-
Notifications
You must be signed in to change notification settings - Fork 0
/
number detection part-1
159 lines (136 loc) · 4.86 KB
/
number detection part-1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import cv2
import os
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
import pickle
#####################
from tensorflow.python.keras import Sequential
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
from tensorflow.python.keras.optimizers import Adam
path = 'myData'
pathLabels = 'labels.csv'
testRatio = 0.2
valRatio = 0.2
imageDimensions = (32,32,3)
batchSizeVal = 50
epochsVal = 1
stepsPerEpochVal = 2000
######################
count = 0
images = []
classNo = []
myList = os.listdir(path)
print("Total No of Classes Detected",myList)
noOfClasses = len(myList)
print("Importing Classes .......")
for x in range (0,noOfClasses):
myPicList = os.listdir(path+"/"+str(x))
for y in myPicList:
curImg = cv2.imread(path+"/"+str(x)+"/"+y)
curImg = cv2.resize(curImg,(imageDimensions[0],imageDimensions[1]))
images.append(curImg)
classNo.append(x)
print(x,end= " ")
print(" ")
images = np.array(images)
classNo = np.array(classNo)
print(images.shape)
print(classNo.shape)
# print(images.shape)
#### splitting the data
X_train,X_test,y_train,y_test = train_test_split(images,classNo,test_size=testRatio)
X_train,X_validation,y_train,y_validation = train_test_split(X_train,y_train,test_size=testRatio)
print(X_train.shape)
print(X_test.shape)
print(X_validation.shape)
numOfSamples = []
for x in range(0,noOfClasses):
#print(len(np.where(y_train==x)[0]))
numOfSamples.append(len(np.where(y_train==x)[0]))
print(numOfSamples)
plt.figure(figsize=(10,5))
plt.bar(range(0,noOfClasses),numOfSamples)
plt.title("No of Images for each Class")
plt.xlabel("Class ID")
plt.ylabel("Number of Images")
plt.show()
def preProcessing(img):
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img = cv2.equalizeHist(img)
img = img/255
return img
# img = preProcessing(X_train[27])
# img = cv2.resize(img,(300,300))
# cv2.imshow("PreProcessed",img)
# cv2.waitKey(0)
X_train = np.array(list(map(preProcessing,X_train)))
X_test = np.array(list(map(preProcessing,X_test)))
X_validation = np.array(list(map(preProcessing,X_validation)))
X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],X_train.shape[2],1)
X_test = X_test.reshape(X_test.shape[0],X_test.shape[1],X_test.shape[2],1)
X_validation = X_validation.reshape(X_validation.shape[0],X_validation.shape[1],X_validation.shape[2],1)
dataGen = ImageDataGenerator(width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2,
rotation_range=10)
dataGen.fit(X_train)
y_train = to_categorical(y_train,noOfClasses)
y_test = to_categorical(y_test,noOfClasses)
y_validation = to_categorical(y_validation,noOfClasses)
def myMode1():
noOfFilters = 60
sizeOfFilter1 = (5,5)
sizeOfFilter2 = (3,3)
sizeOfPool = (2,2)
noOfNode = 500
model = Sequential()
model.add((Conv2D(noOfFilters,sizeOfFilter1,input_shape=(imageDimensions[0],
imageDimensions[1],
1),activation= 'relu'
)))
model.add((Conv2D(noOfFilters, sizeOfFilter1, activation='relu')))
model.add(MaxPooling2D(pool_size=sizeOfPool))
model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu')))
model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu')))
model.add(MaxPooling2D(pool_size=sizeOfPool))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(noOfNode,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(noOfClasses,activation='softmax'))
model.compile(Adam(lr=0.001),loss='categorical_crossentropy',
metrics=['accuracy'])
return model
model = myMode1()
print(model.summary())
batchSizeVal = 50
epochsVal = 10
stepsPerEpochVal = 2000
history = model.fit_generator(dataGen.flow(X_train,y_train,
batch_size=batchSizeVal),
steps_per_epoch=stepsPerEpochVal,
epochs=epochsVal,
validation_data=(X_validation,y_validation),
shuffle=1)
plt.figure(1)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['training','validation'])
plt.title('Loss')
plt.xlabel('epoch')
plt.figure(2)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training','validation'])
plt.title('Accuracy')
plt.xlabel('epoch')
plt.show()
score = model.evaluate(X_test,y_test,verbose=0)
print('Test Score =',score[0])
print('Test Accuracy =', score[1])
pickle_out = open("model_trained.p","wb")
pickle.dump(model,pickle_out)
pickle_out.close()