-
Notifications
You must be signed in to change notification settings - Fork 42
/
loaddata.py
567 lines (424 loc) · 21.2 KB
/
loaddata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
'''Handles all the data preparation including: feature engineering, dimensionality reduction, and clustering
Inspiration for the feature engineering had several sources:
http://trevorstephens.com/post/73461351896/titanic-getting-started-with-r-part-4-feature
http://triangleinequality.wordpress.com/2013/09/08/basic-feature-engineering-with-the-titanic-data/
http://www.sgzhaohang.com/blog/tag/kaggle/
'''
import re
import numpy as np
import pandas as pd
import random as rd
from sklearn import preprocessing
from sklearn.cluster import KMeans
from sklearn.ensemble import RandomForestRegressor
from sklearn.decomposition import PCA
# Print options
np.set_printoptions(precision=4, threshold=10000, linewidth=160, edgeitems=999, suppress=True)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', 160)
pd.set_option('expand_frame_repr', False)
pd.set_option('precision', 4)
def processCabin():
""" Generate features from the Cabin variable
Cabin numbers, when present, contain a single (or space-delimited list) cabin number that is composed of
a letter and number with no space or other character between. This is a sparse variable: < 30% is populated
"""
global df
# Replace missing values with "U0"
df['Cabin'][df.Cabin.isnull()] = 'U0'
# create feature for the alphabetical part of the cabin number
df['CabinLetter'] = df['Cabin'].map( lambda x : getCabinLetter(x))
df['CabinLetter'] = pd.factorize(df['CabinLetter'])[0]
# create binary features for each cabin letters
if keep_binary:
cletters = pd.get_dummies(df['CabinLetter']).rename(columns=lambda x: 'CabinLetter_' + str(x))
df = pd.concat([df, cletters], axis=1)
# create feature for the numerical part of the cabin number
df['CabinNumber'] = df['Cabin'].map( lambda x : getCabinNumber(x)).astype(int) + 1
# scale the number to process as a continuous feature
if keep_scaled:
scaler = preprocessing.StandardScaler()
df['CabinNumber_scaled'] = scaler.fit_transform(df['CabinNumber'])
def getCabinLetter(cabin):
"""
Find the letter component of the Cabin variable
"""
match = re.compile("([a-zA-Z]+)").search(cabin)
if match:
return match.group()
else:
return 'U'
def getCabinNumber(cabin):
"""
Find the number component of the Cabin variable
"""
match = re.compile("([0-9]+)").search(cabin)
if match:
return match.group()
else:
return 0
def processTicket():
"""
Generate features from the Ticket variable
"""
global df
df['TicketPrefix'] = df['Ticket'].map( lambda x : getTicketPrefix(x.upper()))
df['TicketPrefix'] = df['TicketPrefix'].map( lambda x: re.sub('[\.?\/?]', '', x) )
df['TicketPrefix'] = df['TicketPrefix'].map( lambda x: re.sub('STON', 'SOTON', x) )
#print len(df['TicketPrefix'].unique()), "ticket codes:", np.sort(df['TicketPrefix'].unique())
df['TicketPrefixId'] = pd.factorize(df['TicketPrefix'])[0]
# create binary features for each cabin letters
if keep_binary:
prefixes = pd.get_dummies(df['TicketPrefix']).rename(columns=lambda x: 'TicketPrefix_' + str(x))
df = pd.concat([df, prefixes], axis=1)
df.drop(['TicketPrefix'], axis=1, inplace=True)
df['TicketNumber'] = df['Ticket'].map( lambda x: getTicketNumber(x) )
df['TicketNumberDigits'] = df['TicketNumber'].map( lambda x: len(x) ).astype(np.int)
df['TicketNumberStart'] = df['TicketNumber'].map( lambda x: x[0:1] ).astype(np.int)
#print np.sort(df.TicketNumberStart.unique())
df['TicketNumber'] = df.TicketNumber.astype(np.int)
#print np.sort(df['TicketNumber'])
if keep_scaled:
scaler = preprocessing.StandardScaler()
df['TicketNumber_scaled'] = scaler.fit_transform(df['TicketNumber'])
def getTicketPrefix(ticket):
"""
Find the letter component of the ticket variable)
"""
match = re.compile("([a-zA-Z\.\/]+)").search(ticket)
if match:
return match.group()
else:
return 'U'
### Find the numerical component of the ticket variable)
def getTicketNumber(ticket):
match = re.compile("([\d]+$)").search(ticket)
if match:
return match.group()
else:
return '0'
### Generate features from the ticket price
def processFare():
global df
# replace missing values as the median fare. Currently the datasets only contain one missing Fare value
df['Fare'][ np.isnan(df['Fare']) ] = df['Fare'].median()
# zero values cause problems with our division interaction variables so set to 1/10th of the lowest fare
df['Fare'][ np.where(df['Fare']==0)[0] ] = df['Fare'][ df['Fare'].nonzero()[0] ].min() / 10
# bin into quintiles for binary features
df['Fare_bin'] = pd.qcut(df['Fare'], 4)
if keep_binary:
df = pd.concat([df, pd.get_dummies(df['Fare_bin']).rename(columns=lambda x: 'Fare_' + str(x))], axis=1)
if keep_bins:
df['Fare_bin_id'] = pd.factorize(df['Fare_bin'])[0]+1
# center and scale the fare to use as a continuous variable
if keep_scaled:
scaler = preprocessing.StandardScaler()
df['Fare_scaled'] = scaler.fit_transform(df['Fare'])
if keep_bins and keep_scaled:
scaler = preprocessing.StandardScaler()
df['Fare_bin_id_scaled'] = scaler.fit_transform(df['Fare_bin_id'])
if not keep_strings:
df.drop('Fare_bin', axis=1, inplace=True)
### Build binary features from 3-valued categorical feature
def processEmbarked():
global df
# Replace missing values with most common port, and create binary features
df.Embarked[ df.Embarked.isnull() ] = df.Embarked.dropna().mode().values
# Lets turn this into a number so it conforms to decision tree feature requirements
df['Embarked'] = pd.factorize(df['Embarked'])[0]
# Create binary features for each port
if keep_binary:
df = pd.concat([df, pd.get_dummies(df['Embarked']).rename(columns=lambda x: 'Embarked_' + str(x))], axis=1)
### Generate features based on the passenger class
def processPClass():
global df
# Replace missing values with mode
df.Pclass[ df.Pclass.isnull() ] = df.Pclass.dropna().mode().values
# create binary features
if keep_binary:
df = pd.concat([df, pd.get_dummies(df['Pclass']).rename(columns=lambda x: 'Pclass_' + str(x))], axis=1)
if keep_scaled:
scaler = preprocessing.StandardScaler()
df['Pclass_scaled'] = scaler.fit_transform(df['Pclass'])
### Generate features from the SibSp and Parch variables
def processFamily():
global df
# interaction variables require no zeros, so let's just bump everything
df['SibSp'] = df['SibSp'] + 1
df['Parch'] = df['Parch'] + 1
# First process scaling
if keep_scaled:
scaler = preprocessing.StandardScaler()
df['SibSp_scaled'] = scaler.fit_transform(df['SibSp'])
df['Parch_scaled'] = scaler.fit_transform(df['Parch'])
# Then build binary features
if keep_binary:
sibsps = pd.get_dummies(df['SibSp']).rename(columns=lambda x: 'SibSp_' + str(x))
parchs = pd.get_dummies(df['Parch']).rename(columns=lambda x: 'Parch_' + str(x))
df = pd.concat([df, sibsps, parchs], axis=1)
### Convert the Sex variable from a string to binary
def processSex():
global df
df['Gender'] = np.where(df['Sex'] == 'male', 1, 0)
### Generate features from the Name variable
def processName():
global df
# how many different names do they have?
df['Names'] = df['Name'].map(lambda x: len(re.split(' ', x)))
# what is each person's title?
df['Title'] = df['Name'].map(lambda x: re.compile(", (.*?)\.").findall(x)[0])
# group low-occuring, related titles together
df['Title'][df.Title == 'Jonkheer'] = 'Master'
df['Title'][df.Title.isin(['Ms','Mlle'])] = 'Miss'
df['Title'][df.Title == 'Mme'] = 'Mrs'
df['Title'][df.Title.isin(['Capt', 'Don', 'Major', 'Col', 'Sir'])] = 'Sir'
df['Title'][df.Title.isin(['Dona', 'Lady', 'the Countess'])] = 'Lady'
# Build binary features
if keep_binary:
df = pd.concat([df, pd.get_dummies(df['Title']).rename(columns=lambda x: 'Title_' + str(x))], axis=1)
# process scaling
if keep_scaled:
scaler = preprocessing.StandardScaler()
df['Names_scaled'] = scaler.fit_transform(df['Names'])
if keep_bins:
df['Title_id'] = pd.factorize(df['Title'])[0]+1
if keep_bins and keep_scaled:
scaler = preprocessing.StandardScaler()
df['Title_id_scaled'] = scaler.fit_transform(df['Title_id'])
### Generate features from the Age variable
def processAge():
global df
setMissingAges()
# center the mean and scale to unit variance
if keep_scaled:
scaler = preprocessing.StandardScaler()
df['Age_scaled'] = scaler.fit_transform(df['Age'])
# have a feature for children
df['isChild'] = np.where(df.Age < 13, 1, 0)
# bin into quartiles and create binary features
df['Age_bin'] = pd.qcut(df['Age'], 4)
if keep_binary:
df = pd.concat([df, pd.get_dummies(df['Age_bin']).rename(columns=lambda x: 'Age_' + str(x))], axis=1)
if keep_bins:
df['Age_bin_id'] = pd.factorize(df['Age_bin'])[0]+1
if keep_bins and keep_scaled:
scaler = preprocessing.StandardScaler()
df['Age_bin_id_scaled'] = scaler.fit_transform(df['Age_bin_id'])
if not keep_strings:
df.drop('Age_bin', axis=1, inplace=True)
### Populate missing ages using a RandomForestClassifier
def setMissingAges():
global df
age_df = df[['Age','Embarked','Fare', 'Parch', 'SibSp', 'Title_id','Pclass','Names','CabinLetter']]
X = age_df.loc[ (df.Age.notnull()) ].values[:, 1::]
y = age_df.loc[ (df.Age.notnull()) ].values[:, 0]
rtr = RandomForestRegressor(n_estimators=2000, n_jobs=-1)
rtr.fit(X, y)
predictedAges = rtr.predict(age_df.loc[ (df.Age.isnull()) ].values[:, 1::])
df.loc[ (df.Age.isnull()), 'Age' ] = predictedAges
### Keep the raw list until the very end even if raw values are not retained so that interaction
### parameters can be created
def processDrops():
global df
rawDropList = ['Name', 'Names', 'Title', 'Sex', 'SibSp', 'Parch', 'Pclass', 'Embarked', \
'Cabin', 'CabinLetter', 'CabinNumber', 'Age', 'Fare', 'Ticket', 'TicketNumber']
stringsDropList = ['Title', 'Name', 'Cabin', 'Ticket', 'Sex', 'Ticket', 'TicketNumber']
if not keep_raw:
df.drop(rawDropList, axis=1, inplace=True)
elif not keep_strings:
df.drop(stringsDropList, axis=1, inplace=True)
def getDataSets(binary=False, bins=False, scaled=False, strings=False, raw=True, pca=False, balanced=False):
"""
Performs all feature engineering tasks including populating missing values, generating binary categorical
features, scaling, and other transformations. The boolean parameters of this function will allow fine-grained
control of what types of features to return, so that it can be used by multiple ML algorithms
Parameters
==========
binary - boolean
whether or not to include binary features in the data set
bins - boolean
whether or not to include binned features in the data set
scaled - boolean
whether or not to include scaled features in the data set
strings - boolean
whether or not to include features that are strings in the data set
raw - boolean
whether or not to include raw features in the data set
pca - boolean
whether or not to perform PCA on the data set
balanced - boolean
whether or not to perform up sampling on the survived examples to balance the class distributions
Returns
=======
input_df - array-like
The labeled training data
submit_df - array-like
The unlabled test data to predict and submit
"""
global keep_binary, keep_bins, keep_scaled, keep_raw, keep_strings, df
keep_binary = binary
keep_bins = bins
keep_scaled = scaled
keep_raw = raw
keep_strings = strings
# read in the training and testing data into Pandas.DataFrame objects
input_df = pd.read_csv('data/raw/train.csv', header=0)
submit_df = pd.read_csv('data/raw/test.csv', header=0)
# merge the two DataFrames into one
df = pd.concat([input_df, submit_df])
# re-number the combined data set so there aren't duplicate indexes
df.reset_index(inplace=True)
# reset_index() generates a new column that we don't want, so let's get rid of it
df.drop('index', axis=1, inplace=True)
# the remaining columns need to be reindexed so we can access the first column at '0' instead of '1'
df = df.reindex_axis(input_df.columns, axis=1)
# process the individual variables present in the raw data
processCabin()
processTicket()
processName()
processFare()
processEmbarked()
processFamily()
processSex()
processPClass()
processAge()
processDrops()
# Move the survived column back to the first position
columns_list = list(df.columns.values)
columns_list.remove('Survived')
new_col_list = list(['Survived'])
new_col_list.extend(columns_list)
df = df.reindex(columns=new_col_list)
print "Starting with", df.columns.size, "manually generated features...\n", df.columns.values
#*********************************************************************************************************
# Automated feature generation based on basic math on scaled features
numerics = df.loc[:, ['Age_scaled', 'Fare_scaled', 'Pclass_scaled', 'Parch_scaled', 'SibSp_scaled',
'Names_scaled', 'CabinNumber_scaled', 'Age_bin_id_scaled', 'Fare_bin_id_scaled']]
print "\nFeatures used for automated feature generation:\n", numerics.head(10)
new_fields_count = 0
for i in range(0, numerics.columns.size-1):
for j in range(0, numerics.columns.size-1):
if i <= j:
name = str(numerics.columns.values[i]) + "*" + str(numerics.columns.values[j])
df = pd.concat([df, pd.Series(numerics.iloc[:,i] * numerics.iloc[:,j], name=name)], axis=1)
new_fields_count += 1
if i < j:
name = str(numerics.columns.values[i]) + "+" + str(numerics.columns.values[j])
df = pd.concat([df, pd.Series(numerics.iloc[:,i] + numerics.iloc[:,j], name=name)], axis=1)
new_fields_count += 1
if not i == j:
name = str(numerics.columns.values[i]) + "/" + str(numerics.columns.values[j])
df = pd.concat([df, pd.Series(numerics.iloc[:,i] / numerics.iloc[:,j], name=name)], axis=1)
name = str(numerics.columns.values[i]) + "-" + str(numerics.columns.values[j])
df = pd.concat([df, pd.Series(numerics.iloc[:,i] - numerics.iloc[:,j], name=name)], axis=1)
new_fields_count += 2
print "\n", new_fields_count, "new features generated"
#*********************************************************************************************************
# Use Spearman correlation to remove highly correlated features
# calculate the correlation matrix
df_corr = df.drop(['Survived', 'PassengerId'],axis=1).corr(method='spearman')
# create a mask to ignore self-
mask = np.ones(df_corr.columns.size) - np.eye(df_corr.columns.size)
df_corr = mask * df_corr
drops = []
# loop through each variable
for col in df_corr.columns.values:
# if we've already determined to drop the current variable, continue
if np.in1d([col],drops):
continue
# find all the variables that are highly correlated with the current variable
# and add them to the drop list
corr = df_corr[abs(df_corr[col]) > 0.98].index
#print col, "highly correlated with:", corr
drops = np.union1d(drops, corr)
print "\nDropping", drops.shape[0], "highly correlated features...\n" #, drops
df.drop(drops, axis=1, inplace=True)
#*********************************************************************************************************
# Split the data sets apart again, perform PCA/clustering/class balancing if necessary
#
input_df = df[:input_df.shape[0]]
submit_df = df[input_df.shape[0]:]
if pca:
print "reducing and clustering now..."
input_df, submit_df = reduceAndCluster(input_df, submit_df)
else:
# drop the empty 'Survived' column for the test set that was created during set concatentation
submit_df.drop('Survived', axis=1, inplace=1)
print "\n", input_df.columns.size, "initial features generated...\n" #, input_df.columns.values
if balanced:
# Undersample training examples of passengers who did not survive
print 'Perished data shape:', input_df[input_df.Survived==0].shape
print 'Survived data shape:', input_df[input_df.Survived==1].shape
perished_sample = rd.sample(input_df[input_df.Survived==0].index, input_df[input_df.Survived==1].shape[0])
input_df = pd.concat([input_df.ix[perished_sample], input_df[input_df.Survived==1]])
input_df.sort(inplace=True)
print 'New even class training shape:', input_df.shape
return input_df, submit_df
def reduceAndCluster(input_df, submit_df, clusters=3):
"""
Takes the train and test data frames and performs dimensionality reduction with PCA and clustering
This was part of some experimentation and wasn't used for top scoring submissions. Leaving it in for reference
"""
# join the full data together
df = pd.concat([input_df, submit_df])
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
df = df.reindex_axis(input_df.columns, axis=1)
# Series of labels
survivedSeries = pd.Series(df['Survived'], name='Survived')
print df.head()
# Split into feature and label arrays
X = df.values[:, 1::]
y = df.values[:, 0]
print X[0:5]
# Minimum percentage of variance we want to be described by the resulting transformed components
variance_pct = .99
# Create PCA object
pca = PCA(n_components=variance_pct)
# Transform the initial features
X_transformed = pca.fit_transform(X,y)
# Create a data frame from the PCA'd data
pcaDataFrame = pd.DataFrame(X_transformed)
print pcaDataFrame.shape[1], " components describe ", str(variance_pct)[1:], "% of the variance"
# use basic clustering to group similar examples and save the cluster ID for each example in train and test
kmeans = KMeans(n_clusters=clusters, random_state=np.random.RandomState(4), init='random')
#==============================================================================================================
# # Perform clustering on labeled AND unlabeled data
# clusterIds = kmeans.fit_predict(X_pca)
#==============================================================================================================
# Perform clustering on labeled data and then predict clusters for unlabeled data
trainClusterIds = kmeans.fit_predict(X_transformed[:input_df.shape[0]])
print "clusterIds shape for training data: ", trainClusterIds.shape
#print "trainClusterIds: ", trainClusterIds
testClusterIds = kmeans.predict(X_transformed[input_df.shape[0]:])
print "clusterIds shape for test data: ", testClusterIds.shape
#print "testClusterIds: ", testClusterIds
clusterIds = np.concatenate([trainClusterIds, testClusterIds])
print "all clusterIds shape: ", clusterIds.shape
#print "clusterIds: ", clusterIds
# construct the new DataFrame comprised of "Survived", "ClusterID", and the PCA features
clusterIdSeries = pd.Series(clusterIds, name='ClusterId')
df = pd.concat([survivedSeries, clusterIdSeries, pcaDataFrame], axis=1)
# split into separate input and test sets again
input_df = df[:input_df.shape[0]]
submit_df = df[input_df.shape[0]:]
submit_df.reset_index(inplace=True)
submit_df.drop('index', axis=1, inplace=True)
submit_df.drop('Survived', axis=1, inplace=1)
return input_df, submit_df
if __name__ == '__main__':
"""
Test script to make sure everything is running about right
I did some experiments with clustering and trying to build separate models for each cluster, but I couldn't
get even sized clusters even with significant tweaking
"""
train, test = getDataSets(bins=True, scaled=True, binary=True)
drop_list = ['PassengerId']
train.drop(drop_list, axis=1, inplace=1)
test.drop(drop_list, axis=1, inplace=1)
train, test = reduceAndCluster(train, test)
print "Labeled survived counts :\n", pd.value_counts(train['Survived'])/train.shape[0]
print "Labeled cluster counts :\n", pd.value_counts(train['ClusterId'])/train.shape[0]
print "Unlabeled cluster counts:\n", pd.value_counts(test['ClusterId'])/test.shape[0]
print train.columns.values