|
| 1 | +# Apartness of complex numbers |
| 2 | + |
| 3 | +```agda |
| 4 | +module complex-numbers.apartness-complex-numbers where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import complex-numbers.complex-numbers |
| 11 | +
|
| 12 | +open import foundation.dependent-pair-types |
| 13 | +open import foundation.disjunction |
| 14 | +open import foundation.empty-types |
| 15 | +open import foundation.function-types |
| 16 | +open import foundation.functoriality-disjunction |
| 17 | +open import foundation.large-apartness-relations |
| 18 | +open import foundation.negation |
| 19 | +open import foundation.propositions |
| 20 | +open import foundation.universe-levels |
| 21 | +
|
| 22 | +open import real-numbers.apartness-real-numbers |
| 23 | +``` |
| 24 | + |
| 25 | +</details> |
| 26 | + |
| 27 | +## Idea |
| 28 | + |
| 29 | +Two [complex numbers](complex-numbers.complex-numbers.md) are |
| 30 | +{{#concept "apart" Disambiguation="complex numbers" Agda=apart-ℂ}} if their |
| 31 | +[real](real-numbers.dedekind-real-numbers.md) parts are |
| 32 | +[apart](real-numbers.apartness-real-numbers.md) [or](foundation.disjunction.md) |
| 33 | +their imaginary parts are [apart]. |
| 34 | + |
| 35 | +## Definition |
| 36 | + |
| 37 | +```agda |
| 38 | +module _ |
| 39 | + {l1 l2 : Level} (z : ℂ l1) (w : ℂ l2) |
| 40 | + where |
| 41 | +
|
| 42 | + apart-prop-ℂ : Prop (l1 ⊔ l2) |
| 43 | + apart-prop-ℂ = |
| 44 | + (apart-prop-ℝ (re-ℂ z) (re-ℂ w)) ∨ (apart-prop-ℝ (im-ℂ z) (im-ℂ w)) |
| 45 | +
|
| 46 | + apart-ℂ : UU (l1 ⊔ l2) |
| 47 | + apart-ℂ = type-Prop apart-prop-ℂ |
| 48 | +``` |
| 49 | + |
| 50 | +## Properties |
| 51 | + |
| 52 | +### Apartness is antireflexive |
| 53 | + |
| 54 | +```agda |
| 55 | +abstract |
| 56 | + antireflexive-apart-ℂ : {l : Level} (z : ℂ l) → ¬ (apart-ℂ z z) |
| 57 | + antireflexive-apart-ℂ (a , b) = |
| 58 | + elim-disjunction |
| 59 | + ( empty-Prop) |
| 60 | + ( antireflexive-apart-ℝ a) |
| 61 | + ( antireflexive-apart-ℝ b) |
| 62 | +``` |
| 63 | + |
| 64 | +### Apartness is symmetric |
| 65 | + |
| 66 | +```agda |
| 67 | +abstract |
| 68 | + symmetric-apart-ℂ : |
| 69 | + {l1 l2 : Level} (z : ℂ l1) (w : ℂ l2) → apart-ℂ z w → apart-ℂ w z |
| 70 | + symmetric-apart-ℂ (a , b) (c , d) = |
| 71 | + map-disjunction symmetric-apart-ℝ symmetric-apart-ℝ |
| 72 | +``` |
| 73 | + |
| 74 | +### Apartness is cotransitive |
| 75 | + |
| 76 | +```agda |
| 77 | +abstract |
| 78 | + cotransitive-apart-ℂ : |
| 79 | + {l1 l2 l3 : Level} (x : ℂ l1) (y : ℂ l2) (z : ℂ l3) → |
| 80 | + apart-ℂ x y → disjunction-type (apart-ℂ x z) (apart-ℂ z y) |
| 81 | + cotransitive-apart-ℂ x@(a , b) y@(c , d) z@(e , f) = |
| 82 | + elim-disjunction |
| 83 | + ( (apart-prop-ℂ x z) ∨ (apart-prop-ℂ z y)) |
| 84 | + ( map-disjunction inl-disjunction inl-disjunction ∘ |
| 85 | + cotransitive-apart-ℝ a c e) |
| 86 | + ( map-disjunction inr-disjunction inr-disjunction ∘ |
| 87 | + cotransitive-apart-ℝ b d f) |
| 88 | +``` |
| 89 | + |
| 90 | +### Apartness on the complex numbers is a large apartness relation |
| 91 | + |
| 92 | +```agda |
| 93 | +large-apartness-relation-ℂ : Large-Apartness-Relation _⊔_ ℂ |
| 94 | +apart-prop-Large-Apartness-Relation large-apartness-relation-ℂ = |
| 95 | + apart-prop-ℂ |
| 96 | +antirefl-Large-Apartness-Relation large-apartness-relation-ℂ = |
| 97 | + antireflexive-apart-ℂ |
| 98 | +symmetric-Large-Apartness-Relation large-apartness-relation-ℂ = |
| 99 | + symmetric-apart-ℂ |
| 100 | +cotransitive-Large-Apartness-Relation large-apartness-relation-ℂ = |
| 101 | + cotransitive-apart-ℂ |
| 102 | +``` |
0 commit comments