-
Notifications
You must be signed in to change notification settings - Fork 1
/
bfs.py
249 lines (192 loc) · 7.23 KB
/
bfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Breadth First Search Algorithm Visualization
import sys
from utils import *
from pygame import time
# Setup Window
pygame.display.set_caption("BFS Algorithm")
class Node:
def __init__(self, row, col, width, total_rows):
self.row = row
self.col = col
self.x = row * width
self.y = col * width
self.color = WHITE
self.neighbors = []
self.width = width
self.total_rows = total_rows
def get_position(self):
return self.row, self.col
def is_visited(self):
return self.color == RED
def is_current(self):
return self.color == GREEN
def is_barrier(self):
return self.color == BLACK
def is_source(self):
return self.color == ORANGE
def is_destination(self):
return self.color == TURQUOISE
def reset_node(self):
self.color = WHITE
def set_source(self):
self.color = ORANGE
def set_visited(self):
self.color = RED
def set_current(self):
self.color = GREEN
def set_barrier(self):
self.color = BLACK
def set_destination(self):
self.color = TURQUOISE
def set_path(self):
self.color = PURPLE
def draw(self, win):
pygame.draw.rect(win, self.color, (self.x, self.y, self.width, self.width))
def update_neighbors(self, grid):
self.neighbors = []
if self.row < self.total_rows - 1 and not grid[self.row + 1][self.col].is_barrier(): # DOWN
self.neighbors.append(grid[self.row + 1][self.col])
if self.row > 0 and not grid[self.row - 1][self.col].is_barrier(): # UP
self.neighbors.append(grid[self.row - 1][self.col])
if self.col < self.total_rows - 1 and not grid[self.row][self.col + 1].is_barrier(): # RIGHT
self.neighbors.append(grid[self.row][self.col + 1])
if self.col > 0 and not grid[self.row][self.col - 1].is_barrier(): # LEFT
self.neighbors.append(grid[self.row][self.col - 1])
# less than (this < other)
def __lt__(self, other):
return False
# Backtracking
def reconstruct_path(came_from, current, draw):
while current in came_from:
current = came_from[current]
current.set_path()
draw()
# draw is draw funtion, grid is 2d list of nodes
def algorithm(draw, grid, source, destination):
count = 0
open_set = []
# put source node in queue
open_set.append(source)
# came_from dictionary for backtracking
came_from = {}
open_set_hash = {source} # keeps track of what's in the open set
while not len(open_set) == 0:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
# current = open_set.get()
# open_set_hash.remove(current)
current = open_set.pop(0)
open_set_hash.remove(current)
if current == destination: # path FOUND!
reconstruct_path(came_from, destination, draw)
destination.set_destination()
return True
for neighbor in current.neighbors:
if not neighbor.is_visited():
came_from[neighbor] = current
if neighbor not in open_set_hash:
count += 1
open_set.append(neighbor)
open_set_hash.add(neighbor)
neighbor.set_current()
draw()
if current != destination:
current.set_visited()
return False
# param: rows_count = no of rows, width = width in pixels. Example (50, 800)
# returns 2d list of Nodes
def make_grid(rows_count, width):
grid = []
# gap is width or height of one box(node)
gap = width // rows_count
for i in range(rows_count):
grid.append([])
for j in range(rows_count):
node = Node(i, j, gap, rows_count)
grid[i].append(node)
return grid
# draws grid boundries
def draw_grid(win, rows, width):
gap = width // rows
for i in range(rows + 1):
# drawing horizontal line. (0, i*gap) is the start point and (width, i*gap) is the end point
pygame.draw.line(win, GREY, (0, i * gap), (width, i * gap))
for j in range(rows):
# drawing vertical line. (j*gap, 0) is the start point and (j*gap, width) is the end point
pygame.draw.line(win, GREY, (j * gap, 0), (j * gap, width))
# updates display with new draws
def draw(win, grid, rows, width, msg):
# make everything white
win.fill(WHITE)
# draw nodes
for row in grid:
for node in row:
node.draw(win)
# draw boundries
draw_grid(win, rows, width)
draw_text(msg, normal_font, ORANGE_RED, win, width//2, width + 20)
# updates display
pygame.display.update()
time.wait(10)
# param: pos = x y coordinates
# return: row and col of node clicked on
def get_clicked_pos(pos, rows, width):
gap = width // rows
y, x = pos
row = y // gap
col = x // gap
return row, col
def run_visualization(win, width):
rows = 50
grid = make_grid(rows, width)
source = None
destination = None
msg = 'Press SPACE to start'
run = True
while run:
draw(win, grid, rows, width, msg)
for event in pygame.event.get(): # contains all events
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
if pygame.mouse.get_pressed(3)[0]: # Left click
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, rows, width)
node = grid[row][col]
if not source and node != destination:
source = node
source.set_source()
elif not destination and node != source:
destination = node
destination.set_destination()
elif node != destination and node != source:
node.set_barrier()
elif pygame.mouse.get_pressed()[2]: # Right click, remove node
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, rows, width)
node = grid[row][col]
node.reset_node()
if node == source:
source = None
elif node == destination:
destination = None
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_SPACE and source and destination: # start
for row in grid:
for node in row:
node.update_neighbors(grid)
msg = 'BFS Algorithm running...'
found = algorithm(lambda: draw(win, grid, rows, width, msg), grid, source, destination)
print("ALgorithm Finished")
if found:
msg = 'Path Found!'
else:
msg = 'No Path Found!'
if event.key == pygame.K_c: # reset
source = None
destination = None
grid = make_grid(rows, width)
msg = 'Press SPACE to start'
if event.key == pygame.K_ESCAPE:
run = False