|
| 1 | +# Dependence of Fluence Predictions on the Number of Photons Simulated |
| 2 | +# |
| 3 | +# Goal: This exercise explores how fluence estimates change with the |
| 4 | +# number of photons simulated. |
| 5 | +# |
| 6 | +# Import the Operating System so we can access the files for the VTS library |
| 7 | +from pythonnet import load |
| 8 | +load('coreclr') |
| 9 | +import clr |
| 10 | +import os |
| 11 | +file = '../libraries/Vts.dll' |
| 12 | +clr.AddReference(os.path.abspath(file)) |
| 13 | +import numpy as np |
| 14 | +import plotly.graph_objects as go |
| 15 | +from plotly.subplots import make_subplots |
| 16 | +# use matplotlib.pyplot |
| 17 | +import matplotlib as mpl |
| 18 | +import matplotlib.pyplot as plt |
| 19 | +from Vts import * |
| 20 | +from Vts.Common import * |
| 21 | +from Vts.Extensions import * |
| 22 | +from Vts.Modeling.Optimizers import * |
| 23 | +from Vts.Modeling.ForwardSolvers import * |
| 24 | +from Vts.SpectralMapping import * |
| 25 | +from Vts.Factories import * |
| 26 | +from Vts.MonteCarlo import * |
| 27 | +from Vts.MonteCarlo.Sources import * |
| 28 | +from Vts.MonteCarlo.Tissues import * |
| 29 | +from Vts.MonteCarlo.Detectors import * |
| 30 | +from Vts.MonteCarlo.Factories import * |
| 31 | +from Vts.MonteCarlo.PhotonData import * |
| 32 | +from Vts.MonteCarlo.PostProcessing import * |
| 33 | +from System import Array, Object, Double, Math |
| 34 | +# Setup the detector input for the simulation |
| 35 | +rhoStart = 0 |
| 36 | +rhoStop = 10 # [mm] |
| 37 | +rhoCount = 101 |
| 38 | +zStart = 0 |
| 39 | +zStop = 10 # [mm] |
| 40 | +zCount = 101 |
| 41 | +detectorRhoRange = DoubleRange(start=rhoStart, stop=rhoStop, number=rhoCount) |
| 42 | +detectorZRange = DoubleRange(start=zStart, stop=zStop, number=zCount) |
| 43 | +detectorInput = FluenceOfRhoAndZDetectorInput() |
| 44 | +detectorInput.Rho = detectorRhoRange |
| 45 | +detectorInput.Z = detectorZRange |
| 46 | +detectorInput.Name = "FluenceOfRhoAndZ" |
| 47 | +detectorInput.TallySecondMoment = True |
| 48 | +detectors = Array.CreateInstance(IDetectorInput,1) |
| 49 | +detectors[0] = detectorInput |
| 50 | + |
| 51 | +# Setup the tissue input for the simulation |
| 52 | +regions = Array.CreateInstance(ITissueRegion, 3) |
| 53 | +regions[0] = LayerTissueRegion(zRange=DoubleRange(Double.NegativeInfinity, 0.0), op=OpticalProperties(mua=0.0, musp=1E-10, g=1.0, n=1.0)) # air |
| 54 | +regions[1] = LayerTissueRegion(zRange=DoubleRange(0.0, 100.0), op=OpticalProperties(mua=0.01, musp=1.0, g=0.8, n=1.4)) # tissue |
| 55 | +regions[2] = LayerTissueRegion(zRange=DoubleRange(100.0, Double.PositiveInfinity), op=OpticalProperties(mua=0.0, musp=1E-10, g=1.0, n=1.0)) # air |
| 56 | + |
| 57 | +# Setup source |
| 58 | +sourceInput = DirectionalPointSourceInput() |
| 59 | +sourceInput.InitialTissueRegionIndex=0 |
| 60 | + |
| 61 | +# Setup number of photons simulated |
| 62 | +nPhot = [10, 100, 1000, 10000] |
| 63 | +FluenceArray = np.zeros((len(nPhot), (zCount - 1) * (rhoCount - 1))) |
| 64 | +RelativeErrorArray = np.zeros((len(nPhot), (zCount - 1) * (rhoCount-1))) |
| 65 | + |
| 66 | +# plot 4 cases in grid |
| 67 | +fig, axes = plt.subplots(nrows=2,ncols=2) |
| 68 | +xLabel = "ρ [mm]" |
| 69 | +yLabel = "z [mm]" |
| 70 | +title = "log(Φ(ρ,z)) [mm-2]" |
| 71 | +# ignore divide by zero warning when calculating relative error |
| 72 | +np.seterr(divide='ignore', invalid='ignore') |
| 73 | + |
| 74 | +for i in range(0, len(nPhot)): |
| 75 | + simulationOptions = SimulationOptions() |
| 76 | + simulationOptions.AbsorptionWeightingType = AbsorptionWeightingType.Analog # variation: set to Discrete |
| 77 | + # create a SimulationInput object to define the simulation |
| 78 | + simulationInput = SimulationInput() |
| 79 | + simulationInput.N = nPhot[i] |
| 80 | + simulationInput.OutputName = "MonteCarloFluence" |
| 81 | + simulationInput.DetectorInputs = detectors |
| 82 | + simulationInput.Options = simulationOptions |
| 83 | + simulationInput.Tissue = MultiLayerTissueInput(regions) |
| 84 | + # create the simulations |
| 85 | + simulation = MonteCarloSimulation(simulationInput) |
| 86 | + # run the simulations |
| 87 | + simulationOutput = simulation.Run() |
| 88 | + # determine standard deviation and plot the results using Plotly |
| 89 | + detectorResults = Array.CreateInstance(FluenceOfRhoAndZDetector, 1) |
| 90 | + detectorResults[0] = simulationOutput.ResultsDictionary["FluenceOfRhoAndZ"] |
| 91 | + Fluence = Array.CreateInstance(FluenceOfRhoAndZDetector, 1) |
| 92 | + RelativeError = Array.CreateInstance(FluenceOfRhoAndZDetector, 1) |
| 93 | + FluenceArray[i] = [f for f in detectorResults[0].Mean] |
| 94 | + SecondMoment = [s for s in detectorResults[0].SecondMoment] |
| 95 | + StandardDeviation = np.sqrt((SecondMoment - np.multiply(FluenceArray[i], FluenceArray[i]) / simulationInput.N)) |
| 96 | + RelativeErrorArray[i] = np.divide(StandardDeviation, FluenceArray[i]) |
| 97 | + |
| 98 | + # plot fluence as a function of N, number of photons simulated |
| 99 | + # plot log of fluence and mirror fluence(rho,z) about rho=0 axis |
| 100 | + logFluence = [Math.Log(f) for f in FluenceArray[i]] |
| 101 | + # Convert to .NET array |
| 102 | + rhoDelta = detectorRhoRange.GetDelta() |
| 103 | + rhos = rhoStart + rhoDelta * np.arange(rhoCount - 1) |
| 104 | + # reverse and concatenate |
| 105 | + allRhos = np.concatenate((-rhos[::-1], rhos)) |
| 106 | + zDelta = detectorZRange.GetDelta() |
| 107 | + zs = zStart + zDelta * np.arange(zCount - 1) |
| 108 | + fluenceRowsToPlot = np.array([logFluence[i:i+len(zs)] for i in range(0, len(logFluence), len(zs))]) |
| 109 | + |
| 110 | + colormap=mpl.colormaps['magma'] |
| 111 | + cbar_ticks = [-6, -4, -2, 0] |
| 112 | + |
| 113 | + if (i==0): |
| 114 | + im0=allFluenceRowsToPlot = np.concatenate((fluenceRowsToPlot[::-1], fluenceRowsToPlot)) |
| 115 | + im0=axes[0,0].imshow(allFluenceRowsToPlot.T, vmin=-6, vmax=0) |
| 116 | + axes[0,0].set_title('log(Flu(ρ,z))[mm^-2]'); |
| 117 | + axes[0,0].set_xlabel('ρ [mm]') |
| 118 | + axes[0,0].set_ylabel('z [mm]') |
| 119 | + axes[0,0].text(10, 90, 'N=10') |
| 120 | + cbar = fig.colorbar(im0, cmap=colormap, location='right', shrink=0.6, pad=0.05) |
| 121 | + cbar.set_ticks(cbar_ticks) |
| 122 | + if (i==1): |
| 123 | + im1=allFluenceRowsToPlot = np.concatenate((fluenceRowsToPlot[::-1], fluenceRowsToPlot)) |
| 124 | + im1=axes[0,1].imshow(allFluenceRowsToPlot.T, vmin=-6, vmax=0) |
| 125 | + axes[0,1].set_title('log(Flu(ρ,z))[mm^-2]'); |
| 126 | + axes[0,1].set_xlabel('ρ [mm]') |
| 127 | + axes[0,1].set_ylabel('z [mm]') |
| 128 | + axes[0,1].text(10, 90, 'N=100') |
| 129 | + cbar = fig.colorbar(im1, cmap=colormap, location='right', shrink=0.6, pad=0.05) |
| 130 | + cbar.set_ticks(cbar_ticks) |
| 131 | + if (i==2): |
| 132 | + im2=allFluenceRowsToPlot = np.concatenate((fluenceRowsToPlot[::-1], fluenceRowsToPlot)) |
| 133 | + im2=axes[1,0].imshow(allFluenceRowsToPlot.T, vmin=-6, vmax=0) |
| 134 | + axes[1,0].set_title('log(Flu(ρ,z))[mm^-2]'); |
| 135 | + axes[1,0].set_xlabel('ρ [mm]') |
| 136 | + axes[1,0].set_ylabel('z [mm]') |
| 137 | + axes[1,0].text(10, 90, 'N=1000') |
| 138 | + cbar = fig.colorbar(im2, cmap=colormap, location='right', shrink=0.6, pad=0.05) |
| 139 | + cbar.set_ticks(cbar_ticks) |
| 140 | + if (i==3): |
| 141 | + im3=allFluenceRowsToPlot = np.concatenate((fluenceRowsToPlot[::-1], fluenceRowsToPlot)) |
| 142 | + im3=axes[1,1].imshow(allFluenceRowsToPlot.T, vmin=-6, vmax=0) |
| 143 | + axes[1,1].set_title('log(Flu(ρ,z))[mm^-2]'); |
| 144 | + axes[1,1].set_xlabel('ρ [mm]') |
| 145 | + axes[1,1].set_ylabel('z [mm]') |
| 146 | + axes[1,1].text(10, 90, 'N=10000') |
| 147 | + cbar = fig.colorbar(im3, cmap=colormap, location='right', shrink=0.6, pad=0.05) |
| 148 | + cbar.set_ticks(cbar_ticks) |
| 149 | + |
| 150 | +plt.savefig('fluence-vs-n.png') |
| 151 | + |
| 152 | +# plot relative error as a function of N, the number of photons simulated |
| 153 | +# plot 4 cases in grid |
| 154 | +plt.clf() # clear fluence figure |
| 155 | +fig, axes = plt.subplots(nrows=2,ncols=2) |
| 156 | +xLabel = "ρ [mm]" |
| 157 | +yLabel = "z [mm]" |
| 158 | +title = "relerror(Φ(ρ,z))" |
| 159 | + |
| 160 | +for i in range(0, len(nPhot)): |
| 161 | + # plot fluence relative error and mirror about rho=0 axis |
| 162 | + relativeError = [r for r in RelativeErrorArray[i]] |
| 163 | + relativeErrorRowsToPlot = np.array([relativeError[i:i+len(zs)] for i in range(0, len(relativeError), len(zs))]) |
| 164 | + |
| 165 | + colormap=mpl.colormaps['magma'] |
| 166 | + cbar_ticks = [0.0, 0.5, 1.0] |
| 167 | + |
| 168 | + if (i==0): |
| 169 | + im0=allRelativeErrorRowsToPlot = np.concatenate((relativeErrorRowsToPlot[::-1], relativeErrorRowsToPlot)) |
| 170 | + im0=axes[0,0].imshow(allRelativeErrorRowsToPlot.T, vmin=0, vmax=1) |
| 171 | + axes[0,0].set_title('relerr(Flu(ρ,z))'); |
| 172 | + axes[0,0].set_xlabel('ρ [mm]') |
| 173 | + axes[0,0].set_ylabel('z [mm]') |
| 174 | + axes[0,0].text(10, 90, 'N=10') |
| 175 | + cbar = fig.colorbar(im0, cmap=colormap, location='right', shrink=0.6, pad=0.05) |
| 176 | + cbar.set_ticks(cbar_ticks) |
| 177 | + if (i==1): |
| 178 | + im1=allRelativeErrorRowsToPlot = np.concatenate((relativeErrorRowsToPlot[::-1], relativeErrorRowsToPlot)) |
| 179 | + im1=axes[0,1].imshow(allRelativeErrorRowsToPlot.T, vmin=0, vmax=1) |
| 180 | + axes[0,1].set_title('relerr(Flu(ρ,z))'); |
| 181 | + axes[0,1].set_xlabel('ρ [mm]') |
| 182 | + axes[0,1].set_ylabel('z [mm]') |
| 183 | + axes[0,1].text(10, 90, 'N=100') |
| 184 | + cbar = fig.colorbar(im1, cmap=colormap, location='right', shrink=0.6, pad=0.05) |
| 185 | + if (i==2): |
| 186 | + im2=allRelativeErrorRowsToPlot = np.concatenate((relativeErrorRowsToPlot[::-1], relativeErrorRowsToPlot)) |
| 187 | + im2=axes[1,0].imshow(allRelativeErrorRowsToPlot.T, vmin=0, vmax=1) |
| 188 | + axes[1,0].set_title('relerr(Flu(ρ,z))'); |
| 189 | + axes[1,0].set_xlabel('ρ [mm]') |
| 190 | + axes[1,0].set_ylabel('z [mm]') |
| 191 | + axes[1,0].text(10, 90, 'N=1000') |
| 192 | + cbar = fig.colorbar(im2, cmap=colormap, location='right', shrink=0.6, pad=0.05) |
| 193 | + if (i==3): |
| 194 | + im3=allRelativeErrorRowsToPlot = np.concatenate((relativeErrorRowsToPlot[::-1], relativeErrorRowsToPlot)) |
| 195 | + im3=axes[1,1].imshow(allRelativeErrorRowsToPlot.T, vmin=0, vmax=1) |
| 196 | + axes[1,1].set_title('relerr(Flu(ρ,z))'); |
| 197 | + axes[1,1].set_xlabel('ρ [mm]') |
| 198 | + axes[1,1].set_ylabel('z [mm]') |
| 199 | + axes[1,1].text(10, 90, 'N=10000') |
| 200 | + cbar = fig.colorbar(im3, cmap=colormap, location='right', shrink=0.6, pad=0.05) |
| 201 | + |
| 202 | +plt.savefig('relative-error-vs-n.png') |
| 203 | + |
0 commit comments