-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain_baseline_verification.py
159 lines (133 loc) · 5.3 KB
/
train_baseline_verification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import os
from tensorboardX import SummaryWriter
from tqdm import tqdm
from pathlib import Path
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
from models import resnet
from config import cfg, update_config
from utils import set_path, create_logger, save_checkpoint, count_parameters
from data_objects.DeepSpeakerDataset import DeepSpeakerDataset
from data_objects.VoxcelebTestset import VoxcelebTestset
from functions import train_from_scratch, validate_verification
from loss import CrossEntropyLoss
def parse_args():
parser = argparse.ArgumentParser(description='Train energy network')
# general
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--load_path',
help="The path to resumed dir",
default=None)
args = parser.parse_args()
return args
def main():
args = parse_args()
update_config(cfg, args)
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
# Set the random seed manually for reproducibility.
np.random.seed(cfg.SEED)
torch.manual_seed(cfg.SEED)
torch.cuda.manual_seed_all(cfg.SEED)
# model and optimizer
model = eval('resnet.{}(num_classes={})'.format(
cfg.MODEL.NAME, cfg.MODEL.NUM_CLASSES))
model = model.cuda()
optimizer = optim.Adam(
model.net_parameters() if hasattr(model, 'net_parameters') else model.parameters(),
lr=cfg.TRAIN.LR,
)
# Loss
criterion = CrossEntropyLoss(cfg.MODEL.NUM_CLASSES).cuda()
# resume && make log dir and logger
if args.load_path and os.path.exists(args.load_path):
checkpoint_file = os.path.join(args.load_path, 'Model', 'checkpoint_best.pth')
assert os.path.exists(checkpoint_file)
checkpoint = torch.load(checkpoint_file)
# load checkpoint
begin_epoch = checkpoint['epoch']
last_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
best_eer = checkpoint['best_eer']
optimizer.load_state_dict(checkpoint['optimizer'])
args.path_helper = checkpoint['path_helper']
logger = create_logger(args.path_helper['log_path'])
logger.info("=> loaded checkpoint '{}'".format(checkpoint_file))
else:
exp_name = args.cfg.split('/')[-1].split('.')[0]
args.path_helper = set_path('logs', exp_name)
logger = create_logger(args.path_helper['log_path'])
begin_epoch = cfg.TRAIN.BEGIN_EPOCH
best_eer = 1.0
last_epoch = -1
logger.info(args)
logger.info(cfg)
logger.info("Number of parameters: {}".format(count_parameters(model)))
# dataloader
train_dataset = DeepSpeakerDataset(
Path(cfg.DATASET.DATA_DIR), cfg.DATASET.SUB_DIR, cfg.DATASET.PARTIAL_N_FRAMES)
test_dataset_verification = VoxcelebTestset(
Path(cfg.DATASET.DATA_DIR), cfg.DATASET.PARTIAL_N_FRAMES
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=cfg.TRAIN.BATCH_SIZE,
num_workers=cfg.DATASET.NUM_WORKERS,
pin_memory=True,
shuffle=True,
drop_last=True,
)
test_loader_verification = torch.utils.data.DataLoader(
dataset=test_dataset_verification,
batch_size=1,
num_workers=cfg.DATASET.NUM_WORKERS,
pin_memory=True,
shuffle=False,
drop_last=False,
)
# training setting
writer_dict = {
'writer': SummaryWriter(args.path_helper['log_path']),
'train_global_steps': begin_epoch * len(train_loader),
'valid_global_steps': begin_epoch // cfg.VAL_FREQ,
}
# training loop
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, cfg.TRAIN.END_EPOCH, cfg.TRAIN.LR_MIN,
last_epoch=last_epoch
)
for epoch in tqdm(range(begin_epoch, cfg.TRAIN.END_EPOCH), desc='train progress'):
model.train()
train_from_scratch(cfg, model, optimizer, train_loader, criterion, epoch, writer_dict, lr_scheduler)
if epoch % cfg.VAL_FREQ == 0:
eer = validate_verification(cfg, model, test_loader_verification)
# remember best acc@1 and save checkpoint
is_best = eer < best_eer
best_eer = min(eer, best_eer)
# save
logger.info('=> saving checkpoint to {}'.format(args.path_helper['ckpt_path']))
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_eer': best_eer,
'optimizer': optimizer.state_dict(),
'path_helper': args.path_helper
}, is_best, args.path_helper['ckpt_path'], 'checkpoint_{}.pth'.format(epoch))
lr_scheduler.step(epoch)
if __name__ == '__main__':
main()