-
Notifications
You must be signed in to change notification settings - Fork 3
/
RegressionCsvAndTrain.java
69 lines (57 loc) · 2.22 KB
/
RegressionCsvAndTrain.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* RegressionCsvAndTrain.java
* Copyright (C) 2019 University of Waikato, Hamilton, NZ
*/
package moaflow.examples;
import moaflow.core.Utils;
import moaflow.sink.Console;
import moaflow.sink.MeasurementsToCSV;
import moaflow.source.InstanceSource;
import moaflow.transformer.EvaluateRegressor;
import moaflow.transformer.InstanceFilter;
import moa.classifiers.functions.SGD;
import moa.streams.filters.ReplacingMissingValuesFilter;
/**
* Example flow for regression.
*
* @author FracPete (fracpete at waikato dot ac dot nz)
*/
public class RegressionCsvAndTrain {
public static void main(String[] args) throws Exception {
String regressor = SGD.class.getName();
InstanceSource source;
source = new InstanceSource();
source.setGenerator("moa.streams.generators.RandomRBFGenerator -a 20");
source.numInstances.setValue(100000);
ReplacingMissingValuesFilter replace = new ReplacingMissingValuesFilter();
InstanceFilter filter = new InstanceFilter();
filter.filter.setCurrentObject(replace);
source.subscribe(filter);
EvaluateRegressor eval = new EvaluateRegressor();
eval.everyNth.setValue(10000);
eval.setRegressor(regressor);
filter.subscribe(eval);
Console console = new Console();
console.outputSeparator.setValue("------");
eval.subscribe(console);
MeasurementsToCSV measurements = new MeasurementsToCSV();
measurements.outputFile.setValue(System.getProperty("java.io.tmpdir") + "/moa.csv");
eval.subscribe(measurements);
System.out.println(Utils.toTree(source));
source.start();
}
}