forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
181 lines (147 loc) · 5.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Parameter
from .config import device, num_classes
def create_model(opt):
if opt.model == 'pix2pixHD':
#from .pix2pixHD_model import Pix2PixHDModel, InferenceModel
from .fs_model import fsModel
model = fsModel()
else:
from .ui_model import UIModel
model = UIModel()
model.initialize(opt)
if opt.verbose:
print("model [%s] was created" % (model.name()))
if opt.isTrain and len(opt.gpu_ids) and not opt.fp16:
model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
return model
class SEBlock(nn.Module):
def __init__(self, channel, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.PReLU(),
nn.Linear(channel // reduction, channel),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
class IRBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
super(IRBlock, self).__init__()
self.bn0 = nn.BatchNorm2d(inplanes)
self.conv1 = conv3x3(inplanes, inplanes)
self.bn1 = nn.BatchNorm2d(inplanes)
self.prelu = nn.PReLU()
self.conv2 = conv3x3(inplanes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
self.use_se = use_se
if self.use_se:
self.se = SEBlock(planes)
def forward(self, x):
residual = x
out = self.bn0(x)
out = self.conv1(out)
out = self.bn1(out)
out = self.prelu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.use_se:
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.prelu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, use_se=True):
self.inplanes = 64
self.use_se = use_se
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.prelu = nn.PReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.bn2 = nn.BatchNorm2d(512)
self.dropout = nn.Dropout()
self.fc = nn.Linear(512 * 7 * 7, 512)
self.bn3 = nn.BatchNorm1d(512)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
self.inplanes = planes
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, use_se=self.use_se))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn2(x)
x = self.dropout(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = self.bn3(x)
return x
class ArcMarginModel(nn.Module):
def __init__(self, args):
super(ArcMarginModel, self).__init__()
self.weight = Parameter(torch.FloatTensor(num_classes, args.emb_size))
nn.init.xavier_uniform_(self.weight)
self.easy_margin = args.easy_margin
self.m = args.margin_m
self.s = args.margin_s
self.cos_m = math.cos(self.m)
self.sin_m = math.sin(self.m)
self.th = math.cos(math.pi - self.m)
self.mm = math.sin(math.pi - self.m) * self.m
def forward(self, input, label):
x = F.normalize(input)
W = F.normalize(self.weight)
cosine = F.linear(x, W)
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m)
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
one_hot = torch.zeros(cosine.size(), device=device)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output