forked from pytorch/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchar_rnn_generation_tutorial.html
1001 lines (821 loc) · 82.9 KB
/
char_rnn_generation_tutorial.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Generating Names with a Character-Level RNN — PyTorch Tutorials 0.2.0_4 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/pytorch_theme.css" type="text/css" />
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Lato" type="text/css" />
<link rel="index" title="Index"
href="../genindex.html"/>
<link rel="search" title="Search" href="../search.html"/>
<link rel="top" title="PyTorch Tutorials 0.2.0_4 documentation" href="../index.html"/>
<link rel="next" title="Translation with a Sequence to Sequence Network and Attention" href="seq2seq_translation_tutorial.html"/>
<link rel="prev" title="Classifying Names with a Character-Level RNN" href="char_rnn_classification_tutorial.html"/>
<script src="../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search">
<a href="../index.html" class="icon icon-home"> PyTorch Tutorials
<img src="../_static/pytorch-logo-dark.svg" class="logo" />
</a>
<div class="version">
0.2.0_4
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Beginner Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../beginner/deep_learning_60min_blitz.html">Deep Learning with PyTorch: A 60 Minute Blitz</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../beginner/blitz/tensor_tutorial.html">What is PyTorch?</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/tensor_tutorial.html#getting-started">Getting Started</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/tensor_tutorial.html#tensors">Tensors</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/tensor_tutorial.html#operations">Operations</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/tensor_tutorial.html#numpy-bridge">Numpy Bridge</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/tensor_tutorial.html#converting-torch-tensor-to-numpy-array">Converting torch Tensor to numpy Array</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/tensor_tutorial.html#converting-numpy-array-to-torch-tensor">Converting numpy Array to torch Tensor</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/tensor_tutorial.html#cuda-tensors">CUDA Tensors</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/blitz/autograd_tutorial.html">Autograd: automatic differentiation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/autograd_tutorial.html#variable">Variable</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/autograd_tutorial.html#gradients">Gradients</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/blitz/neural_networks_tutorial.html">Neural Networks</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/neural_networks_tutorial.html#define-the-network">Define the network</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/neural_networks_tutorial.html#loss-function">Loss Function</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/neural_networks_tutorial.html#backprop">Backprop</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/neural_networks_tutorial.html#update-the-weights">Update the weights</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html">Training a classifier</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#what-about-data">What about data?</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#training-an-image-classifier">Training an image classifier</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#loading-and-normalizing-cifar10">1. Loading and normalizing CIFAR10</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#define-a-convolution-neural-network">2. Define a Convolution Neural Network</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#define-a-loss-function-and-optimizer">3. Define a Loss function and optimizer</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#train-the-network">4. Train the network</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#test-the-network-on-the-test-data">5. Test the network on the test data</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#training-on-gpu">Training on GPU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/blitz/cifar10_tutorial.html#where-do-i-go-next">Where do I go next?</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/former_torchies_tutorial.html">PyTorch for former Torch users</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../beginner/former_torchies/tensor_tutorial.html">Tensors</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/tensor_tutorial.html#inplace-out-of-place">Inplace / Out-of-place</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/tensor_tutorial.html#zero-indexing">Zero Indexing</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/tensor_tutorial.html#no-camel-casing">No camel casing</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/tensor_tutorial.html#numpy-bridge">Numpy Bridge</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/former_torchies/tensor_tutorial.html#converting-torch-tensor-to-numpy-array">Converting torch Tensor to numpy Array</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/former_torchies/tensor_tutorial.html#converting-numpy-array-to-torch-tensor">Converting numpy Array to torch Tensor</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/tensor_tutorial.html#cuda-tensors">CUDA Tensors</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/former_torchies/autograd_tutorial.html">Autograd</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/autograd_tutorial.html#variable">Variable</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/autograd_tutorial.html#gradients">Gradients</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/former_torchies/nn_tutorial.html">nn package</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/nn_tutorial.html#example-1-convnet">Example 1: ConvNet</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/nn_tutorial.html#forward-and-backward-function-hooks">Forward and Backward Function Hooks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/nn_tutorial.html#example-2-recurrent-net">Example 2: Recurrent Net</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/former_torchies/parallelism_tutorial.html">Multi-GPU examples</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/parallelism_tutorial.html#dataparallel">DataParallel</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/former_torchies/parallelism_tutorial.html#part-of-the-model-on-cpu-and-part-on-the-gpu">Part of the model on CPU and part on the GPU</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/pytorch_with_examples.html">Learning PyTorch with Examples</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../beginner/pytorch_with_examples.html#tensors">Tensors</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#warm-up-numpy">Warm-up: numpy</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#pytorch-tensors">PyTorch: Tensors</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/pytorch_with_examples.html#autograd">Autograd</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#pytorch-variables-and-autograd">PyTorch: Variables and autograd</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#pytorch-defining-new-autograd-functions">PyTorch: Defining new autograd functions</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#tensorflow-static-graphs">TensorFlow: Static Graphs</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/pytorch_with_examples.html#nn-module"><cite>nn</cite> module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#pytorch-nn">PyTorch: nn</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#pytorch-optim">PyTorch: optim</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#pytorch-custom-nn-modules">PyTorch: Custom nn Modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#pytorch-control-flow-weight-sharing">PyTorch: Control Flow + Weight Sharing</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/pytorch_with_examples.html#examples">Examples</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#id1">Tensors</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_tensor/two_layer_net_numpy.html">Warm-up: numpy</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_tensor/two_layer_net_tensor.html">PyTorch: Tensors</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#id2">Autograd</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_autograd/two_layer_net_autograd.html">PyTorch: Variables and autograd</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_autograd/two_layer_net_custom_function.html">PyTorch: Defining new autograd functions</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_autograd/tf_two_layer_net.html">TensorFlow: Static Graphs</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/pytorch_with_examples.html#id3"><cite>nn</cite> module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_nn/two_layer_net_nn.html">PyTorch: nn</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_nn/two_layer_net_optim.html">PyTorch: optim</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_nn/two_layer_net_module.html">PyTorch: Custom nn Modules</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/examples_nn/dynamic_net.html">PyTorch: Control Flow + Weight Sharing</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html">Transfer Learning tutorial</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html#load-data">Load Data</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html#visualize-a-few-images">Visualize a few images</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html#training-the-model">Training the model</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html#visualizing-the-model-predictions">Visualizing the model predictions</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html#finetuning-the-convnet">Finetuning the convnet</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html#train-and-evaluate">Train and evaluate</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html#convnet-as-fixed-feature-extractor">ConvNet as fixed feature extractor</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html#id1">Train and evaluate</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/data_loading_tutorial.html">Data Loading and Processing Tutorial</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../beginner/data_loading_tutorial.html#dataset-class">Dataset class</a></li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/data_loading_tutorial.html#transforms">Transforms</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/data_loading_tutorial.html#compose-transforms">Compose transforms</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/data_loading_tutorial.html#iterating-through-the-dataset">Iterating through the dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/data_loading_tutorial.html#afterword-torchvision">Afterword: torchvision</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/deep_learning_nlp_tutorial.html">Deep Learning for NLP with Pytorch</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../beginner/nlp/pytorch_tutorial.html">Introduction to PyTorch</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/pytorch_tutorial.html#introduction-to-torch-s-tensor-library">Introduction to Torch’s tensor library</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/nlp/pytorch_tutorial.html#creating-tensors">Creating Tensors</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/nlp/pytorch_tutorial.html#operations-with-tensors">Operations with Tensors</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/nlp/pytorch_tutorial.html#reshaping-tensors">Reshaping Tensors</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/pytorch_tutorial.html#computation-graphs-and-automatic-differentiation">Computation Graphs and Automatic Differentiation</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html">Deep Learning with PyTorch</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html#deep-learning-building-blocks-affine-maps-non-linearities-and-objectives">Deep Learning Building Blocks: Affine maps, non-linearities and objectives</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html#affine-maps">Affine Maps</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html#non-linearities">Non-Linearities</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html#softmax-and-probabilities">Softmax and Probabilities</a></li>
<li class="toctree-l4"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html#objective-functions">Objective Functions</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html#optimization-and-training">Optimization and Training</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html#creating-network-components-in-pytorch">Creating Network Components in Pytorch</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../beginner/nlp/deep_learning_tutorial.html#example-logistic-regression-bag-of-words-classifier">Example: Logistic Regression Bag-of-Words classifier</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/nlp/word_embeddings_tutorial.html">Word Embeddings: Encoding Lexical Semantics</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/word_embeddings_tutorial.html#getting-dense-word-embeddings">Getting Dense Word Embeddings</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/word_embeddings_tutorial.html#word-embeddings-in-pytorch">Word Embeddings in Pytorch</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/word_embeddings_tutorial.html#an-example-n-gram-language-modeling">An Example: N-Gram Language Modeling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/word_embeddings_tutorial.html#exercise-computing-word-embeddings-continuous-bag-of-words">Exercise: Computing Word Embeddings: Continuous Bag-of-Words</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/nlp/sequence_models_tutorial.html">Sequence Models and Long-Short Term Memory Networks</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/sequence_models_tutorial.html#lstm-s-in-pytorch">LSTM’s in Pytorch</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/sequence_models_tutorial.html#example-an-lstm-for-part-of-speech-tagging">Example: An LSTM for Part-of-Speech Tagging</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/sequence_models_tutorial.html#exercise-augmenting-the-lstm-part-of-speech-tagger-with-character-level-features">Exercise: Augmenting the LSTM part-of-speech tagger with character-level features</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../beginner/nlp/advanced_tutorial.html">Advanced: Making Dynamic Decisions and the Bi-LSTM CRF</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/advanced_tutorial.html#dynamic-versus-static-deep-learning-toolkits">Dynamic versus Static Deep Learning Toolkits</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/advanced_tutorial.html#bi-lstm-conditional-random-field-discussion">Bi-LSTM Conditional Random Field Discussion</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/advanced_tutorial.html#implementation-notes">Implementation Notes</a></li>
<li class="toctree-l3"><a class="reference internal" href="../beginner/nlp/advanced_tutorial.html#exercise-a-new-loss-function-for-discriminative-tagging">Exercise: A new loss function for discriminative tagging</a></li>
</ul>
</li>
</ul>
</li>
</ul>
<p class="caption"><span class="caption-text">Intermediate Tutorials</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="char_rnn_classification_tutorial.html">Classifying Names with a Character-Level RNN</a><ul>
<li class="toctree-l2"><a class="reference internal" href="char_rnn_classification_tutorial.html#preparing-the-data">Preparing the Data</a><ul>
<li class="toctree-l3"><a class="reference internal" href="char_rnn_classification_tutorial.html#turning-names-into-tensors">Turning Names into Tensors</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="char_rnn_classification_tutorial.html#creating-the-network">Creating the Network</a></li>
<li class="toctree-l2"><a class="reference internal" href="char_rnn_classification_tutorial.html#training">Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="char_rnn_classification_tutorial.html#preparing-for-training">Preparing for Training</a></li>
<li class="toctree-l3"><a class="reference internal" href="char_rnn_classification_tutorial.html#training-the-network">Training the Network</a></li>
<li class="toctree-l3"><a class="reference internal" href="char_rnn_classification_tutorial.html#plotting-the-results">Plotting the Results</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="char_rnn_classification_tutorial.html#evaluating-the-results">Evaluating the Results</a><ul>
<li class="toctree-l3"><a class="reference internal" href="char_rnn_classification_tutorial.html#running-on-user-input">Running on User Input</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="char_rnn_classification_tutorial.html#exercises">Exercises</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Generating Names with a Character-Level RNN</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#preparing-the-data">Preparing the Data</a></li>
<li class="toctree-l2"><a class="reference internal" href="#creating-the-network">Creating the Network</a></li>
<li class="toctree-l2"><a class="reference internal" href="#training">Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#preparing-for-training">Preparing for Training</a></li>
<li class="toctree-l3"><a class="reference internal" href="#training-the-network">Training the Network</a></li>
<li class="toctree-l3"><a class="reference internal" href="#plotting-the-losses">Plotting the Losses</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#sampling-the-network">Sampling the Network</a></li>
<li class="toctree-l2"><a class="reference internal" href="#exercises">Exercises</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="seq2seq_translation_tutorial.html">Translation with a Sequence to Sequence Network and Attention</a><ul>
<li class="toctree-l2"><a class="reference internal" href="seq2seq_translation_tutorial.html#loading-data-files">Loading data files</a></li>
<li class="toctree-l2"><a class="reference internal" href="seq2seq_translation_tutorial.html#the-seq2seq-model">The Seq2Seq Model</a><ul>
<li class="toctree-l3"><a class="reference internal" href="seq2seq_translation_tutorial.html#the-encoder">The Encoder</a></li>
<li class="toctree-l3"><a class="reference internal" href="seq2seq_translation_tutorial.html#the-decoder">The Decoder</a><ul>
<li class="toctree-l4"><a class="reference internal" href="seq2seq_translation_tutorial.html#simple-decoder">Simple Decoder</a></li>
<li class="toctree-l4"><a class="reference internal" href="seq2seq_translation_tutorial.html#attention-decoder">Attention Decoder</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="seq2seq_translation_tutorial.html#training">Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="seq2seq_translation_tutorial.html#preparing-training-data">Preparing Training Data</a></li>
<li class="toctree-l3"><a class="reference internal" href="seq2seq_translation_tutorial.html#training-the-model">Training the Model</a></li>
<li class="toctree-l3"><a class="reference internal" href="seq2seq_translation_tutorial.html#plotting-results">Plotting results</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="seq2seq_translation_tutorial.html#evaluation">Evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="seq2seq_translation_tutorial.html#training-and-evaluating">Training and Evaluating</a><ul>
<li class="toctree-l3"><a class="reference internal" href="seq2seq_translation_tutorial.html#visualizing-attention">Visualizing Attention</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="seq2seq_translation_tutorial.html#exercises">Exercises</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="reinforcement_q_learning.html">Reinforcement Learning (DQN) tutorial</a><ul>
<li class="toctree-l2"><a class="reference internal" href="reinforcement_q_learning.html#replay-memory">Replay Memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="reinforcement_q_learning.html#dqn-algorithm">DQN algorithm</a><ul>
<li class="toctree-l3"><a class="reference internal" href="reinforcement_q_learning.html#q-network">Q-network</a></li>
<li class="toctree-l3"><a class="reference internal" href="reinforcement_q_learning.html#input-extraction">Input extraction</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="reinforcement_q_learning.html#training">Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="reinforcement_q_learning.html#hyperparameters-and-utilities">Hyperparameters and utilities</a></li>
<li class="toctree-l3"><a class="reference internal" href="reinforcement_q_learning.html#training-loop">Training loop</a></li>
</ul>
</li>
</ul>
</li>
</ul>
<p class="caption"><span class="caption-text">Advanced Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../advanced/neural_style_tutorial.html">Neural Transfer with PyTorch</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../advanced/neural_style_tutorial.html#introduction">Introduction</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#neural-what">Neural what?</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#how-does-it-work">How does it work?</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../advanced/neural_style_tutorial.html#ok-how-does-it-work">OK. How does it work?</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../advanced/neural_style_tutorial.html#pytorch-implementation">PyTorch implementation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#packages">Packages</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#cuda">Cuda</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#load-images">Load images</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#display-images">Display images</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#content-loss">Content loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#style-loss">Style loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#load-the-neural-network">Load the neural network</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#input-image">Input image</a></li>
<li class="toctree-l3"><a class="reference internal" href="../advanced/neural_style_tutorial.html#gradient-descent">Gradient descent</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/numpy_extensions_tutorial.html">Creating extensions using numpy and scipy</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../advanced/numpy_extensions_tutorial.html#parameter-less-example">Parameter-less example</a></li>
<li class="toctree-l2"><a class="reference internal" href="../advanced/numpy_extensions_tutorial.html#parametrized-example">Parametrized example</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/super_resolution_with_caffe2.html">Transfering a model from PyTorch to Caffe2 and Mobile using ONNX</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../advanced/super_resolution_with_caffe2.html#transfering-srresnet-using-onnx">Transfering SRResNet using ONNX</a></li>
<li class="toctree-l2"><a class="reference internal" href="../advanced/super_resolution_with_caffe2.html#running-the-model-on-mobile-devices">Running the model on mobile devices</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/c_extension.html">Custom C extensions for pytorch</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../advanced/c_extension.html#step-1-prepare-your-c-code">Step 1. prepare your C code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../advanced/c_extension.html#step-2-include-it-in-your-python-code">Step 2: Include it in your Python code</a></li>
</ul>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">PyTorch Tutorials</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html">Docs</a> »</li>
<li>Generating Names with a Character-Level RNN</li>
<li class="wy-breadcrumbs-aside">
<a href="../_sources/intermediate/char_rnn_generation_tutorial.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="generating-names-with-a-character-level-rnn">
<span id="sphx-glr-intermediate-char-rnn-generation-tutorial-py"></span><h1>Generating Names with a Character-Level RNN<a class="headerlink" href="#generating-names-with-a-character-level-rnn" title="Permalink to this headline">¶</a></h1>
<p><strong>Author</strong>: <a class="reference external" href="https://github.com/spro/practical-pytorch">Sean Robertson</a></p>
<p>In the <a class="reference internal" href="char_rnn_classification_tutorial.html"><span class="doc">last tutorial</span></a>
we used a RNN to classify names into their language of origin. This time
we’ll turn around and generate names from languages.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">></span> <span class="n">python</span> <span class="n">sample</span><span class="o">.</span><span class="n">py</span> <span class="n">Russian</span> <span class="n">RUS</span>
<span class="n">Rovakov</span>
<span class="n">Uantov</span>
<span class="n">Shavakov</span>
<span class="o">></span> <span class="n">python</span> <span class="n">sample</span><span class="o">.</span><span class="n">py</span> <span class="n">German</span> <span class="n">GER</span>
<span class="n">Gerren</span>
<span class="n">Ereng</span>
<span class="n">Rosher</span>
<span class="o">></span> <span class="n">python</span> <span class="n">sample</span><span class="o">.</span><span class="n">py</span> <span class="n">Spanish</span> <span class="n">SPA</span>
<span class="n">Salla</span>
<span class="n">Parer</span>
<span class="n">Allan</span>
<span class="o">></span> <span class="n">python</span> <span class="n">sample</span><span class="o">.</span><span class="n">py</span> <span class="n">Chinese</span> <span class="n">CHI</span>
<span class="n">Chan</span>
<span class="n">Hang</span>
<span class="n">Iun</span>
</pre></div>
</div>
<p>We are still hand-crafting a small RNN with a few linear layers. The big
difference is instead of predicting a category after reading in all the
letters of a name, we input a category and output one letter at a time.
Recurrently predicting characters to form language (this could also be
done with words or other higher order constructs) is often referred to
as a “language model”.</p>
<p><strong>Recommended Reading:</strong></p>
<p>I assume you have at least installed PyTorch, know Python, and
understand Tensors:</p>
<ul class="simple">
<li><a class="reference external" href="http://pytorch.org/">http://pytorch.org/</a> For installation instructions</li>
<li><a class="reference internal" href="../beginner/deep_learning_60min_blitz.html"><span class="doc">Deep Learning with PyTorch: A 60 Minute Blitz</span></a> to get started with PyTorch in general</li>
<li><a class="reference internal" href="../beginner/pytorch_with_examples.html"><span class="doc">Learning PyTorch with Examples</span></a> for a wide and deep overview</li>
<li><a class="reference internal" href="../beginner/former_torchies_tutorial.html"><span class="doc">PyTorch for former Torch users</span></a> if you are former Lua Torch user</li>
</ul>
<p>It would also be useful to know about RNNs and how they work:</p>
<ul class="simple">
<li><a class="reference external" href="http://karpathy.github.io/2015/05/21/rnn-effectiveness/">The Unreasonable Effectiveness of Recurrent Neural
Networks</a>
shows a bunch of real life examples</li>
<li><a class="reference external" href="http://colah.github.io/posts/2015-08-Understanding-LSTMs/">Understanding LSTM
Networks</a>
is about LSTMs specifically but also informative about RNNs in
general</li>
</ul>
<p>I also suggest the previous tutorial, <a class="reference internal" href="char_rnn_classification_tutorial.html"><span class="doc">Classifying Names with a Character-Level RNN</span></a></p>
<div class="section" id="preparing-the-data">
<h2>Preparing the Data<a class="headerlink" href="#preparing-the-data" title="Permalink to this headline">¶</a></h2>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Download the data from
<a class="reference external" href="https://download.pytorch.org/tutorial/data.zip">here</a>
and extract it to the current directory.</p>
</div>
<p>See the last tutorial for more detail of this process. In short, there
are a bunch of plain text files <code class="docutils literal"><span class="pre">data/names/[Language].txt</span></code> with a
name per line. We split lines into an array, convert Unicode to ASCII,
and end up with a dictionary <code class="docutils literal"><span class="pre">{language:</span> <span class="pre">[names</span> <span class="pre">...]}</span></code>.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">unicode_literals</span><span class="p">,</span> <span class="n">print_function</span><span class="p">,</span> <span class="n">division</span>
<span class="kn">from</span> <span class="nn">io</span> <span class="kn">import</span> <span class="nb">open</span>
<span class="kn">import</span> <span class="nn">glob</span>
<span class="kn">import</span> <span class="nn">unicodedata</span>
<span class="kn">import</span> <span class="nn">string</span>
<span class="n">all_letters</span> <span class="o">=</span> <span class="n">string</span><span class="o">.</span><span class="n">ascii_letters</span> <span class="o">+</span> <span class="s2">" .,;'-"</span>
<span class="n">n_letters</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">all_letters</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># Plus EOS marker</span>
<span class="k">def</span> <span class="nf">findFiles</span><span class="p">(</span><span class="n">path</span><span class="p">):</span> <span class="k">return</span> <span class="n">glob</span><span class="o">.</span><span class="n">glob</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
<span class="c1"># Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427</span>
<span class="k">def</span> <span class="nf">unicodeToAscii</span><span class="p">(</span><span class="n">s</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">''</span><span class="o">.</span><span class="n">join</span><span class="p">(</span>
<span class="n">c</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">unicodedata</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="s1">'NFD'</span><span class="p">,</span> <span class="n">s</span><span class="p">)</span>
<span class="k">if</span> <span class="n">unicodedata</span><span class="o">.</span><span class="n">category</span><span class="p">(</span><span class="n">c</span><span class="p">)</span> <span class="o">!=</span> <span class="s1">'Mn'</span>
<span class="ow">and</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">all_letters</span>
<span class="p">)</span>
<span class="c1"># Read a file and split into lines</span>
<span class="k">def</span> <span class="nf">readLines</span><span class="p">(</span><span class="n">filename</span><span class="p">):</span>
<span class="n">lines</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">filename</span><span class="p">,</span> <span class="n">encoding</span><span class="o">=</span><span class="s1">'utf-8'</span><span class="p">)</span><span class="o">.</span><span class="n">read</span><span class="p">()</span><span class="o">.</span><span class="n">strip</span><span class="p">()</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="p">)</span>
<span class="k">return</span> <span class="p">[</span><span class="n">unicodeToAscii</span><span class="p">(</span><span class="n">line</span><span class="p">)</span> <span class="k">for</span> <span class="n">line</span> <span class="ow">in</span> <span class="n">lines</span><span class="p">]</span>
<span class="c1"># Build the category_lines dictionary, a list of lines per category</span>
<span class="n">category_lines</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">all_categories</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">filename</span> <span class="ow">in</span> <span class="n">findFiles</span><span class="p">(</span><span class="s1">'data/names/*.txt'</span><span class="p">):</span>
<span class="n">category</span> <span class="o">=</span> <span class="n">filename</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'/'</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'.'</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">all_categories</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">category</span><span class="p">)</span>
<span class="n">lines</span> <span class="o">=</span> <span class="n">readLines</span><span class="p">(</span><span class="n">filename</span><span class="p">)</span>
<span class="n">category_lines</span><span class="p">[</span><span class="n">category</span><span class="p">]</span> <span class="o">=</span> <span class="n">lines</span>
<span class="n">n_categories</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">all_categories</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'# categories:'</span><span class="p">,</span> <span class="n">n_categories</span><span class="p">,</span> <span class="n">all_categories</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">unicodeToAscii</span><span class="p">(</span><span class="s2">"O'Néàl"</span><span class="p">))</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default"><div class="highlight"><pre><span></span><span class="c1"># categories: 18 ['Chinese', 'Spanish', 'Japanese', 'Dutch', 'Portuguese', 'Irish', 'German', 'Vietnamese', 'French', 'English', 'Arabic', 'Greek', 'Scottish', 'Polish', 'Czech', 'Russian', 'Korean', 'Italian']</span>
<span class="n">O</span><span class="s1">'Neal</span>
</pre></div>
</div>
</div>
<div class="section" id="creating-the-network">
<h2>Creating the Network<a class="headerlink" href="#creating-the-network" title="Permalink to this headline">¶</a></h2>
<p>This network extends <a class="reference external" href="#Creating-the-Network">the last tutorial’s RNN</a>
with an extra argument for the category tensor, which is concatenated
along with the others. The category tensor is a one-hot vector just like
the letter input.</p>
<p>We will interpret the output as the probability of the next letter. When
sampling, the most likely output letter is used as the next input
letter.</p>
<p>I added a second linear layer <code class="docutils literal"><span class="pre">o2o</span></code> (after combining hidden and
output) to give it more muscle to work with. There’s also a dropout
layer, which <a class="reference external" href="https://arxiv.org/abs/1207.0580">randomly zeros parts of its
input</a> with a given probability
(here 0.1) and is usually used to fuzz inputs to prevent overfitting.
Here we’re using it towards the end of the network to purposely add some
chaos and increase sampling variety.</p>
<div class="figure">
<img alt="" src="https://i.imgur.com/jzVrf7f.png" />
</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="kn">as</span> <span class="nn">nn</span>
<span class="kn">from</span> <span class="nn">torch.autograd</span> <span class="kn">import</span> <span class="n">Variable</span>
<span class="k">class</span> <span class="nc">RNN</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">output_size</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RNN</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i2h</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">n_categories</span> <span class="o">+</span> <span class="n">input_size</span> <span class="o">+</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i2o</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">n_categories</span> <span class="o">+</span> <span class="n">input_size</span> <span class="o">+</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">output_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">o2o</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">hidden_size</span> <span class="o">+</span> <span class="n">output_size</span><span class="p">,</span> <span class="n">output_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="mf">0.1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">softmax</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LogSoftmax</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">category</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">hidden</span><span class="p">):</span>
<span class="n">input_combined</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">category</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">hidden</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">hidden</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">i2h</span><span class="p">(</span><span class="n">input_combined</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">i2o</span><span class="p">(</span><span class="n">input_combined</span><span class="p">)</span>
<span class="n">output_combined</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">hidden</span><span class="p">,</span> <span class="n">output</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">o2o</span><span class="p">(</span><span class="n">output_combined</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="n">hidden</span>
<span class="k">def</span> <span class="nf">initHidden</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="n">Variable</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">))</span>
</pre></div>
</div>
</div>
<div class="section" id="training">
<h2>Training<a class="headerlink" href="#training" title="Permalink to this headline">¶</a></h2>
<div class="section" id="preparing-for-training">
<h3>Preparing for Training<a class="headerlink" href="#preparing-for-training" title="Permalink to this headline">¶</a></h3>
<p>First of all, helper functions to get random pairs of (category, line):</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">random</span>
<span class="c1"># Random item from a list</span>
<span class="k">def</span> <span class="nf">randomChoice</span><span class="p">(</span><span class="n">l</span><span class="p">):</span>
<span class="k">return</span> <span class="n">l</span><span class="p">[</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">l</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)]</span>
<span class="c1"># Get a random category and random line from that category</span>
<span class="k">def</span> <span class="nf">randomTrainingPair</span><span class="p">():</span>
<span class="n">category</span> <span class="o">=</span> <span class="n">randomChoice</span><span class="p">(</span><span class="n">all_categories</span><span class="p">)</span>
<span class="n">line</span> <span class="o">=</span> <span class="n">randomChoice</span><span class="p">(</span><span class="n">category_lines</span><span class="p">[</span><span class="n">category</span><span class="p">])</span>
<span class="k">return</span> <span class="n">category</span><span class="p">,</span> <span class="n">line</span>
</pre></div>
</div>
<p>For each timestep (that is, for each letter in a training word) the
inputs of the network will be
<code class="docutils literal"><span class="pre">(category,</span> <span class="pre">current</span> <span class="pre">letter,</span> <span class="pre">hidden</span> <span class="pre">state)</span></code> and the outputs will be
<code class="docutils literal"><span class="pre">(next</span> <span class="pre">letter,</span> <span class="pre">next</span> <span class="pre">hidden</span> <span class="pre">state)</span></code>. So for each training set, we’ll
need the category, a set of input letters, and a set of output/target
letters.</p>
<p>Since we are predicting the next letter from the current letter for each
timestep, the letter pairs are groups of consecutive letters from the
line - e.g. for <code class="docutils literal"><span class="pre">"ABCD<EOS>"</span></code> we would create (“A”, “B”), (“B”, “C”),
(“C”, “D”), (“D”, “EOS”).</p>
<div class="figure">
<img alt="" src="https://i.imgur.com/JH58tXY.png" />
</div>
<p>The category tensor is a <a class="reference external" href="https://en.wikipedia.org/wiki/One-hot">one-hot
tensor</a> of size
<code class="docutils literal"><span class="pre"><1</span> <span class="pre">x</span> <span class="pre">n_categories></span></code>. When training we feed it to the network at every
timestep - this is a design choice, it could have been included as part
of initial hidden state or some other strategy.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># One-hot vector for category</span>
<span class="k">def</span> <span class="nf">categoryTensor</span><span class="p">(</span><span class="n">category</span><span class="p">):</span>
<span class="n">li</span> <span class="o">=</span> <span class="n">all_categories</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">category</span><span class="p">)</span>
<span class="n">tensor</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n_categories</span><span class="p">)</span>
<span class="n">tensor</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">li</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">return</span> <span class="n">tensor</span>
<span class="c1"># One-hot matrix of first to last letters (not including EOS) for input</span>
<span class="k">def</span> <span class="nf">inputTensor</span><span class="p">(</span><span class="n">line</span><span class="p">):</span>
<span class="n">tensor</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">line</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n_letters</span><span class="p">)</span>
<span class="k">for</span> <span class="n">li</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">line</span><span class="p">)):</span>
<span class="n">letter</span> <span class="o">=</span> <span class="n">line</span><span class="p">[</span><span class="n">li</span><span class="p">]</span>
<span class="n">tensor</span><span class="p">[</span><span class="n">li</span><span class="p">][</span><span class="mi">0</span><span class="p">][</span><span class="n">all_letters</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="n">letter</span><span class="p">)]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">return</span> <span class="n">tensor</span>
<span class="c1"># LongTensor of second letter to end (EOS) for target</span>
<span class="k">def</span> <span class="nf">targetTensor</span><span class="p">(</span><span class="n">line</span><span class="p">):</span>
<span class="n">letter_indexes</span> <span class="o">=</span> <span class="p">[</span><span class="n">all_letters</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="n">line</span><span class="p">[</span><span class="n">li</span><span class="p">])</span> <span class="k">for</span> <span class="n">li</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">line</span><span class="p">))]</span>
<span class="n">letter_indexes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">n_letters</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># EOS</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">LongTensor</span><span class="p">(</span><span class="n">letter_indexes</span><span class="p">)</span>
</pre></div>
</div>
<p>For convenience during training we’ll make a <code class="docutils literal"><span class="pre">randomTrainingExample</span></code>
function that fetches a random (category, line) pair and turns them into
the required (category, input, target) tensors.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Make category, input, and target tensors from a random category, line pair</span>
<span class="k">def</span> <span class="nf">randomTrainingExample</span><span class="p">():</span>
<span class="n">category</span><span class="p">,</span> <span class="n">line</span> <span class="o">=</span> <span class="n">randomTrainingPair</span><span class="p">()</span>
<span class="n">category_tensor</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">categoryTensor</span><span class="p">(</span><span class="n">category</span><span class="p">))</span>
<span class="n">input_line_tensor</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">inputTensor</span><span class="p">(</span><span class="n">line</span><span class="p">))</span>
<span class="n">target_line_tensor</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">targetTensor</span><span class="p">(</span><span class="n">line</span><span class="p">))</span>
<span class="k">return</span> <span class="n">category_tensor</span><span class="p">,</span> <span class="n">input_line_tensor</span><span class="p">,</span> <span class="n">target_line_tensor</span>
</pre></div>
</div>
</div>
<div class="section" id="training-the-network">
<h3>Training the Network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
<p>In contrast to classification, where only the last output is used, we
are making a prediction at every step, so we are calculating loss at
every step.</p>
<p>The magic of autograd allows you to simply sum these losses at each step
and call backward at the end.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">criterion</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">NLLLoss</span><span class="p">()</span>
<span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">0.0005</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">category_tensor</span><span class="p">,</span> <span class="n">input_line_tensor</span><span class="p">,</span> <span class="n">target_line_tensor</span><span class="p">):</span>
<span class="n">hidden</span> <span class="o">=</span> <span class="n">rnn</span><span class="o">.</span><span class="n">initHidden</span><span class="p">()</span>
<span class="n">rnn</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
<span class="n">loss</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">input_line_tensor</span><span class="o">.</span><span class="n">size</span><span class="p">()[</span><span class="mi">0</span><span class="p">]):</span>
<span class="n">output</span><span class="p">,</span> <span class="n">hidden</span> <span class="o">=</span> <span class="n">rnn</span><span class="p">(</span><span class="n">category_tensor</span><span class="p">,</span> <span class="n">input_line_tensor</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">hidden</span><span class="p">)</span>
<span class="n">loss</span> <span class="o">+=</span> <span class="n">criterion</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target_line_tensor</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">rnn</span><span class="o">.</span><span class="n">parameters</span><span class="p">():</span>
<span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="o">-</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">p</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="n">loss</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">/</span> <span class="n">input_line_tensor</span><span class="o">.</span><span class="n">size</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
</pre></div>
</div>
<p>To keep track of how long training takes I am adding a
<code class="docutils literal"><span class="pre">timeSince(timestamp)</span></code> function which returns a human readable string:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">time</span>
<span class="kn">import</span> <span class="nn">math</span>
<span class="k">def</span> <span class="nf">timeSince</span><span class="p">(</span><span class="n">since</span><span class="p">):</span>
<span class="n">now</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">now</span> <span class="o">-</span> <span class="n">since</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">floor</span><span class="p">(</span><span class="n">s</span> <span class="o">/</span> <span class="mi">60</span><span class="p">)</span>
<span class="n">s</span> <span class="o">-=</span> <span class="n">m</span> <span class="o">*</span> <span class="mi">60</span>
<span class="k">return</span> <span class="s1">'</span><span class="si">%d</span><span class="s1">m </span><span class="si">%d</span><span class="s1">s'</span> <span class="o">%</span> <span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">s</span><span class="p">)</span>
</pre></div>
</div>
<p>Training is business as usual - call train a bunch of times and wait a
few minutes, printing the current time and loss every <code class="docutils literal"><span class="pre">print_every</span></code>
examples, and keeping store of an average loss per <code class="docutils literal"><span class="pre">plot_every</span></code> examples
in <code class="docutils literal"><span class="pre">all_losses</span></code> for plotting later.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">rnn</span> <span class="o">=</span> <span class="n">RNN</span><span class="p">(</span><span class="n">n_letters</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="n">n_letters</span><span class="p">)</span>
<span class="n">n_iters</span> <span class="o">=</span> <span class="mi">100000</span>
<span class="n">print_every</span> <span class="o">=</span> <span class="mi">5000</span>
<span class="n">plot_every</span> <span class="o">=</span> <span class="mi">500</span>
<span class="n">all_losses</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">total_loss</span> <span class="o">=</span> <span class="mi">0</span> <span class="c1"># Reset every plot_every iters</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="k">for</span> <span class="nb">iter</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n_iters</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<span class="n">output</span><span class="p">,</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">train</span><span class="p">(</span><span class="o">*</span><span class="n">randomTrainingExample</span><span class="p">())</span>
<span class="n">total_loss</span> <span class="o">+=</span> <span class="n">loss</span>
<span class="k">if</span> <span class="nb">iter</span> <span class="o">%</span> <span class="n">print_every</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'</span><span class="si">%s</span><span class="s1"> (</span><span class="si">%d</span><span class="s1"> </span><span class="si">%d%%</span><span class="s1">) </span><span class="si">%.4f</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="n">timeSince</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="nb">iter</span><span class="p">,</span> <span class="nb">iter</span> <span class="o">/</span> <span class="n">n_iters</span> <span class="o">*</span> <span class="mi">100</span><span class="p">,</span> <span class="n">loss</span><span class="p">))</span>
<span class="k">if</span> <span class="nb">iter</span> <span class="o">%</span> <span class="n">plot_every</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">all_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">total_loss</span> <span class="o">/</span> <span class="n">plot_every</span><span class="p">)</span>
<span class="n">total_loss</span> <span class="o">=</span> <span class="mi">0</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default"><div class="highlight"><pre><span></span><span class="mi">0</span><span class="n">m</span> <span class="mi">49</span><span class="n">s</span> <span class="p">(</span><span class="mi">5000</span> <span class="mi">5</span><span class="o">%</span><span class="p">)</span> <span class="mf">3.8945</span>
<span class="mi">1</span><span class="n">m</span> <span class="mi">40</span><span class="n">s</span> <span class="p">(</span><span class="mi">10000</span> <span class="mi">10</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.4772</span>
<span class="mi">2</span><span class="n">m</span> <span class="mi">29</span><span class="n">s</span> <span class="p">(</span><span class="mi">15000</span> <span class="mi">15</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.2025</span>
<span class="mi">3</span><span class="n">m</span> <span class="mi">21</span><span class="n">s</span> <span class="p">(</span><span class="mi">20000</span> <span class="mi">20</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.5815</span>
<span class="mi">4</span><span class="n">m</span> <span class="mi">12</span><span class="n">s</span> <span class="p">(</span><span class="mi">25000</span> <span class="mi">25</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.4086</span>
<span class="mi">5</span><span class="n">m</span> <span class="mi">3</span><span class="n">s</span> <span class="p">(</span><span class="mi">30000</span> <span class="mi">30</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.5704</span>
<span class="mi">5</span><span class="n">m</span> <span class="mi">52</span><span class="n">s</span> <span class="p">(</span><span class="mi">35000</span> <span class="mi">35</span><span class="o">%</span><span class="p">)</span> <span class="mf">1.1695</span>
<span class="mi">6</span><span class="n">m</span> <span class="mi">42</span><span class="n">s</span> <span class="p">(</span><span class="mi">40000</span> <span class="mi">40</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.3749</span>
<span class="mi">7</span><span class="n">m</span> <span class="mi">30</span><span class="n">s</span> <span class="p">(</span><span class="mi">45000</span> <span class="mi">45</span><span class="o">%</span><span class="p">)</span> <span class="mf">1.1154</span>
<span class="mi">8</span><span class="n">m</span> <span class="mi">18</span><span class="n">s</span> <span class="p">(</span><span class="mi">50000</span> <span class="mi">50</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.8301</span>
<span class="mi">9</span><span class="n">m</span> <span class="mi">8</span><span class="n">s</span> <span class="p">(</span><span class="mi">55000</span> <span class="mi">55</span><span class="o">%</span><span class="p">)</span> <span class="mf">1.9648</span>
<span class="mi">9</span><span class="n">m</span> <span class="mi">57</span><span class="n">s</span> <span class="p">(</span><span class="mi">60000</span> <span class="mi">60</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.8689</span>
<span class="mi">10</span><span class="n">m</span> <span class="mi">45</span><span class="n">s</span> <span class="p">(</span><span class="mi">65000</span> <span class="mi">65</span><span class="o">%</span><span class="p">)</span> <span class="mf">1.8796</span>
<span class="mi">11</span><span class="n">m</span> <span class="mi">37</span><span class="n">s</span> <span class="p">(</span><span class="mi">70000</span> <span class="mi">70</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.5743</span>
<span class="mi">12</span><span class="n">m</span> <span class="mi">27</span><span class="n">s</span> <span class="p">(</span><span class="mi">75000</span> <span class="mi">75</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.1833</span>
<span class="mi">13</span><span class="n">m</span> <span class="mi">17</span><span class="n">s</span> <span class="p">(</span><span class="mi">80000</span> <span class="mi">80</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.2653</span>
<span class="mi">14</span><span class="n">m</span> <span class="mi">9</span><span class="n">s</span> <span class="p">(</span><span class="mi">85000</span> <span class="mi">85</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.7416</span>
<span class="mi">15</span><span class="n">m</span> <span class="mi">0</span><span class="n">s</span> <span class="p">(</span><span class="mi">90000</span> <span class="mi">90</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.2684</span>
<span class="mi">15</span><span class="n">m</span> <span class="mi">50</span><span class="n">s</span> <span class="p">(</span><span class="mi">95000</span> <span class="mi">95</span><span class="o">%</span><span class="p">)</span> <span class="mf">2.7273</span>
<span class="mi">16</span><span class="n">m</span> <span class="mi">41</span><span class="n">s</span> <span class="p">(</span><span class="mi">100000</span> <span class="mi">100</span><span class="o">%</span><span class="p">)</span> <span class="mf">3.2619</span>
</pre></div>
</div>
</div>
<div class="section" id="plotting-the-losses">
<h3>Plotting the Losses<a class="headerlink" href="#plotting-the-losses" title="Permalink to this headline">¶</a></h3>
<p>Plotting the historical loss from all_losses shows the network
learning:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">matplotlib.ticker</span> <span class="kn">as</span> <span class="nn">ticker</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">all_losses</span><span class="p">)</span>
</pre></div>
</div>
<img alt="../_images/sphx_glr_char_rnn_generation_tutorial_001.png" class="align-center" src="../_images/sphx_glr_char_rnn_generation_tutorial_001.png" />
</div>
</div>
<div class="section" id="sampling-the-network">
<h2>Sampling the Network<a class="headerlink" href="#sampling-the-network" title="Permalink to this headline">¶</a></h2>
<p>To sample we give the network a letter and ask what the next one is,
feed that in as the next letter, and repeat until the EOS token.</p>
<ul class="simple">
<li>Create tensors for input category, starting letter, and empty hidden
state</li>
<li>Create a string <code class="docutils literal"><span class="pre">output_name</span></code> with the starting letter</li>
<li>Up to a maximum output length,<ul>
<li>Feed the current letter to the network</li>
<li>Get the next letter from highest output, and next hidden state</li>
<li>If the letter is EOS, stop here</li>
<li>If a regular letter, add to <code class="docutils literal"><span class="pre">output_name</span></code> and continue</li>
</ul>
</li>
<li>Return the final name</li>
</ul>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Rather than having to give it a starting letter, another
strategy would have been to include a “start of string” token in
training and have the network choose its own starting letter.</p>
</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">max_length</span> <span class="o">=</span> <span class="mi">20</span>
<span class="c1"># Sample from a category and starting letter</span>
<span class="k">def</span> <span class="nf">sample</span><span class="p">(</span><span class="n">category</span><span class="p">,</span> <span class="n">start_letter</span><span class="o">=</span><span class="s1">'A'</span><span class="p">):</span>
<span class="n">category_tensor</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">categoryTensor</span><span class="p">(</span><span class="n">category</span><span class="p">))</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">inputTensor</span><span class="p">(</span><span class="n">start_letter</span><span class="p">))</span>
<span class="n">hidden</span> <span class="o">=</span> <span class="n">rnn</span><span class="o">.</span><span class="n">initHidden</span><span class="p">()</span>
<span class="n">output_name</span> <span class="o">=</span> <span class="n">start_letter</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">max_length</span><span class="p">):</span>
<span class="n">output</span><span class="p">,</span> <span class="n">hidden</span> <span class="o">=</span> <span class="n">rnn</span><span class="p">(</span><span class="n">category_tensor</span><span class="p">,</span> <span class="nb">input</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">hidden</span><span class="p">)</span>
<span class="n">topv</span><span class="p">,</span> <span class="n">topi</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">topk</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">topi</span> <span class="o">=</span> <span class="n">topi</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">topi</span> <span class="o">==</span> <span class="n">n_letters</span> <span class="o">-</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">break</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">letter</span> <span class="o">=</span> <span class="n">all_letters</span><span class="p">[</span><span class="n">topi</span><span class="p">]</span>
<span class="n">output_name</span> <span class="o">+=</span> <span class="n">letter</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">inputTensor</span><span class="p">(</span><span class="n">letter</span><span class="p">))</span>
<span class="k">return</span> <span class="n">output_name</span>
<span class="c1"># Get multiple samples from one category and multiple starting letters</span>
<span class="k">def</span> <span class="nf">samples</span><span class="p">(</span><span class="n">category</span><span class="p">,</span> <span class="n">start_letters</span><span class="o">=</span><span class="s1">'ABC'</span><span class="p">):</span>
<span class="k">for</span> <span class="n">start_letter</span> <span class="ow">in</span> <span class="n">start_letters</span><span class="p">:</span>
<span class="k">print</span><span class="p">(</span><span class="n">sample</span><span class="p">(</span><span class="n">category</span><span class="p">,</span> <span class="n">start_letter</span><span class="p">))</span>
<span class="n">samples</span><span class="p">(</span><span class="s1">'Russian'</span><span class="p">,</span> <span class="s1">'RUS'</span><span class="p">)</span>
<span class="n">samples</span><span class="p">(</span><span class="s1">'German'</span><span class="p">,</span> <span class="s1">'GER'</span><span class="p">)</span>
<span class="n">samples</span><span class="p">(</span><span class="s1">'Spanish'</span><span class="p">,</span> <span class="s1">'SPA'</span><span class="p">)</span>
<span class="n">samples</span><span class="p">(</span><span class="s1">'Chinese'</span><span class="p">,</span> <span class="s1">'CHI'</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default"><div class="highlight"><pre><span></span><span class="n">Rovanov</span>
<span class="n">Uantov</span>
<span class="n">Shilak</span>
<span class="n">Ganter</span>
<span class="n">Eren</span>
<span class="n">Roure</span>
<span class="n">Santaro</span>
<span class="n">Parer</span>
<span class="n">Allan</span>
<span class="n">Can</span>
<span class="n">Han</span>
<span class="n">Iun</span>
</pre></div>
</div>
</div>
<div class="section" id="exercises">
<h2>Exercises<a class="headerlink" href="#exercises" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li>Try with a different dataset of category -> line, for example:<ul>
<li>Fictional series -> Character name</li>
<li>Part of speech -> Word</li>
<li>Country -> City</li>
</ul>
</li>
<li>Use a “start of sentence” token so that sampling can be done without
choosing a start letter</li>
<li>Get better results with a bigger and/or better shaped network<ul>
<li>Try the nn.LSTM and nn.GRU layers</li>
<li>Combine multiple of these RNNs as a higher level network</li>
</ul>
</li>
</ul>
<p><strong>Total running time of the script:</strong> ( 16 minutes 41.347 seconds)</p>
<div class="sphx-glr-footer docutils container">
<div class="sphx-glr-download docutils container">
<a class="reference download internal" href="../_downloads/char_rnn_generation_tutorial.py" download=""><code class="xref download docutils literal"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">char_rnn_generation_tutorial.py</span></code></a></div>
<div class="sphx-glr-download docutils container">
<a class="reference download internal" href="../_downloads/char_rnn_generation_tutorial.ipynb" download=""><code class="xref download docutils literal"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">char_rnn_generation_tutorial.ipynb</span></code></a></div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.readthedocs.io">Generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
<div class="articleComments">
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="seq2seq_translation_tutorial.html" class="btn btn-neutral float-right" title="Translation with a Sequence to Sequence Network and Attention" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="char_rnn_classification_tutorial.html" class="btn btn-neutral" title="Classifying Names with a Character-Level RNN" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2017, PyTorch.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../',
VERSION:'0.2.0_4',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-90545585-2', 'auto');
ga('send', 'pageview');
</script>
</body>