-
Notifications
You must be signed in to change notification settings - Fork 19
/
unet.py
461 lines (368 loc) · 15.5 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import math
import copy
import torch
from torch import nn, einsum
import torch.nn.functional as F
from inspect import isfunction
from functools import partial
import numpy as np
from tqdm import tqdm
from einops import rearrange
# helpers functions
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cycle(dl):
while True:
for data in dl:
yield data
def num_to_groups(num, divisor):
groups = num // divisor
remainder = num % divisor
arr = [divisor] * groups
if remainder > 0:
arr.append(remainder)
return arr
def loss_backwards(fp16, loss, optimizer, **kwargs):
if fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward(**kwargs)
else:
loss.backward(**kwargs)
# small helper modules
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_model_average(self, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = self.update_average(old_weight, up_weight)
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, *args, **kwargs):
return self.fn(x, *args, **kwargs) + x
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class Mish(nn.Module):
def forward(self, x):
return x * torch.tanh(F.softplus(x))
class Upsample(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = nn.ConvTranspose2d(dim, dim, 4, 2, 1)
def forward(self, x):
return self.conv(x)
class Downsample(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = nn.Conv2d(dim, dim, 3, 2, 1)
def forward(self, x):
return self.conv(x)
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = nn.InstanceNorm2d(dim, affine = True)
def forward(self, x):
x = self.norm(x)
return self.fn(x)
# building block modules
class Block(nn.Module):
def __init__(self, dim, dim_out, groups = 8):
super().__init__()
self.block = nn.Sequential(
nn.Conv2d(dim, dim_out, 3, padding=1),
nn.GroupNorm(groups, dim_out),
Mish()
)
def forward(self, x):
return self.block(x)
class ResnetBlock(nn.Module):
def __init__(self, dim, dim_out, *, time_emb_dim = None, groups = 8):
super().__init__()
self.mlp = nn.Sequential(
Mish(),
nn.Linear(time_emb_dim, dim_out)
) if exists(time_emb_dim) else None
self.block1 = Block(dim, dim_out)
self.block2 = Block(dim_out, dim_out)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, time_emb):
h = self.block1(x)
if exists(self.mlp):
# print('hmmm')
h += self.mlp(time_emb)[:, :, None, None]
h = self.block2(h)
return h + self.res_conv(x)
class LinearAttention(nn.Module):
def __init__(self, dim, heads = 4, dim_head = 32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q)
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
return self.to_out(out)
# model
class Unet(nn.Module):
def __init__(
self,
dim,
out_dim = None,
dim_mults=(1, 2, 4, 8),
groups = 8,
channels = 2,
with_time_emb = True
):
super().__init__()
self.channels = channels
dims = [channels, *map(lambda m: dim * m, dim_mults)]
in_out = list(zip(dims[:-1], dims[1:]))
if with_time_emb:
time_dim = dim
self.time_mlp = nn.Sequential(
SinusoidalPosEmb(dim),
nn.Linear(dim, dim * 4),
Mish(),
nn.Linear(dim * 4, dim)
)
else:
time_dim = None
self.time_mlp = None
self.downs = nn.ModuleList([])
self.ups = nn.ModuleList([])
num_resolutions = len(in_out)
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (num_resolutions - 1)
self.downs.append(nn.ModuleList([
ResnetBlock(dim_in, dim_out, time_emb_dim = time_dim),
ResnetBlock(dim_out, dim_out, time_emb_dim = time_dim),
Residual(PreNorm(dim_out, LinearAttention(dim_out))),
Downsample(dim_out) if not is_last else nn.Identity()
]))
mid_dim = dims[-1]
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim = time_dim)
self.mid_attn = Residual(PreNorm(mid_dim, LinearAttention(mid_dim)))
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim = time_dim)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
is_last = ind >= (num_resolutions - 1)
self.ups.append(nn.ModuleList([
ResnetBlock(dim_out * 2, dim_in, time_emb_dim = time_dim),
ResnetBlock(dim_in, dim_in, time_emb_dim = time_dim),
Residual(PreNorm(dim_in, LinearAttention(dim_in))),
Upsample(dim_in) if not is_last else nn.Identity()
]))
out_dim = default(out_dim, channels)
self.final_conv = nn.Sequential(
Block(dim, dim),
nn.Conv2d(dim, out_dim, 1)
)
def forward(self, x, time):
length = x.shape[-1]
x = F.pad(x, (0, math.ceil(length/4)*4-length), "constant", 0)
t = self.time_mlp(time) if exists(self.time_mlp) else None
h = []
for resnet, resnet2, attn, downsample in self.downs:
x = resnet(x, t)
x = resnet2(x, t)
x = attn(x)
h.append(x)
x = downsample(x)
x = self.mid_block1(x, t)
x = self.mid_attn(x)
x = self.mid_block2(x, t)
for resnet, resnet2, attn, upsample in self.ups:
x = torch.cat((x, h.pop()), dim=1)
x = resnet(x, t)
x = resnet2(x, t)
x = attn(x)
x = upsample(x)
return torch.squeeze(self.final_conv(x),1)[:, :, :length]
# gaussian diffusion trainer class
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def cosine_beta_schedule(timesteps, s = 0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return np.clip(betas, a_min = 0, a_max = 0.999)
class GaussianDiffusion(nn.Module):
def __init__(
self,
denoise_fn,
*,
image_size,
channels = 3,
timesteps = 1000,
loss_type = 'l1',
betas = None
):
super().__init__()
self.channels = channels
self.image_size = image_size
self.denoise_fn = denoise_fn
if exists(betas):
betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
else:
betas = cosine_beta_schedule(timesteps)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.loss_type = loss_type
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool):
x_recon = self.predict_start_from_noise(x, t=t, noise=self.denoise_fn(x, t))
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long))
return img
@torch.no_grad()
def sample(self, batch_size = 16):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop((batch_size, channels, image_size, image_size))
@torch.no_grad()
def interpolate(self, x1, x2, t = None, lam = 0.5):
b, *_, device = *x1.shape, x1.device
t = default(t, self.num_timesteps - 1)
assert x1.shape == x2.shape
t_batched = torch.stack([torch.tensor(t, device=device)] * b)
xt1, xt2 = map(lambda x: self.q_sample(x, t=t_batched), (x1, x2))
img = (1 - lam) * xt1 + lam * xt2
for i in tqdm(reversed(range(0, t)), desc='interpolation sample time step', total=t):
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long))
return img
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, noise = None):
b, c, h, w = x_start.shape
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.denoise_fn(x_noisy, t)
if self.loss_type == 'l1':
loss = (noise - x_recon).abs().mean()
elif self.loss_type == 'l2':
loss = F.mse_loss(noise, x_recon)
else:
raise NotImplementedError()
return loss
def forward(self, x, *args, **kwargs):
b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
t = torch.randint(0, self.num_timesteps, (b,), device=device).long()
return self.p_losses(x, t, *args, **kwargs)
if __name__ == '__main__':
wg=Unet(64,dim_mults=(1, 2,4),out_dim=1)
u=np.zeros([16,80,431],dtype=np.float32)
x0=np.zeros([16,80,431],dtype=np.float32)
u = torch.from_numpy(u)
x0 = torch.from_numpy(x0)
u = F.pad(u, (0,math.ceil(u.shape[2]/4)*4-u.shape[2]), "constant", 0) # effectively zero padding
x0 = F.pad(x0,(0, math.ceil(x0.shape[2]/4)*4-x0.shape[2]), "constant", 0) # effectively zero padding
print(u.shape)
spectrogram = torch.stack((u,x0),dim=1)
print(spectrogram.shape)
N, T ,_,_ = spectrogram.shape
S = 1000
device = torch.device('cpu')
s = torch.randint(1, S + 1, [N], device=device)
x = wg(spectrogram,s)
print(x.shape)