Skip to content

Commit 2fd6dd4

Browse files
committed
Definition of correspondence sequences.
1 parent 71c82d1 commit 2fd6dd4

File tree

1 file changed

+33
-0
lines changed

1 file changed

+33
-0
lines changed

code/Reducibility/MyhillIsomorphism.v

Lines changed: 33 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,33 @@
1+
Require Import init.imports.
2+
Require Import Inductive.ListProperties.
3+
Require Import Reducibility.OneOneReductions.
4+
5+
Section CorrespondenceSequences.
6+
7+
Hypothesis X Y : UU.
8+
Hypothesis p : X → hProp.
9+
Hypothesis q : Y → hProp.
10+
Hypothesis deceqX : isdeceq X.
11+
Hypothesis deceqY : isdeceq Y.
12+
13+
Definition corr_prop1 (C : list (X × Y)) := ∏ (x : X) (y : Y), is_in (x,, y) C → p x <-> q y.
14+
15+
Definition corr_prop2 (C : list (X × Y)) := ∏ (x : X) (y1 y2 : Y), is_in (x,, y1) C -> is_in (x,, y2) C -> y1 = y2.
16+
17+
Definition corr_prop3 (C : list (X × Y)) := ∏ (x1 x2 : X) (y : Y), is_in (x1,, y) C -> is_in (x2,, y) C -> x1 = x2.
18+
19+
Definition iscorrespondence (C : list (X × Y)) := corr_prop1 C × corr_prop2 C × corr_prop3 C.
20+
21+
Lemma isapropiscorrespondence (C : list (X × Y)) : isaprop (iscorrespondence C).
22+
Proof.
23+
apply isapropdirprod.
24+
- apply impred_isaprop; intros x. apply impred_isaprop; intros y. apply isapropimpl. apply isapropdirprod; apply isapropimpl, propproperty.
25+
- apply isapropdirprod;
26+
apply impred_isaprop; intros x; apply impred_isaprop; intros y1; apply impred_isaprop; intros y2; repeat apply isapropimpl; apply isasetifdeceq. apply deceqY. apply deceqX.
27+
Qed.
28+
29+
Definition first_projection (C : list (X × Y)) := map dirprod_pr1 C.
30+
31+
Definition second_projection (C : list (X × Y)) := map dirprod_pr2 C.
32+
33+
End CorrespondenceSequences.

0 commit comments

Comments
 (0)