Jian Huang1,2 Chengrui Dong1,2 Xuanhua Chen2,3 Peidong Liu2*
* denotes corresponding author.
1Zhejiang University 2Westlake University 3Northeastern University
This repository is the official implementation of the paper "IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera".
2025.04.04
🔥Our paper has been selected as CVPR 2025 Highlight!
2025.03.03
🔥Our paper has been accepted by CVPR 2025!
2024.10.11
Our paper is available on arXiv.
In the path where your want to store code, enter the following terminal command:
conda create -n iegs python=3.10
conda activate iegs
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit # install CUDA toolkit
# Install the pytorch first (Please check the cuda version)
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt
pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
pip install h5py hdf5plugin scikit-learn jaxtyping kornia
pip install -U "huggingface-hub<0.26.0"
pip install pytorch_msssim
pip install tyro
pip install diffusers==0.27.1
pip install accelerate
pip install -U "transformers<=4.48.1"
You can download pretrained weight of Marigold and datasets (Replica, pre-processed TUMVIE) by clicking this link.
# unzip files
tar -xvf xxx.tar
Before that, need to modify the depthEst_pretrained_model_path
and data:datadir
python main.py --config configs/SimuEvent/replica_room0.yaml
- NVS Performance
cd metrics/event_nerf
sh auto_single.sh [PATH_TO_IMG_EVAL] est gt
-
Pose Accuracy
- install evo,
pip install evo
- run:
cd [PATH_TO_EXPERIMENT]/global_BA evo_ape kitti [EST_PATH_NAME] [GT_PATH_NAME] --align -as
- install evo,
Our Replica(event) dataset format is described as follows. It is recommended that you organize your custom datasets in this format if you want to run our method on your own datasets.
<dataset_name> # e.g. room0
├── poses_ts.txt
├── traj.txt
├── images
├── frame000100.jpg
├── frame000150.jpg
├── frame000200.jpg
...
├── event_threshold_0.1
├── gray_events_data.npy
- traj.txt format
r11 r12 r13 r14 r21 r22 r23 r24 r31 r32 r33 r34 r41 r42 r43 r44
r is transformation matrix (4*4).
If you find this repository useful, please consider citing our paper:
@inproceedings{huang2025inceventgs,
author = {Huang, Jian and Dong, Chengrui and Chen, Xuanhua and Liu, Peidong},
title = {IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2025}
}
This project is developed with several fantastic repos: gsplat, Co-SLAM, E-NeRF, EventNeRF, BAD-Gaussians, Marigold, Diffusers and PyPose. We appreciate the effort of the contributors to these amazing repositories.