-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathFLOPs_counter.py
240 lines (197 loc) · 9.71 KB
/
FLOPs_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
import os
import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
from sparse_core import Masking, CosineDecay, LinearDecay
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
def print_model_param_nums(model=None):
if model == None:
model = torchvision.models.alexnet()
total = sum([(param!=0).sum() if len(param.size()) == 4 or len(param.size()) == 2 else 0 for name,param in model.named_parameters()])
print(' + Number of params: %.2f' % (total))
def count_model_param_flops(model=None, input_res=224, multiply_adds=True):
prods = {}
def save_hook(name):
def hook_per(self, input, output):
prods[name] = np.prod(input[0].shape)
return hook_per
list_1=[]
def simple_hook(self, input, output):
list_1.append(np.prod(input[0].shape))
list_2={}
def simple_hook2(self, input, output):
list_2['names'] = np.prod(input[0].shape)
list_conv=[]
def conv_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
num_weight_params = (self.weight.data != 0).float().sum()
assert self.weight.numel() == kernel_ops * output_channels, "Not match"
flops = (num_weight_params * (2 if multiply_adds else 1) + bias_ops * output_channels) * output_height * output_width * batch_size
list_conv.append(flops)
list_linear=[]
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
list_bn=[]
def bn_hook(self, input, output):
list_bn.append(input[0].nelement() * 2)
list_relu=[]
def relu_hook(self, input, output):
list_relu.append(input[0].nelement())
list_pooling=[]
def pooling_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size * self.kernel_size
bias_ops = 0
params = 0
flops = (kernel_ops + bias_ops) * output_channels * output_height * output_width * batch_size
list_pooling.append(flops)
list_upsample=[]
# For bilinear upsample
def upsample_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
flops = output_height * output_width * output_channels * batch_size * 12
list_upsample.append(flops)
layer_norm=[]
def layernorm_hook(self, input, output):
input = input[0]
batch_flops = np.prod(input.shape)
layer_norm.append(batch_flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d):
net.register_forward_hook(conv_hook)
if isinstance(net, torch.nn.Linear):
net.register_forward_hook(linear_hook)
if isinstance(net, torch.nn.BatchNorm2d):
net.register_forward_hook(bn_hook)
if isinstance(net, torch.nn.ReLU):
net.register_forward_hook(relu_hook)
if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d):
net.register_forward_hook(pooling_hook)
if isinstance(net, torch.nn.Upsample):
net.register_forward_hook(upsample_hook)
if isinstance(net, torch.nn.LayerNorm):
net.register_forward_hook(layernorm_hook)
return
for c in childrens:
foo(c)
if model == None:
model = torchvision.models.alexnet()
foo(model)
input =Variable(torch.rand(1, 3, input_res, input_res), requires_grad = True)
out = model(input)
total_flops = (sum(list_conv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling) + sum(list_upsample) + sum(layer_norm))
print(' + Number of FLOPs: %.2f' % (total_flops))
return total_flops
if __name__ == '__main__':
# FPR GraNet-ST 0.9, we need to delete the last 6 iteration to make it for 100 epochs
# for GraNet-ST 0.8, the first 4000 epochs is 5.84G. We need to change the code to if 'density:' and 'proportion' in
# for GraNet 0.9, we need to isolate the first 377 iterations and only calculate the rest of the flops + 8.18e9*1281152*(5+1500/10009)*3
# for Graet 0.8, nothing is wrong
# VGG-16 dense: 622275520
# customer_sparsity = []
# with open('used_files/log_GDP_0.9.out') as file:
# for line in file:
# if 'density:' in line:
# customer_sparsity.append(float(line.split()[-1]))
#
# customer_sparsity = np.array(customer_sparsity[377:]).reshape(-1, 54)
# # customer_sparsity = np.array(customer_sparsity[:54])
# print(len(customer_sparsity))
# # for i in range(1):
# # PLOPs_Para['FLOPs'].append(5.84e9)
# # PLOPs_Para['PARA'].append(25502912)
# # training flops for the first 5 epochs of dense training
# total_training_flops = 8.18e9 * 1281152 * (5 + 2000 / 10009) * 3
# # total_training_flops = 5.84e9*1281152*(4000/10009)*3
# # for i in range()
# for i in range(7, len(customer_sparsity) - 6):
# print('iter:', i)
# models = {}
#
# cls, cls_args = (VGG16, ['C', 10])
# model = cls(*(cls_args ))
# optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
# decay = CosineDecay(0.5, 1000 * (10))
# mask = Masking(optimizer, death_mode='magnitude', death_rate_decay=decay, growth_mode='random',
# redistribution_mode='none')
# customer_density = mask.add_module(model, density=0.2, sparse_init='fixed_ERK')
# model.eval()
# cur_flops = count_model_param_flops(model=model)
# cur_para = print_model_param_nums(model=model)
# total_training_flops = total_training_flops + cur_flops * 1281152 * (4000 / 10009) * 3
# print('+++Right now Total Number of FLOPs: %.2fe18' % (total_training_flops / 1e18))
# torch.save(PLOPs_Para, 'PLOPs_Para_GDP-ST_0.9.pt')
# # ResNet-50
# customer_sparsity = []
# with open('used_files/log_GDP_0.9.out') as file:
# for line in file:
# if 'density:' in line:
# customer_sparsity.append(float(line.split()[-1]))
#
# customer_sparsity = np.array(customer_sparsity[377:]).reshape(-1,54)
# # customer_sparsity = np.array(customer_sparsity[:54])
# print(len(customer_sparsity))
# # for i in range(1):
# # PLOPs_Para['FLOPs'].append(5.84e9)
# # PLOPs_Para['PARA'].append(25502912)
# # training flops for the first 5 epochs of dense training
# total_training_flops = 8.18e9*1281152*(5+2000/10009)*3
# # total_training_flops = 5.84e9*1281152*(4000/10009)*3
# # for i in range()
# for i in range(7, len(customer_sparsity)-6):
# print('iter:', i)
# model = resnet.build_resnet('resnet50', 'fanin')
# optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
# decay = CosineDecay(0.5, 1000 * (10))
# mask = Masking(optimizer, death_mode='magnitude', death_rate_decay=decay, growth_mode='random',
# redistribution_mode='none')
# mask.add_module(model, density=0.1, sparse_init='customer', customer_density=customer_sparsity[i])
#
# cur_flops = count_model_param_flops(model=model)
# cur_para = print_model_param_nums(model=model)
# total_training_flops = total_training_flops + cur_flops*1281152*(4000/10009)*3
# print('+++Right now Total Number of FLOPs: %.2fe18' % (total_training_flops / 1e18))
# # torch.save(PLOPs_Para, 'PLOPs_Para_GDP-ST_0.9.pt')
##########################################################################################
customer_sparsity = []
with open('used_files/log_GDP_0.9.out') as file:
for line in file:
if 'density:' in line:
customer_sparsity.append(float(line.split()[-1]))
customer_sparsity = np.array(customer_sparsity[:13446]).reshape(-1, 54)
# training flops for the first 5 epochs of dense training
total_training_flops = 8.2e9*1281152*(5+1500/10009)*3
# for i in range(len(customer_sparsity)-7):
# print('iter:', i)
model = resnet.build_resnet('resnet50', 'fanin')
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
decay = CosineDecay(0.5, 1000 * (10))
mask = Masking(optimizer, death_mode='magnitude', death_rate_decay=decay, growth_mode='random',
redistribution_mode='none')
mask.add_module(model, density=0.1, sparse_init='customer', customer_density=customer_sparsity[-1])
total_flops = count_model_param_flops(model=model)
total_training_flops += total_flops*1281152*(4000/10009)*3
print('+++Right now Total Number of FLOPs: %.2fe18' % (total_training_flops / 1e18))