-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest_wddgan.py
257 lines (208 loc) · 11.7 KB
/
test_wddgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import argparse
import torch
import numpy as np
import copy
import os
import time
import torchvision
from score_sde.models.ncsnpp_generator_adagn import NCSNpp, WaveletNCSNpp
from pytorch_fid.fid_score import calculate_fid_given_paths
from DWT_IDWT.DWT_IDWT_layer import DWT_2D, IDWT_2D
from pytorch_wavelets import DWTForward, DWTInverse
from diffusion import *
from freq_utils import *
#%%
def sample_and_test(args):
torch.manual_seed(42)
device = 'cuda:0'
if args.dataset == 'cifar10':
real_img_dir = 'pytorch_fid/cifar10_train_stat.npy'
elif args.dataset == 'celeba_256':
real_img_dir = 'pytorch_fid/celebahq_stat.npy'
# real_img_dir = 'pytorch_fid/celeba_ll_64.npy'
# elif args.dataset == 'lsun':
# real_img_dir = 'pytorch_fid/lsun_church_stat.npy'
else:
real_img_dir = args.real_img_dir
to_range_0_1 = lambda x: (x + 1.) / 2.
if args.infer_mode == "only_ll":
args.num_channels = 3 # low-res or wavelet-coefficients training
elif args.infer_mode == "only_hi":
args.num_channels = 9 # low-res or wavelet-coefficients training
elif args.infer_mode == "both":
args.num_channels = 12
args.ori_image_size = args.image_size
args.image_size = args.current_resolution
print(args.image_size, args.ch_mult, args.attn_resolutions)
G_NET_ZOO = {"normal": NCSNpp, "wavelet": WaveletNCSNpp}
gen_net = G_NET_ZOO[args.net_type]
print("GEN: {}".format(gen_net))
netG = gen_net(args).to(device)
ckpt = torch.load('./saved_info/wdd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id), map_location=device)
# ckpt = torch.load('./saved_info/multiscale_wdd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id), map_location=device)
#loading weights from ddp in single gpu
for key in list(ckpt.keys()):
# new_key = key[7:] # drop module.
# if "Conv2d_0" in new_key:
# new_key = new_key.replace(".Conv2d_0.", ".conv.")
# print(key)
# print(new_key)
# ckpt[new_key] = ckpt.pop(key)
ckpt[key[7:]] = ckpt.pop(key)
netG.load_state_dict(ckpt, strict=False)
# assert set(msg.missing_keys) == {'head.projection.weight', 'head.projection.bias'}
netG.eval()
iwt = DWTInverse(mode='zero', wave='haar').cuda()
T = get_time_schedule(args, device)
pos_coeff = Posterior_Coefficients(args, device)
iters_needed = 50000 //args.batch_size
save_dir = "./generated_samples/{}".format(args.dataset)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if args.measure_time:
x_t_1 = torch.randn(args.batch_size, args.num_channels, args.image_size, args.image_size).to(device)
# INIT LOGGERS
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
repetitions = 300
timings = np.zeros((repetitions,1))
# GPU-WARM-UP
for _ in range(10):
_ = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args)
# MEASURE PERFORMANCE
with torch.no_grad():
for rep in range(repetitions):
starter.record()
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args)
if args.magnify_data:
fake_sample = demagnified_function(fake_sample, train_mode=args.infer_mode)
fake_sample *= 2.
fake_sample = iwt((fake_sample[:, :3], [torch.stack((fake_sample[:, 3:6], fake_sample[:, 6:9], fake_sample[:, 9:12]), dim=2)]))
fake_sample = torch.clamp(fake_sample, -1, 1)
ender.record()
# WAIT FOR GPU SYNC
torch.cuda.synchronize()
curr_time = starter.elapsed_time(ender)
timings[rep] = curr_time
mean_syn = np.sum(timings) / repetitions
std_syn = np.std(timings)
print("Inference time: {:.2f}+/-{:.2f}ms".format(mean_syn, std_syn))
exit(0)
if args.compute_fid:
for i in range(iters_needed):
with torch.no_grad():
x_t_1 = torch.randn(args.batch_size, args.num_channels,args.image_size, args.image_size).to(device)
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args)
if args.magnify_data:
fake_sample = demagnified_function(fake_sample, train_mode=args.infer_mode)
if args.infer_mode == "both":
fake_sample *= 2
if not args.use_pytorch_wavelet:
fake_sample = iwt(fake_sample[:, :3], fake_sample[:, 3:6], fake_sample[:, 6:9], fake_sample[:, 9:12])
else:
fake_sample = iwt((fake_sample[:, :3], [torch.stack((fake_sample[:, 3:6], fake_sample[:, 6:9], fake_sample[:, 9:12]), dim=2)]))
fake_sample = torch.clamp(fake_sample, -1, 1)
fake_sample = to_range_0_1(fake_sample) # 0-1
for j, x in enumerate(fake_sample):
index = i * args.batch_size + j
torchvision.utils.save_image(x, '{}/{}.jpg'.format(save_dir, index))
print('generating batch ', i)
paths = [save_dir, real_img_dir]
print(paths)
kwargs = {'batch_size': 100, 'device': device, 'dims': 2048}
fid = calculate_fid_given_paths(paths=paths, **kwargs)
print('FID = {}'.format(fid))
else:
x_t_1 = torch.randn(args.batch_size, args.num_channels,args.image_size, args.image_size).to(device)
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args)
if args.magnify_data:
fake_sample = demagnified_function(fake_sample, train_mode=args.infer_mode)
if args.infer_mode == "both":
fake_sample *= 2
if not args.use_pytorch_wavelet:
fake_sample = iwt(fake_sample[:, :3], fake_sample[:, 3:6], fake_sample[:, 6:9], fake_sample[:, 9:12])
else:
fake_sample = iwt((fake_sample[:, :3], [torch.stack((fake_sample[:, 3:6], fake_sample[:, 6:9], fake_sample[:, 9:12]), dim=2)]))
fake_sample = torch.clamp(fake_sample, -1, 1)
fake_sample = to_range_0_1(fake_sample) # 0-1
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
print("Results are saved at samples_{}.jpg".format(args.dataset))
if __name__ == '__main__':
parser = argparse.ArgumentParser('ddgan parameters')
parser.add_argument('--seed', type=int, default=1024,
help='seed used for initialization')
parser.add_argument('--compute_fid', action='store_true', default=False,
help='whether or not compute FID')
parser.add_argument('--measure_time', action='store_true', default=False,
help='whether or not measure time')
parser.add_argument('--epoch_id', type=int, default=1000)
parser.add_argument('--num_channels', type=int, default=3,
help='channel of image')
parser.add_argument('--centered', action='store_false', default=True,
help='-1,1 scale')
parser.add_argument('--use_geometric', action='store_true',default=False)
parser.add_argument('--beta_min', type=float, default= 0.1,
help='beta_min for diffusion')
parser.add_argument('--beta_max', type=float, default=20.,
help='beta_max for diffusion')
parser.add_argument('--patch_size', type=int, default=1,
help='Patchify image into non-overlapped patches')
parser.add_argument('--num_channels_dae', type=int, default=128,
help='number of initial channels in denosing model')
parser.add_argument('--n_mlp', type=int, default=3,
help='number of mlp layers for z')
parser.add_argument('--ch_mult', nargs='+', type=int,
help='channel multiplier')
parser.add_argument('--num_res_blocks', type=int, default=2,
help='number of resnet blocks per scale')
parser.add_argument('--attn_resolutions', default=(16,), type=int, nargs='+',
help='resolution of applying attention')
parser.add_argument('--dropout', type=float, default=0.,
help='drop-out rate')
parser.add_argument('--resamp_with_conv', action='store_false', default=True,
help='always up/down sampling with conv')
parser.add_argument('--conditional', action='store_false', default=True,
help='noise conditional')
parser.add_argument('--fir', action='store_false', default=True,
help='FIR')
parser.add_argument('--fir_kernel', default=[1, 3, 3, 1],
help='FIR kernel')
parser.add_argument('--skip_rescale', action='store_false', default=True,
help='skip rescale')
parser.add_argument('--resblock_type', default='biggan',
help='tyle of resnet block, choice in biggan and ddpm')
parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
help='progressive type for output')
parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'],
help='progressive type for input')
parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
help='progressive combine method.')
parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'],
help='type of time embedding')
parser.add_argument('--fourier_scale', type=float, default=16.,
help='scale of fourier transform')
parser.add_argument('--not_use_tanh', action='store_true',default=False)
#geenrator and training
parser.add_argument('--exp', default='experiment_cifar_default', help='name of experiment')
parser.add_argument('--real_img_dir', default='./pytorch_fid/cifar10_train_stat.npy', help='directory to real images for FID computation')
parser.add_argument('--dataset', default='cifar10', help='name of dataset')
parser.add_argument('--image_size', type=int, default=32,
help='size of image')
parser.add_argument('--nz', type=int, default=100)
parser.add_argument('--num_timesteps', type=int, default=4)
parser.add_argument('--z_emb_dim', type=int, default=256)
parser.add_argument('--t_emb_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=200, help='sample generating batch size')
# wavelet GAN
parser.add_argument("--use_pytorch_wavelet", action="store_true")
parser.add_argument("--infer_mode", default="only_ll")
parser.add_argument("--current_resolution", type=int, default=256)
parser.add_argument("--net_type", default="normal")
parser.add_argument("--magnify_data", action="store_true")
args = parser.parse_args()
sample_and_test(args)