Skip to content
/ MCSN Public template

A lightweight multi-scale channel attention network for image super-resolution

Notifications You must be signed in to change notification settings

Weisily/MCSN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 

Repository files navigation

MCSN

This repository is an official PyTorch implementation of the paper

"Li W, Li J, Li J, et al. A lightweight multi-scale channel attention network for image super-resolution[J]. Neurocomputing, 2021.". The code is built on EDSR (Torch) and tested on Ubuntu 18.04 environment with TitanX 2080Ti GPU.

Dependencies

  • Python 3.6
  • PyTorch = 1.2.0
  • numpy
  • skimage
  • imageio
  • matplotlib
  • tqdm

Data

All scale factor(x2,x3,x4,x8) data:

  1. Training data DIV2K(800 training + 100 validtion images)
  2. Benchmark data (Set5, Set14, B100, Urban100, Manga109)

Train

1.Cd to './MCSN/src', run the following commands to train models.

python main.py --model MCSN--scale 2 --save mcsn_x2  --n_resblocks 3  --lr 1e-4  --n_feats 64 --res_scale 1 --batch_size 16 --n_threads 6 
python main.py --model MCSN--scale 3 --save mcsn_x3  --n_resblocks 3  --lr 1e-4  --n_feats 64 --res_scale 1 --batch_size 16 --n_threads 6 
python main.py --model MCSN--scale 4 --save mcsn_x4  --n_resblocks 3  --lr 1e-4  --n_feats 64 --res_scale 1 --batch_size 16 --n_threads 6 
python main.py --model MCSN--scale 8 --save mcsn_x8  --n_resblocks 3  --lr 1e-4  --n_feats 64 --res_scale 1 --batch_size 16 --n_threads 6 

Test

python main.py --model MCSN --data_test Set5+Set14+B100+Urban100+Manga109  --scale 4 --pre_train ../experiment/mscn_x4/model/model_best.pt --test_only  --self_ensemble

Results

Network Parameters PSNR&SSIMX2

About

A lightweight multi-scale channel attention network for image super-resolution

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published