-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
176 lines (147 loc) · 6.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim
import torch.utils.data as data
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from config import Config
from TextCNN import TextCNN
from RCNN import RCNN
from RNN import myRNN, LSTMClassifier
from dataset import SSTDataset, loadGloveModel
import argparse
import time
def collate_fn(data):
"""Pad data in a batch.
处理batch,把batch里面的tensor补到这个batch中最长的。
Parameters
----------
data : list((tensor, int), )
data and label in a batch
Returns
-------
tuple(tensor, tensor)
"""
# data: [(tensor, label), ...]
max_len = max([i[0].shape[0] for i in data])
labels = torch.tensor([i[1] for i in data], dtype=torch.long) # labels in this batch
# print('labels', labels)
padded = torch.zeros((len(data), max_len), dtype=torch.long) # padded tensor
# randomizing might be better
# print('pad', padded.size())
for i, _ in enumerate(padded):
padded[i][:data[i][0].shape[0]] = data[i][0]
return padded, labels
def evaluation(data_iter, model, args):
# Evaluating the given model
model.eval()
with torch.no_grad():
corrects = 0
avg_loss = 0
# total = 0
for data, label in data_iter:
sentences = data.to(args.device, non_blocking=True)
labels = label.to(args.device, non_blocking=True)
logit = model(sentences)
# torch.max(logit, 1)[1]: index
corrects += (torch.max(logit, 1)[1].view(labels.size()).data == labels.data).sum().item()
size = len(data_iter.dataset)
model.train()
return 100.0 * corrects / size
def main():
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--kernel_num', type=int, default=100, help='Number of each size of kernels used in CNN')
parser.add_argument('--label_num', type=int, default=2, help='Target label numbers')
parser.add_argument('--log_interval', type=int, default=100)
parser.add_argument('--wordvec_dim', type=int, default=50, help='Dimension of GloVe vectors')
parser.add_argument('--model_name', type=str, default='rcnn', help='Which model to use')
parser.add_argument('--kernel_sizes', type=str, default='3,4,5', help='Sizes of kernels used in CNN')
parser.add_argument('--dataset_path', type=str, default='data/dataset/', help='PATH to dataset')
args = parser.parse_args()
# torch.manual_seed(args.seed)[]
start = time.time()
wordvec = loadGloveModel('data/glove/glove.6B.'+ str(args.wordvec_dim) +'d.txt')
args.device = device
args.weight = torch.tensor(wordvec.values, dtype=torch.float) # word embedding for the embedding layer
args.kernel_sizes = [int(k) for k in args.kernel_sizes.split(',')]
# Datasets
training_set = SSTDataset(args.dataset_path, 'train', args.label_num, args.wordvec_dim, wordvec)
testing_set = SSTDataset(args.dataset_path, 'test', args.label_num, args.wordvec_dim, wordvec)
validation_set = SSTDataset(args.dataset_path, 'dev', args.label_num, args.wordvec_dim, wordvec)
training_iter = DataLoader(dataset=training_set,
batch_size=args.batch_size,
num_workers=0, shuffle=True, collate_fn=collate_fn, pin_memory=True)
testing_iter = DataLoader(dataset=testing_set,
batch_size=args.batch_size,
num_workers=0, collate_fn=collate_fn, pin_memory=True)
validation_iter = DataLoader(dataset=validation_set,
batch_size=args.batch_size,
num_workers=0, collate_fn=collate_fn, pin_memory=True)
print(time.time() - start)
model_name = args.model_name.lower()
print(model_name)
# Select model
if model_name == 'cnn':
model = TextCNN(args).to(device)
elif model_name == 'lstm':
model = LSTMClassifier(args).to(device)
elif model_name == 'rcnn':
model = RCNN(args).to(device)
elif model_name == 'rnn':
model = myRNN(args).to(device)
else:
print('Unrecognized model name!')
exit(1)
del wordvec # Save some memory
criterion = nn.CrossEntropyLoss()
# optimizer = optim.SGD(model.parameters(), lr=config.lr)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) # Adam优化器
step = 0
loss_sum = 0
# Train
test_acc = []
best_acc = 0
for epoch in range(1, args.epoch+1):
for data, label in training_iter:
sentences = data.to(device, non_blocking=True) # Asynchronous loading
# sentences = data.flip(dims=(-1,)).to(device, dtype=torch.long)
labels = label.to(device, non_blocking=True)
optimizer.zero_grad()
logits = model(sentences) # 训练
loss = criterion(logits, labels) # 损失
loss_sum += loss.data # 求和loss
step += 1
if step % args.log_interval == 0:
print("epoch", epoch, end=' ')
print("avg loss: %.5f" % (loss_sum/args.log_interval))
loss_sum = 0
step = 0
loss.backward()
optimizer.step()
# test
acc = evaluation(testing_iter, model, args)
if acc > best_acc:
best_acc = acc
# torch.save(model.state_dict(), 'model_{}_{}_{}.ckpt'.format(args.model_name, args.wordvec_dim, args.label_num))
test_acc.append(acc)
print('test acc {:.4f}'.format(acc))
print('train acc {:.4f}'.format(evaluation(training_iter, model, args)))
best = 0
best_acc = 0
for i, a in enumerate(test_acc):
if a > best_acc:
best_acc = a
best = i + 1
print('best: epoch {}, acc {:.4f}'.format(best, best_acc))
print("Parameters:")
delattr(args, 'weight')
for attr, value in sorted(args.__dict__.items()):
print("\t{}={}".format(attr.upper(), value))
if __name__ == "__main__":
main()