-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcarema_caliberation_lm.py
446 lines (381 loc) · 13.8 KB
/
carema_caliberation_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
'''
#Implement LM algorithm only using basic python
#Author:Leo Ma
#For csmath2019 assignment4,ZheJiang University
#Date:2019.04.28
'''
import numpy as np
import matplotlib.pyplot as plt
# input data, whose shape is (num_data,1)
# data_input=np.array([[0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8]]).T
# data_output=np.array([[19.21, 18.15, 15.36, 14.10, 12.89, 9.32, 7.45, 5.24, 3.01]]).T
tao = 10 ** -3
threshold_stop = 10 ** -15
threshold_step = 10 ** -15
threshold_residual = 10 ** -15
residual_memory = []
# construct a user function
def my_Func(params, input_data):
x1 = params[0, 0]
x6 = params[5, 0]
x3 = params[2, 0]
x4 = params[3, 0]
x2 = params[1, 0]
x5 = params[4, 0]
x9 = params[8, 0]
x12 = params[11, 0]
x7 = params[6, 0]
x8 = params[7, 0]
x10 = params[9, 0]
x11 = params[10, 0]
x13 = params[12, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
out_x = 1.0/(xw+x8 + yw*x11 + 1) * (xw*(x1*x6+x3*x7+x4*x8) + yw*(x1*x9+x3*x10+x4*x11) + x1*x12+x3*x13+x4)
out_y = 1.0/(xw+x8 + yw*x11 + 1) * (xw*(x2*x7+x5*x8) + yw*(x2*x10+x5*x11) + x2*x13+x5)
out_xy = np.zeros(input_data.shape)
out_xy[:, 0] = out_x
out_xy[:, 1] = out_y
return out_xy
# generating the input_data and output_data,whose shape both is (num_data,1)
def generate_data(params, num_data):
x = np.array(np.linspace(0, 10, num_data)).reshape(num_data//2, 2) # 产生包含噪声的数据
mid, sigma = 0, 5
noise = np.random.normal(mid, sigma, num_data).reshape(num_data//2, 2)
y = my_Func(params, x) + noise
return x, y
# calculating the derive of pointed parameter,whose shape is (num_data,1)
def cal_deriv(params, input_data, param_index):
params1 = params.copy()
params2 = params.copy()
params1[param_index, 0] += 0.000001
params2[param_index, 0] -= 0.000001
data_est_output1 = my_Func(params1, input_data)
data_est_output2 = my_Func(params2, input_data)
return (data_est_output1 - data_est_output2) / 0.000002
def deriv_f1_x1(params, input_data):
x6 = params[5, 0]
x8 = params[7, 0]
x9 = params[8, 0]
x11 = params[10, 0]
x12 = params[11, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
t = 1.0/(xw+x8 + yw*x11 + 1) * (x6*xw + yw*x9 + x12)
return 1.0/(xw+x8 + yw*x11 + 1) * (x6*xw + yw*x9 + x12)
def deriv_f1_x2(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.zeros(xw.shape)
def deriv_f1_x3(params, input_data):
x7 = params[6, 0]
x8 = params[7, 0]
x10 = params[9, 0]
x11 = params[10, 0]
x13 = params[12, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * (x7*xw + yw*x10 + x13)
def deriv_f1_x4(params, input_data):
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * (x8*xw + yw*x11 + 1)
def deriv_f1_x5(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.zeros(xw.shape)
def deriv_f1_x6(params, input_data):
x1 = params[0, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * (x1*xw)
def deriv_f1_x7(params, input_data):
x3 = params[2, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * (x3*xw)
def deriv_f1_x8(params, input_data):
x1 = params[0, 0]
x6 = params[5, 0]
x3 = params[2, 0]
x7 = params[6, 0]
x4 = params[3, 0]
x8 = params[7, 0]
x9 = params[8, 0]
x10 = params[9, 0]
x11 = params[10, 0]
x12 = params[11, 0]
x13 = params[12, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/((xw+x8 + yw*x11 + 1)**2) * (x4*xw*(xw+x8 + yw*x11 + 1) - xw*(xw*(x1*x6+x3*x7+x4*x8) + yw*(x1*x9+x3*x10+x4*x11) + x1*x12+x3*x13+x4))
def deriv_f1_x9(params, input_data):
x1 = params[0, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * yw*x1
def deriv_f1_x10(params, input_data):
x3 = params[2, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * yw*x3
def deriv_f1_x11(params, input_data):
x1 = params[0, 0]
x6 = params[5, 0]
x3 = params[2, 0]
x7 = params[6, 0]
x4 = params[3, 0]
x8 = params[7, 0]
x9 = params[8, 0]
x10 = params[9, 0]
x11 = params[10, 0]
x12 = params[11, 0]
x13 = params[12, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/((xw+x8 + yw*x11 + 1)**2) * (x11*yw*(xw+x8 + yw*x11 + 1) - yw*(xw*(x1*x6+x3*x7+x4*x8) + yw*(x1*x9+x3*x10+x4*x11) + x1*x12+x3*x13+x4))
def deriv_f1_x12(params, input_data):
x1 = params[0, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * x1
def deriv_f1_x13(params, input_data):
x3 = params[2, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * x3
def deriv_f2_x1(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.zeros(xw.shape)
def deriv_f2_x2(params, input_data):
x7 = params[6, 0]
x10 = params[9, 0]
x13 = params[12, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * (xw*x7+yw*x10+x13)
def deriv_f2_x3(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.zeros(xw.shape)
def deriv_f2_x4(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.zeros(xw.shape)
def deriv_f2_x5(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.ones(xw.shape)
def deriv_f2_x6(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.zeros(xw.shape)
def deriv_f2_x7(params, input_data):
x2 = params[1, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * xw*x2
def deriv_f2_x8(params, input_data):
x2 = params[1, 0]
x5 = params[4, 0]
x7 = params[6, 0]
x8 = params[7, 0]
x10 = params[9, 0]
x11 = params[10, 0]
x13 = params[12, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/((xw+x8 + yw*x11 + 1)**2) * (x5*xw*(xw+x8 + yw*x11 + 1) - xw*(xw*(x2*x7+x5*x8) + yw*(x2*x10+x5*x11) + x2*x13+x5))
def deriv_f2_x9(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.zeros(xw.shape)
def deriv_f2_x10(params, input_data):
x2 = params[1, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * yw*x2
def deriv_f2_x11(params, input_data):
x2 = params[1, 0]
x5 = params[4, 0]
x7 = params[6, 0]
x8 = params[7, 0]
x10 = params[9, 0]
x11 = params[10, 0]
x13 = params[12, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/((xw+x8 + yw*x11 + 1)**2) * (x5*yw*(xw+x8 + yw*x11 + 1) - yw*(xw*(x2*x7+x5*x8) + yw*(x2*x10+x5*x11) + x2*x13+x5))
def deriv_f2_x12(params, input_data):
xw, yw = input_data[:, 0], input_data[:, 1]
return np.zeros(xw.shape)
def deriv_f2_x13(params, input_data):
x2 = params[1, 0]
x8 = params[7, 0]
x11 = params[10, 0]
xw, yw = input_data[:, 0], input_data[:, 1]
return 1.0/(xw+x8 + yw*x11 + 1) * x2
def myderiv_fun():
f1_fun_list = []
f2_fun_list = []
fun_list = []
f1_fun_list.append(deriv_f1_x1)
f1_fun_list.append(deriv_f1_x2)
f1_fun_list.append(deriv_f1_x3)
f1_fun_list.append(deriv_f1_x4)
f1_fun_list.append(deriv_f1_x5)
f1_fun_list.append(deriv_f1_x6)
f1_fun_list.append(deriv_f1_x7)
f1_fun_list.append(deriv_f1_x8)
f1_fun_list.append(deriv_f1_x9)
f1_fun_list.append(deriv_f1_x10)
f1_fun_list.append(deriv_f1_x11)
f1_fun_list.append(deriv_f1_x12)
f1_fun_list.append(deriv_f1_x13)
f2_fun_list.append(deriv_f2_x1)
f2_fun_list.append(deriv_f2_x2)
f2_fun_list.append(deriv_f2_x3)
f2_fun_list.append(deriv_f2_x4)
f2_fun_list.append(deriv_f2_x5)
f2_fun_list.append(deriv_f2_x6)
f2_fun_list.append(deriv_f2_x7)
f2_fun_list.append(deriv_f2_x8)
f2_fun_list.append(deriv_f2_x9)
f2_fun_list.append(deriv_f2_x10)
f2_fun_list.append(deriv_f2_x11)
f2_fun_list.append(deriv_f2_x12)
f2_fun_list.append(deriv_f2_x13)
fun_list.append(f1_fun_list)
fun_list.append(f2_fun_list)
return fun_list
def deriv_function(params, input_data, param_index, fun_index):
all_deriv_fun = myderiv_fun()
params1 = params.copy()
data_est_output = all_deriv_fun[fun_index][param_index](params1, input_data)
return data_est_output
# calculating jacobian matrix,whose shape is (num_data,num_params)
def cal_Jacobian(params, input_data):
num_params = np.shape(params)[0]
num_data = np.shape(input_data)[0]
J = np.zeros((num_data*2, num_params))
for j in range(2):
for i in range(num_params):
#J[:, i] = list(cal_deriv(params, input_data, i))
J[num_data*j:num_data*j+num_data, i] = list(deriv_function(params, input_data, i, j))
return J
# calculating residual, whose shape is (num_data,1)
def cal_residual(params, input_data, output_data):
data_est_output = my_Func(params, input_data)
residual = np.linalg.norm(output_data - data_est_output, axis=1)
return np.concatenate((residual, residual), axis=0).transpose()
'''
#calculating Hessian matrix, whose shape is (num_params,num_params)
def cal_Hessian_LM(Jacobian,u,num_params):
H = Jacobian.T.dot(Jacobian) + u*np.eye(num_params)
return H
#calculating g, whose shape is (num_params,1)
def cal_g(Jacobian,residual):
g = Jacobian.T.dot(residual)
return g
#calculating s,whose shape is (num_params,1)
def cal_step(Hessian_LM,g):
s = Hessian_LM.I.dot(g)
return s
'''
# get the init u, using equation u=tao*max(Aii)
def get_init_u(A, tao):
m = np.shape(A)[0]
Aii = []
for i in range(0, m):
Aii.append(A[i, i])
u = tao * max(Aii)
return u
# LM algorithm
def LM(num_iter, params, input_data, output_data):
num_params = np.shape(params)[0] # the number of params
k = 0 # set the init iter count is 0
# calculating the init residual
residual = cal_residual(params, input_data, output_data)
# calculating the init Jocobian matrix
Jacobian = cal_Jacobian(params, input_data)
A = Jacobian.T.dot(Jacobian) # calculating the init A
g = Jacobian.T.dot(residual) # calculating the init gradient g
stop = (np.linalg.norm(g, ord=np.inf) <= threshold_stop) # set the init stop
u = get_init_u(A, tao) # set the init u
v = 2 # set the init v=2
while ((not stop) and (k < num_iter)):
k += 1
while (1):
Hessian_LM = A + u * np.eye(num_params) # calculating Hessian matrix in LM
step = np.linalg.inv(Hessian_LM).dot(g) # calculating the update step
if (np.linalg.norm(step) <= threshold_step):
stop = True
else:
new_params = params + step # update params using step
new_residual = cal_residual(new_params, input_data, output_data) # get new residual using new params
rou = (np.linalg.norm(residual) ** 2 - np.linalg.norm(new_residual) ** 2) / (step.T.dot(u * step + g))
if rou > 0:
params = new_params
residual = new_residual
residual_memory.append(np.linalg.norm(residual) ** 2)
# print (np.linalg.norm(new_residual)**2)
Jacobian = cal_Jacobian(params, input_data) # recalculating Jacobian matrix with new params
A = Jacobian.T.dot(Jacobian) # recalculating A
g = Jacobian.T.dot(residual) # recalculating gradient g
stop = (np.linalg.norm(g, ord=np.inf) <= threshold_stop) or (
np.linalg.norm(residual) ** 2 <= threshold_residual)
u = u * max(1 / 3, 1 - (2 * rou - 1) ** 3)
v = 2
else:
u = u * v
v = 2 * v
if (rou > 0 or stop):
break;
return params
def main():
# set the true params for generate_data() function
params = np.zeros((13, 1))
params[0, 0] = 10.0
params[1, 0] = 0.8
params[2, 0] = 10.0
params[3, 0] = 0.8
params[4, 0] = 10.0
params[5, 0] = 0.8
params[6, 0] = 10.0
params[7, 0] = 0.8
params[8, 0] = 10.0
params[9, 0] = 0.8
params[10, 0] = 10.0
params[11, 0] = 0.8
params[12, 0] = 0.8
num_data = 200 # set the data number
data_input, data_output = generate_data(params, num_data) # generate data as requested
# set the init params for LM algorithm
params[0, 0] = 6.0
params[1, 0] = 0.3
params[2, 0] = 10.0
params[3, 0] = 0.8
params[4, 0] = 10.0
params[5, 0] = 0.8
params[6, 0] = 10.0
params[7, 0] = 0.8
params[8, 0] = 10.0
params[9, 0] = 0.8
params[10, 0] = 10.0
params[11, 0] = 0.8
params[12, 0] = 0.8
# using LM algorithm estimate params
num_iter = 100 # the number of iteration
est_params = LM(num_iter, params, data_input, data_output)
print(est_params)
a_est = est_params[0, 0]
b_est = est_params[1, 0]
# 老子画个图看看状况
plt.scatter(data_input, data_output, color='b')
x = np.arange(0, 100) * 0.1 # 生成0-10的共100个数据,然后设置间距为0.1
plt.plot(x, a_est * np.exp(b_est * x), 'r', lw=1.0)
plt.xlabel("2018.06.13")
plt.savefig("result_LM.png")
plt.show()
plt.plot(residual_memory)
plt.xlabel("2018.06.13")
plt.savefig("error-iter.png")
plt.show()
if __name__ == '__main__':
main()