-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathevaluate_rerank_market.py
101 lines (85 loc) · 3.15 KB
/
evaluate_rerank_market.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import scipy.io
import torch
import numpy as np
import time
from re_ranking import re_ranking
import argparse
import os
import math
parser = argparse.ArgumentParser(description='evaluate')
parser.add_argument('--name',default='ft_ResNet50_duke_pcb_r_c', type=str, help='0,1,2,3...or last')
opt = parser.parse_args()
name = opt.name
#######################################################################
# Evaluate
def evaluate(score,ql,qc,gl,gc):
index = np.argsort(score) #from small to large
#index = index[::-1]
# good index
query_index = np.argwhere(gl==ql)
camera_index = np.argwhere(gc==qc)
good_index = np.setdiff1d(query_index, camera_index, assume_unique=True)
junk_index1 = np.argwhere(gl==-1)
junk_index2 = np.intersect1d(query_index, camera_index)
junk_index = np.append(junk_index2, junk_index1) #.flatten())
CMC_tmp = compute_mAP(index, good_index, junk_index)
return CMC_tmp
def compute_mAP(index, good_index, junk_index):
ap = 0
cmc = torch.IntTensor(len(index)).zero_()
if good_index.size==0: # if empty
cmc[0] = -1
return ap,cmc
# remove junk_index
mask = np.in1d(index, junk_index, invert=True)
index = index[mask]
# find good_index index
ngood = len(good_index)
mask = np.in1d(index, good_index)
rows_good = np.argwhere(mask==True)
rows_good = rows_good.flatten()
cmc[rows_good[0]:] = 1
for i in range(ngood):
d_recall = 1.0/ngood
precision = (i+1)*1.0/(rows_good[i]+1)
if rows_good[i]!=0:
old_precision = i*1.0/rows_good[i]
else:
old_precision=1.0
ap = ap + d_recall*(old_precision + precision)/2
return ap, cmc
######################################################################
result = scipy.io.loadmat('./model/'+name+'/pytorch_result.mat')
query_feature = result['query_f']
query_cam = result['query_cam'][0]
query_label = result['query_label'][0]
gallery_feature = result['gallery_f']
gallery_cam = result['gallery_cam'][0]
gallery_label = result['gallery_label'][0]
mat_path = 'model/'+name+'/all_scores.mat'
all_scores = scipy.io.loadmat(mat_path) #important
all_dist = all_scores['all_scores']
print('all_dist shape:',all_dist.shape)
print('query_cam shape:',query_cam.shape)
CMC = torch.IntTensor(len(gallery_label)).zero_()
ap = 0.0
#re-ranking
print('calculate initial distance')
# q_g_dist = np.dot(query_feature, np.transpose(gallery_feature))
# q_q_dist = np.dot(query_feature, np.transpose(query_feature))
# g_g_dist = np.dot(gallery_feature, np.transpose(gallery_feature))
since = time.time()
re_rank = re_ranking(len(query_cam), all_dist)
time_elapsed = time.time() - since
print('Reranking complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
for i in range(len(query_label)):
ap_tmp, CMC_tmp = evaluate(re_rank[i,:],query_label[i],query_cam[i],gallery_label,gallery_cam)
if CMC_tmp[0]==-1:
continue
CMC = CMC + CMC_tmp
ap += ap_tmp
#print(i, CMC_tmp[0])
CMC = CMC.float()
CMC = CMC/len(query_label) #average CMC
print('top1:%f top5:%f top10:%f mAP:%f'%(CMC[0],CMC[4],CMC[9],ap/len(query_label)))