-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathgen_st_model_duke.py
106 lines (90 loc) · 3.96 KB
/
gen_st_model_duke.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from torchvision import datasets
import os
import scipy.io
######################################################################
# Options
# --------
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--data_dir',default="/home/sdb1/huangpg/st-reid/st_baseline/Duke/pytorch/",type=str, help='./train_data')
parser.add_argument('--name', default='ft_ResNet50_duke_pcb', type=str, help='save model path')
opt = parser.parse_args()
name = opt.name
data_dir = opt.data_dir
def get_id(img_path):
camera_id = []
labels = []
frames = []
for path, v in img_path:
filename = path.split('/')[-1]
label = filename[0:4]
camera = filename.split('c')[1]
frame = filename[9:16]
if label[0:2]=='-1':
labels.append(-1)
else:
labels.append(int(label))
camera_id.append(int(camera[0]))
frames.append(int(frame))
return camera_id, labels, frames
def spatial_temporal_distribution(camera_id, labels, frames):
spatial_temporal_sum = np.zeros((702,8))
spatial_temporal_count = np.zeros((702,8))
eps = 0.0000001
interval = 100.0
for i in range(len(camera_id)):
label_k = labels[i] #### not in order, done
cam_k = camera_id[i]-1 ##### ### ### ### ### ### ### ### ### ### ### ### # from 1, not 0
frame_k = frames[i]
spatial_temporal_sum[label_k][cam_k]=spatial_temporal_sum[label_k][cam_k]+frame_k
spatial_temporal_count[label_k][cam_k] = spatial_temporal_count[label_k][cam_k] + 1
spatial_temporal_avg = spatial_temporal_sum/(spatial_temporal_count+eps) # spatial_temporal_avg: 702 ids, 8cameras, center point
distribution = np.zeros((8,8,3000))
for i in range(702):
for j in range(8-1):
for k in range(j+1,8):
###################################################### added
if spatial_temporal_count[i][j]==0 or spatial_temporal_count[i][k]==0:
continue
st_ij = spatial_temporal_avg[i][j]
st_ik = spatial_temporal_avg[i][k]
if st_ij>st_ik:
diff = st_ij-st_ik
hist_ = int(diff/interval)
distribution[j][k][hist_] = distribution[j][k][hist_]+1 # [big][small]
else:
diff = st_ik-st_ij
hist_ = int(diff/interval)
distribution[k][j][hist_] = distribution[k][j][hist_]+1
sum_ = np.sum(distribution,axis=2)
for i in range(8):
for j in range(8):
distribution[i][j][:]=distribution[i][j][:]/(sum_[i][j]+eps)
return distribution # [to][from], to xxx camera, from xxx camera
transform_train_list = [
transforms.Resize(144, interpolation=3),
transforms.RandomCrop((256,128)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
image_datasets = {x: datasets.ImageFolder( os.path.join(data_dir,x) ,transform_train_list) for x in ['train_all']}
train_path = image_datasets['train_all'].imgs
train_cam, train_label, train_frames = get_id(train_path)
train_label_order = []
for i in range(len(train_path)):
train_label_order.append(train_path[i][1])
# distribution = spatial_temporal_distribution(train_cam, train_label, train_frames)
distribution = spatial_temporal_distribution(train_cam, train_label_order, train_frames)
result = {'distribution':distribution}
scipy.io.savemat('model/'+name+'/'+'pytorch_result2.mat',result)