-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathnyu.py
192 lines (160 loc) · 7.01 KB
/
nyu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#coding:utf-8
import os
import torch
import torch.utils.data as data
from PIL import Image
from scipy.io import loadmat
import numpy as np
import glob
from torchvision import transforms
import random
import matplotlib.pyplot as plt
def colormap(N=256, normalized=False):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
dtype = 'float32' if normalized else 'uint8'
cmap = np.zeros((N, 3), dtype=dtype)
for i in range(N):
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j)
g = g | (bitget(c, 1) << 7-j)
b = b | (bitget(c, 2) << 7-j)
c = c >> 3
cmap[i] = np.array([r, g, b])
cmap = cmap/255 if normalized else cmap
return cmap
class NYUv2(data.Dataset):
"""NYUv2 depth dataset loader.
**Parameters:**
- **root** (string): Root directory path.
- **split** (string, optional): 'train' for training set, and 'test' for test set. Default: 'train'.
- **num_classes** (string, optional): The number of classes, must be 40 or 13. Default:13.
- **transform** (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. Default: None.
- **target_transforms** (callable, optional): A list of function/transform that takes in the target and transform it. Default: None.
- **ds_type** (string, optional): To pick samples with labels or not. Default: 'labeled'.
"""
cmap = colormap()
def __init__(self,
root,
split='train',
num_classes=13,
transform=None,
ds_type='labeled'):
assert(split in ('train', 'test'))
assert(ds_type in ('labeled', 'unlabeled'))
self.root = root
self.split = split
self.ds_type = ds_type
self.transform = transform
self.num_classes = num_classes
self.train_idx = np.array([255, ] + list(range(num_classes)))
if ds_type == 'labeled':
split_mat = loadmat(os.path.join(
self.root, 'nyuv2-meta-data', 'splits.mat'))
idxs = split_mat[self.split+'Ndxs'].reshape(-1)
self.images = [os.path.join(self.root, '480_640', 'IMAGE', '%d.png' % (idx-1))
for idx in idxs]
if self.num_classes == 13:
self.targets = [os.path.join(self.root, 'nyuv2-meta-data', '%s_labels_13' % self.split, 'new_nyu_class13_%04d.png' % idx)
for idx in idxs]
elif self.num_classes == 40:
self.targets = [os.path.join(self.root, '480_640', 'SEGMENTATION', '%04d.png' % idx)
for idx in idxs]
else:
raise ValueError(
'Invalid number of classes! Please use 13 or 40')
else:
self.images = [glob.glob(os.path.join(
self.root, 'unlabeled_images/*.png'))]
print(self.split, len(self.images))
def __getitem__(self, idx):
if self.ds_type == 'labeled':
image = Image.open(self.images[idx])
target = Image.open(self.targets[idx])
if self.transform:
image, target = self.transform(image, target)
#print(target)
target = self.train_idx[target]
return image, target
else:
image = Image.open(self.images[idx])
if self.transforms is not None:
image = self.transforms(image)
image = transforms.ToTensor()(image)
return image, None
def __len__(self):
return len(self.images)
@classmethod
def decode_target(cls, target):
target = (target+1).astype('uint8') # 255 -> 0, 0->1, 1->2
return cls.cmap[target]
class NYUv2Depth(data.Dataset):
"""NYUv2 depth dataset loader.
**Parameters:**
- **root** (string): Root directory path.
- **split** (string, optional): 'train' for training set, and 'test' for test set. Default: 'train'.
- **num_classes** (string, optional): The number of classes, must be 40 or 13. Default:13.
- **transform** (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. Default: None.
- **target_transforms** (callable, optional): A list of function/transform that takes in the target and transform it. Default: None.
- **ds_type** (string, optional): To pick samples with labels or not. Default: 'labeled'.
"""
cmap = colormap()
def __init__(self,
root,
split='train',
num_classes=13,
transform=None,
#target_transforms=None,
ds_type='labeled'):
assert(split in ('train', 'test'))
assert(ds_type in ('labeled', 'unlabeled'))
self.root = root
self.split = split
self.ds_type = ds_type
self.transform = transform
self.num_classes = num_classes
self.train_idx = np.array([255, ] + list(range(num_classes)))
if ds_type == 'labeled':
split_mat = loadmat(os.path.join(
self.root, 'nyuv2-meta-data', 'splits.mat'))
idxs = split_mat[self.split+'Ndxs'].reshape(-1)
self.images = [os.path.join(self.root, '480_640', 'IMAGE', '%d.png' % (idx-1))
for idx in idxs]
if self.num_classes == 13:
self.targets = [os.path.join(self.root, 'nyuv2-meta-data', '%s_labels_13' % self.split, 'new_nyu_class13_%04d.png' % idx)
for idx in idxs]
elif self.num_classes == 40:
self.targets = [os.path.join(self.root, '480_640', 'SEGMENTATION', '%04d.png' % idx)
for idx in idxs]
else:
raise ValueError(
'Invalid number of classes! Please use 13 or 40')
self.depths = [os.path.join(
self.root, 'FINAL_480_640', 'DEPTH', '%04d.png' % idx) for idx in idxs]
else:
self.images = [glob.glob(os.path.join(
self.root, 'unlabeled_images/*.png'))]
def __getitem__(self, idx):
if self.ds_type == 'labeled':
image = Image.open(self.images[idx])
depth = Image.open(self.depths[idx])
#print(np.array(depth,dtype='float').max())
if self.transform:
image, depth = self.transform(image, depth)
return image, depth / 1000
else:
image = Image.open(self.images[idx])
if self.transform is not None:
image = self.transform(image)
#image = transforms.ToTensor()(image)
return image, None
def __len__(self):
return len(self.images)
@classmethod
def decode_target(cls, target):
cm = plt.get_cmap('jet')
target = (target/7).clip(0,1)
target = cm(target)[:,:,:,:3]
return target