Skip to content

This Python script performs Binary Division using Booths Algorithm and displays the step by step solution

License

Notifications You must be signed in to change notification settings

ValerianCoelho/Booths-Division-Algorithm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Booths Division Algorithm

This program implements Booth's algorithm to perform division of two numbers. The algorithm is used to perform multiplication or division of binary numbers.

Prerequisites

  • Python 3.10.2 or above
  • Binary.py module (included)

How to use

Run the program.

  • Enter the number of bits for the registers.
  • Enter the dividend and divisor values in the corresponding binary or 2's complement form.
  • The program will output the intermediate steps for each cycle and the final quotient and remainder.

Inputs

The program accepts the following inputs:

  • no_bits: Number of bits for the registers.
  • dividend: Dividend value in binary or 2's complement form.
  • divisor: Divisor value in binary or 2's complement form.

Outputs

The program outputs the following:

  • Intermediate steps for each cycle.
  • Final quotient and remainder.

Example

Input:

Enter the number of bits : 12
Enter the Values in the corresponding binary or 2's complement form
Enter the divident  : 110101101
Enter the divisor : 1101

Output:

     A            Q            M

000000000000 000110101101 000000001101   Initial Values

000000000000 001101011010 000000001101   Shift left A, Q            ─┐
111111110011 001101011010 000000001101   A <- A - M                  ├── Cycle 1
000000000000 001101011010 000000001101   Restore A, Set Q[0] = 0    ─┘

000000000000 011010110100 000000001101   Shift left A, Q            ─┐
111111110011 011010110100 000000001101   A <- A - M                  ├── Cycle 2
000000000000 011010110100 000000001101   Restore A, Set Q[0] = 0    ─┘

000000000000 110101101000 000000001101   Shift left A, Q            ─┐
111111110011 110101101000 000000001101   A <- A - M                  ├── Cycle 3
000000000000 110101101000 000000001101   Restore A, Set Q[0] = 0    ─┘

000000000001 101011010000 000000001101   Shift left A, Q            ─┐
111111110100 101011010000 000000001101   A <- A - M                  ├── Cycle 4
000000000001 101011010000 000000001101   Restore A, Set Q[0] = 0    ─┘

000000000011 010110100000 000000001101   Shift left A, Q            ─┐
111111110110 010110100000 000000001101   A <- A - M                  ├── Cycle 5
000000000011 010110100000 000000001101   Restore A, Set Q[0] = 0    ─┘

000000000110 101101000000 000000001101   Shift left A, Q            ─┐
111111111001 101101000000 000000001101   A <- A - M                  ├── Cycle 6
000000000110 101101000000 000000001101   Restore A, Set Q[0] = 0    ─┘

000000001101 011010000000 000000001101   Shift left A, Q            ─┐
000000000000 011010000000 000000001101   A <- A - M                  ├── Cycle 7
000000000000 011010000001 000000001101   Set Q[0] = 1               ─┘

000000000000 110100000010 000000001101   Shift left A, Q            ─┐
111111110011 110100000010 000000001101   A <- A - M                  ├── Cycle 8
000000000000 110100000010 000000001101   Restore A, Set Q[0] = 0    ─┘

000000000001 101000000100 000000001101   Shift left A, Q            ─┐
111111110100 101000000100 000000001101   A <- A - M                  ├── Cycle 9
000000000001 101000000100 000000001101   Restore A, Set Q[0] = 0    ─┘

000000000011 010000001000 000000001101   Shift left A, Q            ─┐
111111110110 010000001000 000000001101   A <- A - M                  ├── Cycle 10
000000000011 010000001000 000000001101   Restore A, Set Q[0] = 0    ─┘

000000000110 100000010000 000000001101   Shift left A, Q            ─┐
111111111001 100000010000 000000001101   A <- A - M                  ├── Cycle 11
000000000110 100000010000 000000001101   Restore A, Set Q[0] = 0    ─┘

000000001101 000000100000 000000001101   Shift left A, Q            ─┐
000000000000 000000100000 000000001101   A <- A - M                  ├── Cycle 12
000000000000 000000100001 000000001101   Set Q[0] = 1               ─┘

Quotient : 000000100001         (33)
Remainder : 000000000000        (0)

Credits

This program was developed by Valerian Coelho. It uses the Binary Library, which were developed by the same author.