-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
283 lines (237 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import argparse
import copy
import time
import numpy as np
import torch
import torch.nn as nn
from sklearn import preprocessing
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score
from torch_geometric.data import Data
import random
from torch_geometric.nn import DeepGraphInfomax, SAGEConv
from torch_geometric.utils import degree
from final_model_gnn import Final_m
from prompt import Prompt
from NeighborSampler import NeighborSampler
criterion = nn.NLLLoss()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
class SAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
self.convs.append(SAGEConv(hidden_channels, out_channels))
def forward(self, x, adjs):
for i, (edge_index, _, size) in enumerate(adjs):
if i == 0:
x_target = x[:size[1]]
x = self.convs[0]((x, x_target), edge_index)
x = torch.relu(x)
if i == 1:
x_target = x[:size[1]]
x = self.convs[1]((x, x_target), edge_index)
return x
def corruption(x, edge_index):
return x[torch.randperm(x.size(0))], edge_index
def main_finetune(args, all_labels):
train_normal_ids = random.sample(pos_ids, args.shot_num*9)
train_abnormal_ids = random.sample(neg_ids, args.shot_num)
sup_train_ids = train_normal_ids + train_abnormal_ids
val_test_normal_set = set(pos_ids) - set(train_normal_ids)
val_test_abnormal_set = set(neg_ids) - set(train_abnormal_ids)
val_normal_ids = random.sample(val_test_normal_set, args.shot_num*9)
val_abnormal_ids = random.sample(val_test_abnormal_set, args.shot_num)
sup_val_ids = val_normal_ids + val_abnormal_ids
test_normal_set = val_test_normal_set - set(val_normal_ids)
test_abnormal_set = val_test_abnormal_set -set(val_abnormal_ids)
sup_test_ids = list(test_normal_set | test_abnormal_set)
print('supvised len(train_ids): ', len(sup_train_ids), '\n', 'supervised len(test_ids): ', len(sup_test_ids))
train_ids, test_ids = torch.tensor(sup_train_ids, dtype=torch.long).to(device), torch.tensor(sup_test_ids, dtype=torch.long).to(device)
val_ids = torch.tensor(sup_val_ids, dtype=torch.long).to(device)
all_labels = torch.tensor(all_labels, dtype=torch.long).to(device)
prompt_normal_ids = torch.tensor(train_normal_ids, dtype=torch.long)
prompt_abnormal_ids = torch.tensor(train_abnormal_ids, dtype=torch.long)
data = Data(x=g_ft, edge_index=adj)
best_model = DeepGraphInfomax(
hidden_channels=args.gnn_hid, encoder=SAGE(data.num_features, args.gnn_hid, args.gnn_output),
summary=lambda z, *args, **kwargs: torch.sigmoid(z.mean(dim=0)),
corruption=corruption)#.to(device)
best_model.load_state_dict(torch.load('./res/care_{}.pkl'.format(args.data), map_location=device))
gnn = best_model.encoder.to(device)
dgi_w = best_model.weight.to(device)
train_loader = NeighborSampler(data.edge_index, sizes=args.sample_size, node_idx=train_ids, batch_size=args.batch_size,
shuffle=True, num_nodes=data.num_nodes)
val_loader = NeighborSampler(data.edge_index, sizes=args.sample_size, node_idx=val_ids, batch_size=args.batch_size,
shuffle=False, num_nodes=data.num_nodes)
test_loader = NeighborSampler(data.edge_index, sizes=args.sample_size, node_idx=test_ids, batch_size=args.batch_size,
shuffle=False, num_nodes=data.num_nodes)
prompt_normal_loader = NeighborSampler(data.edge_index, sizes=[5], node_idx=prompt_normal_ids, batch_size=args.batch_size,
shuffle=False, num_nodes=data.num_nodes)
prompt_abnormal_loader = NeighborSampler(data.edge_index, sizes=[5], node_idx=prompt_abnormal_ids, batch_size=args.batch_size,
shuffle=False, num_nodes=data.num_nodes)
def get_prompt():
gnn.eval()
with torch.no_grad():
for _, nor_n_id, _, _ in prompt_normal_loader:
a = nor_n_id
for _, abnor_n_id, _, _ in prompt_abnormal_loader:
b = abnor_n_id
normal_loader = NeighborSampler(data.edge_index, sizes=args.sample_size, node_idx=a, batch_size=args.batch_size,
shuffle=False, num_nodes=data.num_nodes)
abnormal_loader = NeighborSampler(data.edge_index, sizes=args.sample_size, node_idx=b, batch_size=args.batch_size,
shuffle=False, num_nodes=data.num_nodes)
for batch_size, n_id, adjs, raw_batch in normal_loader:
adjs = [adj.to(device) for adj in adjs]
pos_p = gnn(data.x[n_id].to(device), adjs)
pos_p = torch.sigmoid(pos_p.mean(dim=0, keepdim=True)).t()
pos_p = torch.matmul(dgi_w, pos_p)
for batch_size, n_id, adjs, raw_batch in abnormal_loader:
adjs = [adj.to(device) for adj in adjs]
neg_p = gnn(data.x[n_id].to(device), adjs)
neg_p = torch.sigmoid(neg_p.mean(dim=0, keepdim=True)).t()
neg_p = torch.matmul(dgi_w, neg_p)
prompt_vectors = torch.cat((pos_p, neg_p), dim=1)
return prompt_vectors
prompt_vectors = get_prompt()
f_prompt = Prompt(prompt_vectors)
model = Final_m(gnn, f_prompt).to(device)
optimizer = torch.optim.Adam([{'params': model.parameters()}, ],
lr=args.lr)
def train():
model.train()
total_loss = 0
for batch_size, n_id, adjs, raw_batch in train_loader:
# `adjs` holds a list of `(edge_index, e_id, size)` tuples.
adjs = [adj.to(device) for adj in adjs] # two different adjs
# print(raw_batch[:100])
res = model(data.x[n_id].to(device), adjs)
y_label = all_labels[raw_batch]
task_loss = criterion(torch.log_softmax(res.squeeze(), dim=-1), y_label.to(device))
prompt = model.parameters()[-1].T
prompt = prompt / prompt.norm(dim=-1, keepdim=True)
l2_loss = torch.norm(torch.mm(prompt, prompt.T) - torch.eye(prompt.shape[0]).to(device))
loss = task_loss + args.lr_c * l2_loss
# loss = criterion(torch.log_softmax(res.squeeze(), dim=-1), y_label.to(device))
optimizer.zero_grad()
torch.cuda.empty_cache()
loss.backward()
optimizer.step()
total_loss += float(loss.detach().clone().cpu()) * res.size(0)
return total_loss /train_ids.size(0)
cnt_wait = 0
best = 0
best_t = 0
# patience = 50
for epoch in range(1, args.epoch_n):
loss = train()
print(f'train loss= {loss:.4f}')
model.eval()
with torch.no_grad():
res_list = []
y_label_list = []
for batch_size, n_id, adjs, raw_batch in val_loader:
adjs = [adj.to(device) for adj in adjs]
res = model(data.x[n_id].to(device), adjs)
y_label = all_labels[raw_batch]
res_list.append(res)
y_label_list.append(y_label)
res_list = torch.cat(res_list, dim=0)
y_pred = torch.argmax(res_list, dim=1)
y_label_list = torch.cat(y_label_list, dim=0)
val_acc = f1_score(y_label_list.detach().clone().cpu(), y_pred.detach().clone().cpu())
if val_acc > best:
print(f'Epoch: {epoch:03d}, best_f1_score: {best:.4f} -----> val_f1_score: {val_acc:.4f}')
best = val_acc
best_t = epoch
cnt_wait = 0
best_model = model
else:
cnt_wait += 1
if cnt_wait == args.patience:
print('Early stopping!')
break
print('Loading {}th epoch'.format(best_t))
if val_acc == 0:
best_model = model
best_model.eval()
with torch.no_grad():
res_list = []
y_label_list = []
for batch_size, n_id, adjs, raw_batch in test_loader:
adjs = [adj.to(device) for adj in adjs]
res = best_model(data.x[n_id].to(device), adjs)
y_label = all_labels[raw_batch]
res_list.append(res)
y_label_list.append(y_label)
res_list = torch.cat(res_list, dim=0)
y_pred = torch.argmax(res_list, dim=1)
y_label_list = torch.cat(y_label_list, dim=0)
y_test, predictions = y_label_list.detach().clone().cpu(), y_pred.detach().clone().cpu()
f1 = f1_score(y_test, predictions, pos_label=1, average='binary')
# precision = precision_score(y_test, predictions, pos_label=1, average='binary')
# recall = recall_score(y_test, predictions, pos_label=1, average='binary')
y_prob = torch.softmax(res_list.squeeze(), dim=-1)
y_prob = y_prob[:, 1]
auc = roc_auc_score(y_label_list.detach().clone().cpu(), y_prob.clone().cpu())
print('-' * 20, 'the test f1_score here', '-' * 20)
print('auc', round(auc, 4))
print('f1', round(f1, 4))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch table IO')
parser.add_argument('--tables',
default="./data/amazon_feat_label.npy,./data/amazon_edge_index.npy",
type=str, help='ODPS input table names')
parser.add_argument('--data', default="amazon", type=str)
parser.add_argument('--ftsize', default=32, type=int, help='feature size')
parser.add_argument('--lr', default=1e-3, type=float, help='lr')
parser.add_argument('--lr_c', default=1e-1, type=float, help='lr_c')
parser.add_argument('--batch_size', type=int, default=100000)
parser.add_argument('--gnn_input', type=int, default=128)
parser.add_argument('--gnn_hid', type=int, default=128)
parser.add_argument('--gnn_output', type=int, default=128)
parser.add_argument('--epoch_n', type=int, default=501, help='epoch number')
parser.add_argument('--patience', type=int, default=50, help='patience number')
parser.add_argument('--heads', type=int, default=2)
parser.add_argument('--sample_size', default=[25, 10], type=list)
parser.add_argument('--table_name', default='amazon', type=str)
parser.add_argument("--gpu", type=int, default=0, help="GPU index. Default: -1, using CPU.")
parser.add_argument("--shot_num", type=int, default=10)
parser.add_argument("--seed", type=int, default=77)
args = parser.parse_args()
start = time.perf_counter()
t = args.tables.split(',')
feat_label = np.load(t[0])
node_ft2 = feat_label[:, :-1]
all_labels = feat_label[:, -1].astype(int)
pos_ids = []
neg_ids = []
for i in range(all_labels.shape[0]):
if all_labels[i] == 0:
pos_ids.append(i)
else:
neg_ids.append(i)
edge_index = np.load(t[1])
adj = torch.tensor(edge_index, dtype=torch.int64)
row = adj[0]
deg = degree(row, dtype=torch.float32)
deg = deg.numpy().reshape(-1, 1)
print('deg', deg[:10])
print('node_ft2.shape', node_ft2.shape)
node_ft2 = np.concatenate((node_ft2, deg), axis=1)
print('node_ft2.shape', node_ft2.shape)
node_ft2 = preprocessing.StandardScaler().fit_transform(node_ft2)
g_ft = torch.tensor(node_ft2, dtype=torch.float32)
if args.gpu >= 0 and torch.cuda.is_available():
device = "cuda:{}".format(args.gpu)
else:
device = "cpu"
setup_seed(args.seed)
main_finetune(args, all_labels)
end = time.perf_counter()
print("time consuming {:.2f}".format(end - start))