forked from msracver/Flow-Guided-Feature-Aggregation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imagenet_vid_eval_motion.py
314 lines (270 loc) · 12.5 KB
/
imagenet_vid_eval_motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# --------------------------------------------------------
# Flow-guided Feature Aggregation
# Copyright (c) 2017 Microsoft
# Licensed under The Apache-2.0 License [see LICENSE for details]
# Written by Shuhao Fu, Xizhou Zhu
# --------------------------------------------------------
"""
given a imagenet vid imdb, compute mAP
"""
import numpy as np
import os
import cPickle
import scipy.io as sio
import copy
def parse_vid_rec(filename, classhash, img_ids, defaultIOUthr=0.5, pixelTolerance=10):
"""
parse imagenet vid record into a dictionary
:param filename: xml file path
:return: list of dict
"""
import xml.etree.ElementTree as ET
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_dict = dict()
obj_dict['label'] = classhash[obj.find('name').text]
bbox = obj.find('bndbox')
obj_dict['bbox'] = [float(bbox.find('xmin').text),
float(bbox.find('ymin').text),
float(bbox.find('xmax').text),
float(bbox.find('ymax').text)]
gt_w = obj_dict['bbox'][2] - obj_dict['bbox'][0] + 1
gt_h = obj_dict['bbox'][3] - obj_dict['bbox'][1] + 1
thr = (gt_w*gt_h)/((gt_w+pixelTolerance)*(gt_h+pixelTolerance))
obj_dict['thr'] = np.min([thr, defaultIOUthr])
objects.append(obj_dict)
return {'bbox' : np.array([x['bbox'] for x in objects]),
'label': np.array([x['label'] for x in objects]),
'thr' : np.array([x['thr'] for x in objects]),
'img_ids': img_ids}
def vid_ap(rec, prec):
"""
average precision calculations
[precision integrated to recall]
:param rec: recall
:param prec: precision
:return: average precision
"""
# append sentinel values at both ends
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute precision integration ladder
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# look for recall value changes
i = np.where(mrec[1:] != mrec[:-1])[0]
# sum (\delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def vid_eval_motion(multifiles, detpath, annopath, imageset_file, classname_map, annocache, motion_iou_file, motion_ranges, area_ranges, ovthresh=0.5):
"""
imagenet vid evaluation
:param detpath: detection results detpath.format(classname)
:param annopath: annotations annopath.format(classname)
:param imageset_file: text file containing list of images
:param annocache: caching annotations
:param ovthresh: overlap threshold
:return: rec, prec, ap
"""
with open(imageset_file, 'r') as f:
lines = [x.strip().split(' ') for x in f.readlines()]
img_basenames = [x[0] for x in lines]
gt_img_ids = [int(x[1]) for x in lines]
classhash = dict(zip(classname_map, range(0,len(classname_map))))
# load annotations from cache
if not os.path.isfile(annocache):
recs = []
for ind, image_filename in enumerate(img_basenames):
recs.append(parse_vid_rec(annopath.format('VID/' + image_filename), classhash, gt_img_ids[ind]))
if ind % 100 == 0:
print 'reading annotations for {:d}/{:d}'.format(ind + 1, len(img_basenames))
print 'saving annotations cache to {:s}'.format(annocache)
with open(annocache, 'wb') as f:
cPickle.dump(recs, f, protocol=cPickle.HIGHEST_PROTOCOL)
else:
with open(annocache, 'rb') as f:
recs = cPickle.load(f)
# read detections
splitlines = []
if (multifiles == False):
with open(detpath, 'r') as f:
lines = f.readlines()
splitlines = [x.strip().split(' ') for x in lines]
else:
for det in detpath:
with open(det, 'r') as f:
lines = f.readlines()
splitlines += [x.strip().split(' ') for x in lines]
splitlines=np.array(splitlines)
img_ids = splitlines[:,0].astype(int)
obj_labels = splitlines[:,1].astype(int)
obj_confs = splitlines[:,2].astype(float)
obj_bboxes = splitlines[:,3:].astype(float)
# sort by img_ids
if obj_bboxes.shape[0] > 0:
sorted_inds = np.argsort(img_ids)
img_ids = img_ids[sorted_inds]
obj_labels = obj_labels[sorted_inds]
obj_confs = obj_confs[sorted_inds]
obj_bboxes = obj_bboxes[sorted_inds, :]
num_imgs = max(max(gt_img_ids),max(img_ids)) + 1
obj_labels_cell = [None] * num_imgs
obj_confs_cell = [None] * num_imgs
obj_bboxes_cell = [None] * num_imgs
start_i = 0
id = img_ids[0]
# sort by confidence
for i in range(0, len(img_ids)):
if i == len(img_ids)-1 or img_ids[i+1] != id:
conf = obj_confs[start_i:i+1]
label = obj_labels[start_i:i+1]
bbox = obj_bboxes[start_i:i+1, :]
sorted_inds = np.argsort(-conf)
obj_labels_cell[id] = label[sorted_inds]
obj_confs_cell[id] = conf[sorted_inds]
obj_bboxes_cell[id] = bbox[sorted_inds, :]
if i < len(img_ids)-1:
id = img_ids[i+1]
start_i = i+1
ov_all = [None] * num_imgs
# extract objects in :param classname:
npos = np.zeros(len(classname_map))
for index, rec in enumerate(recs):
id = rec['img_ids']
gt_labels = rec['label']
gt_bboxes = rec['bbox']
num_gt_obj = len(gt_labels)
# calculate total gt for each class
for x in gt_labels:
npos[x] += 1 # class: number
labels = obj_labels_cell[id]
bboxes = obj_bboxes_cell[id]
num_obj = 0 if labels is None else len(labels)
ov_obj = [None] * num_obj
for j in range(0, num_obj):
bb = bboxes[j, :]
ov_gt = np.zeros(num_gt_obj)
for k in range(0, num_gt_obj):
bbgt = gt_bboxes[k, :]
bi = [np.max((bb[0], bbgt[0])), np.max((bb[1], bbgt[1])), np.min((bb[2], bbgt[2])),
np.min((bb[3], bbgt[3]))]
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
# compute overlap as area of intersection / area of union
ua = (bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + \
(bbgt[2] - bbgt[0] + 1.) * \
(bbgt[3] - bbgt[1] + 1.) - iw * ih
ov_gt[k] = iw * ih / ua
ov_obj[j] = ov_gt
ov_all[id] = ov_obj
# read motion iou
motion_iou = sio.loadmat(motion_iou_file)
motion_iou = np.array([[motion_iou['motion_iou'][i][0][j][0] if len(motion_iou['motion_iou'][i][0][j]) != 0 else 0 \
for j in range(len(motion_iou['motion_iou'][i][0]))] \
for i in range(len(motion_iou['motion_iou']))])
ap = np.zeros((len(motion_ranges), len(area_ranges), len(classname_map) - 1))
gt_precent = np.zeros((len(motion_ranges), len(area_ranges), len(classname_map)+1))
npos_bak = copy.deepcopy(npos)
for motion_range_id, motion_range in enumerate(motion_ranges):
for area_range_id, area_range in enumerate(area_ranges):
tp_cell = [None] * num_imgs
fp_cell = [None] * num_imgs
print '==========================================='
print 'eval_vid_detection :: accumulating: motion [{0:.1f} {1:.1f}], area [{2} {3} {4} {5}]'.format(
motion_range[0], motion_range[1], np.sqrt(area_range[0]), np.sqrt(area_range[0]), np.sqrt(area_range[1]), np.sqrt(area_range[1]))
all_motion_iou = np.concatenate(motion_iou, axis=0)
empty_weight = sum([(all_motion_iou[i] >= motion_range[0]) & (all_motion_iou[i] <= motion_range[1]) for i in range(len(all_motion_iou))]) / float(len(all_motion_iou))
for index, rec in enumerate(recs):
id = rec['img_ids']
gt_labels = rec['label']
gt_bboxes = rec['bbox']
gt_thr = rec['thr']
num_gt_obj = len(gt_labels)
gt_detected = np.zeros(num_gt_obj)
gt_motion_iou = motion_iou[index]
ig_gt_motion = [(gt_motion_iou[i] < motion_range[0]) | (gt_motion_iou[i] > motion_range[1]) for i in range(len(gt_motion_iou))]
gt_area = [(x[3] - x[1] + 1) * (x[2] - x[0] + 1) for x in gt_bboxes]
ig_gt_area = [(area < area_range[0]) | (area > area_range[1]) for area in gt_area]
labels = obj_labels_cell[id]
bboxes = obj_bboxes_cell[id]
num_obj = 0 if labels is None else len(labels)
tp = np.zeros(num_obj)
fp = np.zeros(num_obj)
for j in range(0, num_obj):
bb = bboxes[j, :]
ovmax = -1
kmax = -1
ovmax_ig = -1
ovmax_nig = -1
for k in range(0, num_gt_obj):
ov = ov_all[id][j][k]
if (ov >= gt_thr[k]) & (ov > ovmax) & (not gt_detected[k]) & (labels[j] == gt_labels[k]):
ovmax = ov
kmax = k
if ig_gt_motion[k] & (ov > ovmax_ig):
ovmax_ig = ov
if (not ig_gt_motion[k]) & (ov > ovmax_nig):
ovmax_nig = ov
if kmax >= 0:
gt_detected[kmax] = 1
if (not ig_gt_motion[kmax]) & (not ig_gt_area[kmax]):
tp[j] = 1.0
else:
bb_area = (bb[3] - bb[1] + 1) * (bb[2] - bb[0] + 1)
if (bb_area < area_range[0]) | (bb_area > area_range[1]):
fp[j] = 0
continue
if ovmax_nig > ovmax_ig:
fp[j] = 1
elif ovmax_ig > ovmax_nig:
fp[j] = 0
elif num_gt_obj == 0:
fp[j] = empty_weight
else:
fp[j] = sum([1 if ig_gt_motion[i] else 0 for i in range(len(ig_gt_motion))]) / float(num_gt_obj)
tp_cell[id] = tp
fp_cell[id] = fp
for k in range(0, num_gt_obj):
label = gt_labels[k]
if (ig_gt_motion[k]) | (ig_gt_area[k]):
npos[label] = npos[label] - 1
ap[motion_range_id][area_range_id] = calculate_ap(tp_cell, fp_cell, gt_img_ids, obj_labels_cell, obj_confs_cell, classname_map, npos)
gt_precent[motion_range_id][area_range_id][len(classname_map)] = sum([float(npos[i]) for i in range(len(npos))]) / sum([float(npos_bak[i]) for i in range(len(npos_bak))])
npos = copy.deepcopy(npos_bak)
return ap
def boxoverlap(bb, bbgt):
ov = 0
iw = np.min((bb[2],bbgt[2])) - np.max((bb[0],bbgt[0])) + 1
ih = np.min((bb[3],bbgt[3])) - np.max((bb[1],bbgt[1])) + 1
if iw>0 and ih>0:
# compute overlap as area of intersection / area of union
intersect = iw * ih
ua = (bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + \
(bbgt[2] - bbgt[0] + 1.) * \
(bbgt[3] - bbgt[1] + 1.) - intersect
ov = intersect / ua
return ov
def calculate_ap(tp_cell, fp_cell, gt_img_ids, obj_labels_cell, obj_confs_cell, classname_map, npos):
tp_all = np.concatenate([x for x in np.array(tp_cell)[gt_img_ids] if x is not None])
fp_all = np.concatenate([x for x in np.array(fp_cell)[gt_img_ids] if x is not None])
obj_labels = np.concatenate([x for x in np.array(obj_labels_cell)[gt_img_ids] if x is not None])
confs = np.concatenate([x for x in np.array(obj_confs_cell)[gt_img_ids] if x is not None])
sorted_inds = np.argsort(-confs)
tp_all = tp_all[sorted_inds]
fp_all = fp_all[sorted_inds]
obj_labels = obj_labels[sorted_inds]
cur_ap = np.zeros(len(classname_map))
for c in range(1, len(classname_map)):
# compute precision recall
fp = np.cumsum(fp_all[obj_labels == c])
tp = np.cumsum(tp_all[obj_labels == c])
if npos[c] <= 0:
cur_ap[c] = -1
else:
# avoid division by zero in case first detection matches a difficult ground truth
rec = tp / npos[c]
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
cur_ap[c] = vid_ap(rec, prec)
return cur_ap[1:]