-
Notifications
You must be signed in to change notification settings - Fork 8
/
train_llff_dtu.py
executable file
·487 lines (410 loc) · 18.3 KB
/
train_llff_dtu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training script for RegNerf."""
import functools
import gc
import time
from absl import app
import flax
from flax.metrics import tensorboard
from flax.training import checkpoints
from internal import configs, datasets_depth_llff_dtu, math, models, utils, vis # pylint: disable=g-multiple-import
import jax
from jax import random
import jax.numpy as jnp
import numpy as np
from skimage.metrics import structural_similarity
from jax import jit
configs.define_common_flags()
jax.config.parse_flags_with_absl()
TIME_PRECISION = 1000 # Internally represent integer times in milliseconds.
@flax.struct.dataclass
class TrainStats:
"""Collection of stats for logging."""
loss: float
losses: float
losses_georeg: float
disp_mses: float
normal_maes: float
weight_l2: float
psnr: float
psnrs: float
grad_norm: float
grad_abs_max: float
grad_norm_clipped: float
all_depth_loss: float
def tree_sum(tree):
return jax.tree_util.tree_reduce(lambda x, y: x + y, tree, initializer=0) # x1+x2+x3+...
def tree_norm(tree):
return jnp.sqrt(tree_sum(jax.tree_map(lambda x: jnp.sum(x**2), tree))) # sqrt((x1^2+x2^2+...xn^2))
def train_step(
model,
config,
rng,
state,
batch,
learning_rate,
resample_padding,
tvnorm_loss_weight,
step,
):
"""One optimization step.
Args:
model: The linen model.
config: The configuration.
rng: jnp.ndarray, random number generator.
state: utils.TrainState, state of the model/optimizer.
batch: dict, a mini-batch of data for training.
learning_rate: float, real-time learning rate.
resample_padding: float, the histogram padding to use when resampling.
tvnorm_loss_weight: float, tvnorm loss weight.
Returns:
A tuple (new_state, stats, rng) with
new_state: utils.TrainState, new training state.
stats: list. [(loss, psnr), (loss_coarse, psnr_coarse)].
rng: jnp.ndarray, updated random number generator.
"""
rng, key, key2 = random.split(rng, 3)
# print('step:', step)
def loss_fn(variables): # contains global vars of train_step, such as batch...
weight_l2 = (
tree_sum(jax.tree_map(lambda z: jnp.sum(z**2), variables)) / tree_sum(
jax.tree_map(lambda z: jnp.prod(jnp.array(z.shape)), variables))) # (x1^2+x2^2+...xn^2)/n
renderings = model.apply(
variables,
key if config.randomized else None, # randomized is True
batch['rays'],
resample_padding=resample_padding,
compute_extras=(config.compute_disp_metrics or
config.compute_normal_metrics))
lossmult = batch['rays'].lossmult
if config.disable_multiscale_loss: #False
lossmult = jnp.ones_like(lossmult)
losses = []
disp_mses = []
normal_maes = []
all_depth_loss = []
for rendering in renderings:
numer = (lossmult * (rendering['rgb'] - batch['rgb'][Ellipsis, :3])**2).sum()
denom = lossmult.sum()
losses.append(numer / denom)
depth = rendering['distance_mean']
depth = depth.reshape(-1,4).transpose() # two pairs of points, so here is 4
margin1 = 1e-4
margin2 = 1e-4
depth_loss0_0 = jnp.mean(jnp.maximum(depth[0,:]-depth[1,:]+margin1,0)) ###
depth_loss0_1 = jnp.mean(jnp.maximum(jnp.abs(depth[0,:]-depth[2,:])-margin2,0))
depth_loss0_2 = jnp.mean(jnp.maximum(jnp.abs(depth[1,:]-depth[3,:])-margin2,0))
if config.dataset_loader=="llff":
depth_loss = depth_loss0_0+(depth_loss0_1+depth_loss0_2)*0.01
else:
depth_loss = depth_loss0_0+(depth_loss0_1+depth_loss0_2)*1.0
all_depth_loss.append(depth_loss)
if config.compute_disp_metrics: # False
# Using mean to compute disparity, but other distance statistics can be
# used instead.
disp = 1 / (1 + rendering['distance_mean'])
disp_mses.append(((disp - batch['disps'])**2).mean())
if config.compute_normal_metrics: # False
one_eps = 1 - jnp.finfo(jnp.float32).eps
normal_mae = jnp.arccos(
jnp.clip(
jnp.sum(batch['normals'] * rendering['normals'], axis=-1),
-one_eps, one_eps)).mean()
normal_maes.append(normal_mae)
render_random_rays = ((config.depth_tvnorm_loss_mult != 0.0) or #depth_tvnorm_loss_mult=0.1
(config.depth_tvnorm_decay)) # depth_tvnorm_decay is True
########## patch based
if render_random_rays: # True
losses_georeg = []
renderings_random = model.apply(
variables,
key2 if config.randomized else None,
batch['rays_random'],
resample_padding=resample_padding,
compute_extras=True)
ps = config.patch_size
reshape_to_patch = lambda x, dim: x.reshape(-1, ps, ps, dim)
for rendering in renderings_random:
if config.depth_tvnorm_loss_mult != 0.0 or config.depth_tvnorm_decay:
depth = reshape_to_patch(rendering[config.depth_tvnorm_selector], 1)
weighting = jax.lax.stop_gradient(reshape_to_patch(rendering['acc'],1)[:, :-1, :-1]) * config.depth_tvnorm_mask_weight
losses_georeg.append(math.compute_tv_norm(depth, config.depth_tvnorm_type, weighting).mean())
else:
losses_georeg.append(0.0)
losses = jnp.array(losses)
losses_georeg = jnp.array(losses_georeg)
disp_mses = jnp.array(disp_mses) # empty
normal_maes = jnp.array(normal_maes) # empty
all_depth_loss = jnp.array(all_depth_loss)
if config.dataset_loader=="llff":
print('######################################### lwq llff')
loss = losses[-1] + config.coarse_loss_mult * jnp.sum(losses[:-1]) + config.weight_decay_mult * weight_l2+0.5*all_depth_loss[-1]
else:
print('######################################### lwq dtu')
loss = losses[-1] + config.coarse_loss_mult * jnp.sum(losses[:-1]) + config.weight_decay_mult * weight_l2+0.2*all_depth_loss[-1]+\
((tvnorm_loss_weight if config.depth_tvnorm_decay else
config.depth_tvnorm_loss_mult) * losses_georeg[-1] + \
config.coarse_loss_mult * jnp.sum(losses_georeg[:-1]))
return loss, (losses, disp_mses, normal_maes, weight_l2, losses_georeg, all_depth_loss)
##############
#target – the object to be optimized. This is typically a variable dict returned by flax.linen.Module.init()
(loss, loss_aux), grad = (jax.value_and_grad(loss_fn, has_aux=True)( ##########?
state.optimizer.target))
(losses, disp_mses, normal_maes, weight_l2, losses_georeg, all_depth_loss) = loss_aux
grad = jax.lax.pmean(grad, axis_name='batch') #Compute an all-reduce mean on x over the pmapped axis axis_name.
losses = jax.lax.pmean(losses, axis_name='batch')
disp_mses = jax.lax.pmean(disp_mses, axis_name='batch')
normal_maes = jax.lax.pmean(normal_maes, axis_name='batch')
weight_l2 = jax.lax.pmean(weight_l2, axis_name='batch')
losses_georeg = jax.lax.pmean(losses_georeg, axis_name='batch')
all_depth_loss = jax.lax.pmean(all_depth_loss, axis_name='batch')
if config.check_grad_for_nans: # False
grad = jax.tree_map(jnp.nan_to_num, grad)
if config.grad_max_val > 0: #grad_max_val=0.1
grad = jax.tree_map(
lambda z: jnp.clip(z, -config.grad_max_val, config.grad_max_val), grad) # clip(-0.1, 0.1)
grad_abs_max = jax.tree_util.tree_reduce(
lambda x, y: jnp.maximum(x, jnp.max(jnp.abs(y))), grad, initializer=0) # max(max(x1,x2),x3)...
grad_norm = tree_norm(grad)
if config.grad_max_norm > 0:
mult = jnp.minimum(
1, config.grad_max_norm / (jnp.finfo(jnp.float32).eps + grad_norm))
grad = jax.tree_map(lambda z: mult * z, grad)
grad_norm_clipped = tree_norm(grad)
new_optimizer = state.optimizer.apply_gradient(
grad, learning_rate=learning_rate)
new_state = state.replace(optimizer=new_optimizer)
psnrs = math.mse_to_psnr(losses)
stats = TrainStats(
loss=loss,
losses=losses,
losses_georeg=losses_georeg,
disp_mses=disp_mses,
normal_maes=normal_maes,
weight_l2=weight_l2,
psnr=psnrs[-1],
psnrs=psnrs,
grad_norm=grad_norm,
grad_abs_max=grad_abs_max,
grad_norm_clipped=grad_norm_clipped,
all_depth_loss =all_depth_loss,
)
return new_state, stats, rng
def main(unused_argv):
rng = random.PRNGKey(20200823)
# Shift the numpy random seed by host_id() to shuffle data loaded by different
# hosts.
np.random.seed(20201473 + jax.host_id())
config = configs.load_config()
if config.batch_size % jax.device_count() != 0:
raise ValueError('Batch size must be divisible by the number of devices.')
dataset = datasets_depth_llff_dtu.load_dataset('train', config.data_dir, config)
test_dataset = datasets_depth_llff_dtu.load_dataset('test', config.data_dir, config)
rng, key = random.split(rng)
model, variables = models.construct_mipnerf(
key,
dataset.peek()['rays'],
config,
)
num_params = jax.tree_util.tree_reduce(
lambda x, y: x + jnp.prod(jnp.array(y.shape)), variables, initializer=0)
print(f'Number of parameters being optimized: {num_params}')
optimizer = flax.optim.Adam(config.lr_init).create(variables)
state = utils.TrainState(optimizer=optimizer)
del optimizer, variables
train_pstep = jax.pmap(
functools.partial(train_step, model, config), axis_name='batch',
in_axes=(0, 0, 0, None, None, None, None))
# Because this is only used for test set rendering, we disable randomization
# and use the "final" padding for resampling.
def render_eval_fn(variables, _, rays):
return jax.lax.all_gather(
model.apply(
variables,
None, # Deterministic.
rays,
resample_padding=config.resample_padding_final,
compute_extras=True), axis_name='batch')
render_eval_pfn = jax.pmap(
render_eval_fn,
axis_name='batch',
in_axes=(None, None, 0), # Only distribute the data input.
donate_argnums=(3,),
)
def ssim_fn(x, y):
return structural_similarity(x, y, multichannel=True)
if not utils.isdir(config.checkpoint_dir):
utils.makedirs(config.checkpoint_dir)
state = checkpoints.restore_checkpoint(config.checkpoint_dir, state)
# Resume training at the step of the last checkpoint.
init_step = state.optimizer.state.step + 1
state = flax.jax_utils.replicate(state)
if jax.host_id() == 0:
summary_writer = tensorboard.SummaryWriter(config.checkpoint_dir)
summary_writer.text('config', f'<pre>{config}</pre>', step=0)
# Prefetch_buffer_size = 3 x batch_size
pdataset = flax.jax_utils.prefetch_to_device(dataset, 3)
rng = rng + jax.host_id() # Make random seed separate across hosts.
rngs = random.split(rng, jax.local_device_count()) # For pmapping RNG keys.
gc.disable() # Disable automatic garbage collection for efficiency.
total_time = 0
total_steps = 0
avg_psnr_numer = 0.
avg_psnr_denom = 0
train_start_time = time.time()
for step, batch in zip(range(init_step, config.max_steps + 1), pdataset):
learning_rate = math.learning_rate_decay(
step,
config.lr_init,
config.lr_final,
config.max_steps,
config.lr_delay_steps,
config.lr_delay_mult,
)
resample_padding = math.log_lerp(
step / config.max_steps,
config.resample_padding_init,
config.resample_padding_final,
)
if config.depth_tvnorm_decay: #True
tvnorm_loss_weight = math.compute_tvnorm_weight( #1-i/max_step
step, config.depth_tvnorm_maxstep, #512
config.depth_tvnorm_loss_mult_start, #400
config.depth_tvnorm_loss_mult_end) #0.1
else:
tvnorm_loss_weight = config.depth_tvnorm_loss_mult
state, stats, rngs = train_pstep(
rngs,
state,
batch,
learning_rate,
resample_padding,
tvnorm_loss_weight,
step,
)
########################################################################################
if step % config.gc_every == 0:
gc.collect() # Disable automatic garbage collection for efficiency.
# Log training summaries. This is put behind a host_id check because in
# multi-host evaluation, all hosts need to run inference even though we
# only use host 0 to record results.
if jax.host_id() == 0:
avg_psnr_numer += stats.psnr[0]
avg_psnr_denom += 1
if step % config.print_every == 0:
elapsed_time = time.time() - train_start_time
steps_per_sec = config.print_every / elapsed_time
rays_per_sec = config.batch_size * steps_per_sec
# A robust approximation of total training time, in case of pre-emption.
total_time += int(round(TIME_PRECISION * elapsed_time))
total_steps += config.print_every
approx_total_time = int(round(step * total_time / total_steps))
avg_psnr = avg_psnr_numer / avg_psnr_denom
avg_psnr_numer = 0.
avg_psnr_denom = 0
# For some reason, the `stats` object has a superfluous dimension.
stats = jax.tree_map(lambda x: x[0], stats)
summary_writer.scalar('num_params', num_params, step)
summary_writer.scalar('train_loss', stats.loss, step)
summary_writer.scalar('train_psnr', stats.psnr, step)
if config.compute_disp_metrics:
for i, disp_mse in enumerate(stats.disp_mses):
summary_writer.scalar(f'train_disp_mse_{i}', disp_mse, step)
if config.compute_normal_metrics:
for i, normal_mae in enumerate(stats.normal_maes):
summary_writer.scalar(f'train_normal_mae_{i}', normal_mae, step)
summary_writer.scalar('train_avg_psnr', avg_psnr, step)
summary_writer.scalar('train_avg_psnr_timed', avg_psnr,
total_time // TIME_PRECISION)
summary_writer.scalar('train_avg_psnr_timed_approx', avg_psnr,
approx_total_time // TIME_PRECISION)
for i, l in enumerate(stats.losses):
summary_writer.scalar(f'train_losses_{i}', l, step)
for i, l in enumerate(stats.losses_georeg):
summary_writer.scalar(f'train_losses_depth_tv_norm{i}', l, step)
for i, p in enumerate(stats.psnrs):
summary_writer.scalar(f'train_psnrs_{i}', p, step)
summary_writer.scalar('weight_l2', stats.weight_l2, step)
summary_writer.scalar('train_grad_norm', stats.grad_norm, step)
summary_writer.scalar('train_grad_norm_clipped',
stats.grad_norm_clipped, step)
summary_writer.scalar('train_grad_abs_max', stats.grad_abs_max, step)
summary_writer.scalar('learning_rate', learning_rate, step)
summary_writer.scalar('tvnorm_loss_weight', tvnorm_loss_weight, step)
summary_writer.scalar('resample_padding', resample_padding, step)
summary_writer.scalar('train_steps_per_sec', steps_per_sec, step)
summary_writer.scalar('train_rays_per_sec', rays_per_sec, step)
precision = int(np.ceil(np.log10(config.max_steps))) + 1
print(f'{step:{precision}d}' + f'/{config.max_steps:d}: ' +
f'loss={stats.loss:0.4f}, ' + f'avg_psnr={avg_psnr:0.2f}, ' +
f'weight_l2={stats.weight_l2:0.2e}, ' +
f'lr={learning_rate:0.2e}, '
f'pad={resample_padding:0.2e}, ' +
f'{rays_per_sec:0.0f} rays/sec')
train_start_time = time.time()
if step % config.checkpoint_every == 0:
state_to_save = jax.device_get(jax.tree_map(lambda x: x[0], state))
checkpoints.save_checkpoint(
config.checkpoint_dir, state_to_save, int(step), keep=100)
# Test-set evaluation.
if config.train_render_every > 0 and step % config.train_render_every == 0:
# We reuse the same random number generator from the optimization step
# here on purpose so that the visualization matches what happened in
# training.
eval_start_time = time.time()
eval_variables = jax.device_get(jax.tree_map(lambda x: x[0],
state)).optimizer.target
test_case = next(test_dataset)
rendering = models.render_image(
functools.partial(render_eval_pfn, eval_variables),
test_case['rays'],
rngs[0],
config)
vis_start_time = time.time()
vis_suite = vis.visualize_suite(rendering, test_case['rays'], config)
print(f'Visualized in {(time.time() - vis_start_time):0.3f}s')
# Log eval summaries on host 0.
if jax.host_id() == 0:
if not config.render_path:
psnr = float(
math.mse_to_psnr(((
rendering['rgb'] - test_case['rgb'])**2).mean()))
ssim = float(ssim_fn(rendering['rgb'], test_case['rgb']))
eval_time = time.time() - eval_start_time
num_rays = jnp.prod(jnp.array(test_case['rays'].directions.shape[:-1]))
rays_per_sec = num_rays / eval_time
summary_writer.scalar('test_rays_per_sec', rays_per_sec, step)
print(f'Eval {step}: {eval_time:0.3f}s., {rays_per_sec:0.0f} rays/sec')
if not config.render_path:
print(f'PSNR={psnr:.4f} SSIM={ssim:.4f}')
summary_writer.scalar('test_psnr', psnr, step)
summary_writer.scalar('test_ssim', ssim, step)
summary_writer.image('test_target', test_case['rgb'], step)
for k, v in vis_suite.items():
if k=='line_rays':
for i in range(v.shape[0]):
summary_writer.scalar('ray weights', v[i],i)
elif k=='line_rgbs':
for i in range(v.shape[0]):
summary_writer.scalar('ray rgbs', v[i],i)
else:
summary_writer.image('test_pred_' + k, v, step)
if config.max_steps % config.checkpoint_every != 0:
state = jax.device_get(jax.tree_map(lambda x: x[0], state))
checkpoints.save_checkpoint(
config.checkpoint_dir, state, int(config.max_steps), keep=100)
if __name__ == '__main__':
app.run(main)