
visited_from, neighbors = 0, 1
# A structure to track each node's [visited_from, neighbors]
nodes = collections.defaultdict(lambda: [-1, []])
for edge in edges:
nodes[edge[0]][neighbors].append(edge[1])
nodes[edge[1]][neighbors].append(edge[0])
# BFS to check whether the graph is valid tree.
visited = {}
q = collections.deque()
q.append(0)
while q:
i = q.popleft()
visited[i] = True
for node in nodes[i][neighbors]:
if node != nodes[i][visited_from]:
if node in visited:
return False
else:
visited[node] = True
nodes[node][visited_from] = i
q.append(node)
return len(visited) == n