forked from xdit-project/xDiT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhost.py
330 lines (278 loc) · 10.7 KB
/
host.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import time
import torch
import torch.distributed as dist
import pickle
import io
import logging
import base64
import torch.multiprocessing as mp
from queue import Queue
import threading
import asyncio
from collections import deque
from PIL import Image
from flask import Flask, request, jsonify
from xfuser import (
xFuserPixArtAlphaPipeline,
xFuserPixArtSigmaPipeline,
xFuserFluxPipeline,
xFuserStableDiffusion3Pipeline,
xFuserHunyuanDiTPipeline,
xFuserArgs,
)
from xfuser.config import FlexibleArgumentParser
from xfuser.core.distributed import (
get_world_group,
is_dp_last_group,
get_data_parallel_world_size,
get_runtime_state,
)
app = Flask(__name__)
# Set NCCL timeout and error handling
os.environ["NCCL_BLOCKING_WAIT"] = "1"
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "1"
# Global variables
pipe = None
engine_config = None
input_config = None
local_rank = None
logger = None
initialized = False
args = None
# a global queue to store request prompts
request_queue = deque()
queue_lock = threading.Lock()
queue_event = threading.Event()
results_store = {} # store request results
def setup_logger():
global logger
rank = dist.get_rank()
logging.basicConfig(
level=logging.INFO,
format=f"[Rank {rank}] %(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)
@app.route("/initialize", methods=["GET"])
def check_initialize():
global initialized
if initialized:
return jsonify({"status": "initialized"}), 200
else:
return jsonify({"status": "initializing"}), 202
def initialize():
global pipe, engine_config, input_config, local_rank, initialized, args
mp.set_start_method("spawn", force=True)
parser = FlexibleArgumentParser(description="xFuser Arguments")
parser.add_argument("--max_queue_size", type=int, default=4,
help="Maximum size of the request queue")
args = xFuserArgs.add_cli_args(parser).parse_args()
engine_args = xFuserArgs.from_cli_args(args)
engine_config, input_config = engine_args.create_config()
setup_logger()
local_rank = int(os.environ.get("LOCAL_RANK", 0))
torch.cuda.set_device(local_rank)
logger.info(f"Initializing model on GPU: {torch.cuda.current_device()}")
model_name = engine_config.model_config.model.split("/")[-1]
pipeline_map = {
"PixArt-XL-2-1024-MS": xFuserPixArtAlphaPipeline,
"PixArt-Sigma-XL-2-2K-MS": xFuserPixArtSigmaPipeline,
"stable-diffusion-3-medium-diffusers": xFuserStableDiffusion3Pipeline,
"HunyuanDiT-v1.2-Diffusers": xFuserHunyuanDiTPipeline,
"FLUX.1-schnell": xFuserFluxPipeline,
}
PipelineClass = pipeline_map.get(model_name)
if PipelineClass is None:
raise NotImplementedError(f"{model_name} is currently not supported!")
pipe = PipelineClass.from_pretrained(
pretrained_model_name_or_path=engine_config.model_config.model,
engine_config=engine_config,
torch_dtype=torch.float16,
).to(f"cuda:{local_rank}")
pipe.prepare_run(input_config)
logger.info("Model initialization completed")
initialized = True # Set initialization completion flag
def generate_image_parallel(
prompt, num_inference_steps, seed, cfg, save_disk_path=None
):
global pipe, local_rank, input_config
logger.info(f"Starting image generation with prompt: {prompt}")
torch.cuda.reset_peak_memory_stats()
start_time = time.time()
output = pipe(
height=input_config.height,
width=input_config.width,
prompt=prompt,
num_inference_steps=num_inference_steps,
output_type="pil",
generator=torch.Generator(device=f"cuda:{local_rank}").manual_seed(seed),
guidance_scale=cfg,
max_sequence_length=input_config.max_sequence_length
)
end_time = time.time()
elapsed_time = end_time - start_time
logger.info(f"Image generation completed in {elapsed_time:.2f} seconds")
if save_disk_path is not None:
timestamp = time.strftime("%Y%m%d-%H%M%S")
filename = f"generated_image_{timestamp}.png"
file_path = os.path.join(save_disk_path, filename)
if is_dp_last_group():
# Create the directory if it doesn't exist
os.makedirs(save_disk_path, exist_ok=True)
# Save the image to the specified directory
output.images[0].save(file_path)
logger.info(f"Image saved to: {file_path}")
output = file_path
# single gpu didn't need to distribute
elif dist.get_world_size() > 1:
if is_dp_last_group():
# serialize output object
output_bytes = pickle.dumps(output)
# send output to rank 0
dist.send(
torch.tensor(len(output_bytes), device=f"cuda:{local_rank}"), dst=0
)
dist.send(
torch.ByteTensor(list(output_bytes)).to(f"cuda:{local_rank}"), dst=0
)
logger.info(f"Output sent to rank 0")
if dist.get_rank() == 0:
# recv from rank world_size - 1
size = torch.tensor(0, device=f"cuda:{local_rank}")
dist.recv(size, src=dist.get_world_size() - 1)
output_bytes = torch.ByteTensor(size.item()).to(f"cuda:{local_rank}")
dist.recv(output_bytes, src=dist.get_world_size() - 1)
# deserialize output object
output = pickle.loads(output_bytes.cpu().numpy().tobytes())
return output, elapsed_time
@app.route("/generate", methods=["POST"])
def queue_image_request():
logger.info("Received POST request for image generation")
data = request.json
request_id = str(time.time())
with queue_lock:
# Check queue size
if len(request_queue) >= args.max_queue_size:
return jsonify({
"error": "Queue is full, please try again later",
"queue_size": len(request_queue)
}), 503
request_params = {
"id": request_id,
"prompt": data.get("prompt", input_config.prompt),
"num_inference_steps": data.get("num_inference_steps", input_config.num_inference_steps),
"seed": data.get("seed", input_config.seed),
"cfg": data.get("cfg", 8.0),
"save_disk_path": data.get("save_disk_path")
}
request_queue.append(request_params)
queue_event.set()
return jsonify({
"message": "Request accepted",
"request_id": request_id,
"status_url": f"/status/{request_id}"
}), 202
@app.route("/status/<request_id>", methods=["GET"])
def check_status(request_id):
if request_id in results_store:
result = results_store.pop(request_id)
return jsonify(result), 200
position = None
with queue_lock:
for i, req in enumerate(request_queue):
if req["id"] == request_id:
position = i
break
if position is not None:
return jsonify({
"status": "pending",
"queue_position": position
}), 202
return jsonify({"status": "not_found"}), 404
def process_queue():
while True:
queue_event.wait()
with queue_lock:
if not request_queue:
queue_event.clear()
continue
params = request_queue.popleft()
if not request_queue:
queue_event.clear()
try:
# Extract parameters
request_id = params["id"]
prompt = params["prompt"]
num_inference_steps = params["num_inference_steps"]
seed = params["seed"]
cfg = params["cfg"]
save_disk_path = params["save_disk_path"]
# Broadcast parameters to all processes
broadcast_params = [prompt, num_inference_steps, seed, cfg, save_disk_path]
dist.broadcast_object_list(broadcast_params, src=0)
# Generate image and get results
output, elapsed_time = generate_image_parallel(*broadcast_params)
# Process output results
if save_disk_path:
# output is disk path
result = {
"message": "Image generated successfully",
"elapsed_time": f"{elapsed_time:.2f} sec",
"output": output, # This is the file path
"save_to_disk": True
}
else:
# Process base64 output
if output and hasattr(output, "images") and output.images:
output_base64 = base64.b64encode(output.images[0].tobytes()).decode("utf-8")
else:
output_base64 = ""
result = {
"message": "Image generated successfully",
"elapsed_time": f"{elapsed_time:.2f} sec",
"output": output_base64,
"save_to_disk": False
}
# Store results
results_store[request_id] = result
except Exception as e:
logger.error(f"Error processing request {params['id']}: {str(e)}")
results_store[request_id] = {
"error": str(e),
"status": "failed"
}
def run_host():
if dist.get_rank() == 0:
logger.info("Starting Flask host on rank 0")
# process 0 will process the queue in a separate thread
queue_thread = threading.Thread(target=process_queue, daemon=True)
queue_thread.start()
app.run(host="0.0.0.0", port=6000)
else:
while True:
# Non-master processes wait for broadcasted parameters
params = [None] * 5
logger.info(f"Rank {dist.get_rank()} waiting for tasks")
dist.broadcast_object_list(params, src=0)
if params[0] is None:
logger.info("Received exit signal, shutting down")
break
logger.info(f"Received task with parameters: {params}")
generate_image_parallel(*params)
# curl -X POST http://127.0.0.1:6000/generate \
# -H "Content-Type: application/json" \
# -d '{
# "prompt": "A lovely rabbit",
# "num_inference_steps": 50,
# "seed": 42,
# "cfg": 7.5,
# "save_disk_path": true
# }'
if __name__ == "__main__":
initialize()
logger.info(
f"Process initialized. Rank: {dist.get_rank()}, Local Rank: {os.environ.get('LOCAL_RANK', 'Not Set')}"
)
logger.info(f"Available GPUs: {torch.cuda.device_count()}")
run_host()