-
Notifications
You must be signed in to change notification settings - Fork 2k
/
softmax.py
131 lines (91 loc) · 3.25 KB
/
softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# encoding=utf8
import math
import pandas as pd
import numpy as np
import random
import time
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
class Softmax(object):
def __init__(self):
self.learning_step = 0.000001 # 学习速率
self.max_iteration = 100000 # 最大迭代次数
self.weight_lambda = 0.01 # 衰退权重
def cal_e(self,x,l):
'''
计算博客中的公式3
'''
theta_l = self.w[l]
product = np.dot(theta_l,x)
return math.exp(product)
def cal_probability(self,x,j):
'''
计算博客中的公式2
'''
molecule = self.cal_e(x,j)
denominator = sum([self.cal_e(x,i) for i in range(self.k)])
return molecule/denominator
def cal_partial_derivative(self,x,y,j):
'''
计算博客中的公式1
'''
first = int(y==j) # 计算示性函数
second = self.cal_probability(x,j) # 计算后面那个概率
return -x*(first-second) + self.weight_lambda*self.w[j]
def predict_(self, x):
result = np.dot(self.w,x)
row, column = result.shape
# 找最大值所在的列
_positon = np.argmax(result)
m, n = divmod(_positon, column)
return m
def train(self, features, labels):
self.k = len(set(labels))
self.w = np.zeros((self.k,len(features[0])+1))
time = 0
while time < self.max_iteration:
print('loop %d' % time)
time += 1
index = random.randint(0, len(labels) - 1)
x = features[index]
y = labels[index]
x = list(x)
x.append(1.0)
x = np.array(x)
derivatives = [self.cal_partial_derivative(x,y,j) for j in range(self.k)]
for j in range(self.k):
self.w[j] -= self.learning_step * derivatives[j]
def predict(self,features):
labels = []
for feature in features:
x = list(feature)
x.append(1)
x = np.matrix(x)
x = np.transpose(x)
labels.append(self.predict_(x))
return labels
if __name__ == '__main__':
print('Start read data')
time_1 = time.time()
raw_data = pd.read_csv('../data/train.csv', header=0)
data = raw_data.values
imgs = data[0::, 1::]
labels = data[::, 0]
# 选取 2/3 数据作为训练集, 1/3 数据作为测试集
train_features, test_features, train_labels, test_labels = train_test_split(
imgs, labels, test_size=0.33, random_state=23323)
# print train_features.shape
# print train_features.shape
time_2 = time.time()
print('read data cost '+ str(time_2 - time_1)+' second')
print('Start training')
p = Softmax()
p.train(train_features, train_labels)
time_3 = time.time()
print('training cost '+ str(time_3 - time_2)+' second')
print('Start predicting')
test_predict = p.predict(test_features)
time_4 = time.time()
print('predicting cost ' + str(time_4 - time_3) +' second')
score = accuracy_score(test_labels, test_predict)
print("The accruacy socre is " + str(score))