forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatmul.py
63 lines (49 loc) · 1.63 KB
/
matmul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from . import benchmark
import numpy as np
class MatMulBench(benchmark.Benchmark):
def __init__(self, mode, device, dtype, B, M, N, K):
super().__init__(mode, device, dtype)
self.B = B
self.M = M
self.N = N
self.K = K
self.d1 = self.rand([B, M, N], device=device, dtype=dtype, requires_grad=self.requires_grad)
self.d2 = self.rand([B, N, K], device=device, dtype=dtype, requires_grad=self.requires_grad)
self.inputs = [self.d1, self.d2]
def forward(self, d1, d2):
y = self.matmul(d1, d2)
return y
def reference(self):
return np.matmul(self.numpy(self.d1), self.numpy(self.d2))
def config(self):
return [self.B, self.M, self.N, self.K]
@staticmethod
def module():
return "batch_matmul"
def memory_workload(self):
if self.mode == "fwd":
sol_count = 1
algorithmic_count = 1
else:
sol_count = 1 + 1
algorithmic_count = 1 + (1 + 1)
buffer_size = (
self.B * self.M * self.N
+ self.B * self.M * self.N
+ self.B * self.N * self.K
)
return {
"sol": buffer_size * sol_count,
"algorithmic": buffer_size * algorithmic_count,
}
def compute_workload(self):
if self.mode == "fwd":
count = 1
else:
count = 1 + (1 + 1)
op_count = 2 * self.B * self.M * self.N * self.K
return op_count * count
@staticmethod
def default_configs():
return [[128, 64, 128, 256]]
benchmark.register_benchmark_class(MatMulBench)