-
Notifications
You must be signed in to change notification settings - Fork 18
/
run_point_no_fusion.sh
executable file
·264 lines (245 loc) · 6.3 KB
/
run_point_no_fusion.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/bin/bash
echo -n "Train Data Collection, Validation Data Collection, Behavior Cloning or DAgger, or Evaluation? [data-train, data-val, bc,dagger,eval] "
read MODE
echo -n "Enter Scenario No. [6,8,10]: "
read SCEN
export CUDA_VISIBLE_DEVICES=0
# Things to pay attention to
# for both BC and Dagger
# 1. Change --data to specify where the training data is stored
# For Dagger
# Make sure you start CARLA instances with correct port in a tmux pane
# ./scripts/launch_carla.sh [GPU_ID, 0] [NUM_WORKERS, 1] [PORT,2001] must be 2001 for now, hardcoded....
# Make sure mosquitto process are killed before running, although the script cleans by default after its own running
# 1. Change --finetune as the model that you want to continue training from BC
# 2. Change --benchmark_config to specify the dagger sampling configurations
# 3. I sample both data with collider and without collider, remove as you wish
# Must collect train and validation data before training
DATAFOLDER=~/AutoCast_{SCEN}
BATCHSIZE=32
WORKERS=32
CARLA_WORKERS=1
FRAMESTACK=1
TRAIN_SIZE=12
VAL_SIZE=12
DAGGER_SIZE=${CARLA_WORKERS}
BGTRAFFIC=60
if [[ $SCEN == 6 ]]
then
BGTRAFFIC=30
fi
if [[ $SCEN == 8 ]]
then
BGTRAFFIC=30
fi
if [[ $SCEN == 10 ]]
then
BGTRAFFIC=30
fi
TrainValFolder=~/Documents/AutoCast_${SCEN}
DATAFOLDER=~/Documents/AutoCast_${SCEN}
if [[ $MODE == data-train ]]
then
AGENT=AutoCastSim/AVR/autocast_agents/simple_agent.py
CONFIG=benchmark/scene${SCEN}.json
OUTPUTDIR=${TrainValFolder}/Train/
CARLA_WORKERS=1
kill $(pgrep Carla)
kill $(pgrep ray)
kill $(pgrep mosquitto)
./scripts/launch_carla.sh 0 ${CARLA_WORKERS} 2001 &
sleep 2
python3 AutoCastSim/parallel_scenario_runner.py \
--agent $AGENT \
--reloadWorld \
--port 2001 \
--trafficManagerPort 3123 \
--mqttport 4884 \
--bgtraffic $BGTRAFFIC \
--num-workers $CARLA_WORKERS \
--file --sharing\
--benchmark_config $CONFIG \
--commlog \
--full \
--emualte \
--hud \
--passive_collider \
--outputdir $OUTPUTDIR \
--resample-config 'random_uniform' \
--num-config $TRAIN_SIZE
fi
if [[ $MODE == data-val ]]
then
AGENT=AutoCastSim/AVR/autocast_agents/simple_agent.py
CONFIG=benchmark/scene${SCEN}.json
OUTPUTDIR=${TrainValFolder}/Val/
CARLA_WORKERS=1
kill $(pgrep Carla)
kill $(pgrep ray)
kill $(pgrep mosquitto)
./scripts/launch_carla.sh 0 ${CARLA_WORKERS} 2001 &
sleep 2
python3 AutoCastSim/parallel_scenario_runner.py \
--agent $AGENT \
--reloadWorld \
--port 2001 \
--trafficManagerPort 3123 \
--mqttport 4884 \
--bgtraffic $BGTRAFFIC \
--num-workers $CARLA_WORKERS \
--file --sharing \
--benchmark_config $CONFIG \
--commlog \
--full \
--emualte \
--hud \
--passive_collider \
--outputdir $OUTPUTDIR \
--resample-config 'random_uniform' \
--num-config $VAL_SIZE
fi
if [[ $MODE == data-expert ]]
then
SEED=2
CUDA_VISIBLE_DEVICES=0
AGENT=AutoCastSim/AVR/autocast_agents/simple_agent.py
CONFIG=benchmark/scene${SCEN}.json
OUTPUTDIR=${TrainValFolder}/expert_seed${SEED}/
CARLA_WORKERS=10
kill $(pgrep Carla)
kill $(pgrep ray)
kill $(pgrep mosquitto)
./scripts/launch_carla.sh ${CUDA_VISIBLE_DEVICES} ${CARLA_WORKERS} 2001 &
sleep 2
python3 AutoCastSim/parallel_scenario_runner.py \
--agent $AGENT \
--reloadWorld \
--port 2001 \
--trafficManagerPort 3123 \
--mqttport 4884 \
--bgtraffic $BGTRAFFIC \
--num-workers $CARLA_WORKERS \
--file --sharing \
--passive_collider \
--benchmark_config $CONFIG \
--commlog \
--emualte \
--hud \
--outputdir $OUTPUTDIR \
--resample-config 'fixed' \
--seed $SEED
fi
if [[ $MODE == bc ]]
then
WORKERS=32
BATCHSIZE=32
#################### BC
#Test Input: Shared Lidar Voxel Output: Control
python3 -m training.train_point_transformer \
--num-epochs 101 \
--data $TrainValFolder/Train/ \
--batch-size $BATCHSIZE \
--num-dataloader-workers $WORKERS \
--init-lr 0.0001 \
--num-steps-per-log 100 \
--frame-stack $FRAMESTACK \
--max_num_neighbors 0\
--device 'cuda' \
--npoints 2048 \
--transformer_dim 32\
--nblocks 2 \
--project 'cvpr-nonshare-pt'\
--eval-data $TrainValFolder/Val/
fi
if [[ $MODE == dagger ]]
then
# Make sure you kill all carla processes
#################### DAgger
BATCHSIZE=32
RUN=${SCEN}-nonshare-pt-bc-run0
CHECKPOINT=wandb/${RUN}/files/model-100.th
BETA=0.8
CONFIG=benchmark/scene${SCEN}.json
CARLA_WORKERS=1
WORKERS=32
DAGGER_SIZE=1
DATAFOLDER=~/Documents/AutoCast_${SCEN}_Small/
kill $(pgrep CarlaUE4)
kill $(pgrep ray)
kill $(pgrep mosquitto)
python3 -m training.train_dagger_point_transformer \
--num-epochs 106 \
--data $DATAFOLDER/Train/ \
--daggerdata $DATAFOLDER/Dagger/ \
--num-workers $CARLA_WORKERS \
--batch-size $BATCHSIZE \
--num-dataloader-workers $WORKERS \
--init-lr 0.0001 \
--num-steps-per-log 100 \
--device 'cuda' \
--finetune $CHECKPOINT \
--beta $BETA --sampling-frequency 5 --checkpoint-frequency 5 \
--benchmark_config $CONFIG \
--bgtraffic $BGTRAFFIC \
--max_num_neighbors 0 \
--transformer_dim 32\
--nblocks 2 \
--npoints 2048 \
--project 'cvpr-nonshare-pt' \
--resample-config 'random_uniform' \
--num-config $DAGGER_SIZE\
--eval-data $TrainValFolder/Val/
fi
if [[ $MODE == eval ]]
then
#################### Evaluation
RUN=${SCEN}-nonshare-pt-dagger-run0
BGTRAFFIC=30
CHECKPOINTITER=105
CUDA_VISIBLE_DEVICES=0
SEED=0
AGENTCONFIG=wandb/${RUN}/files/config.yaml
AGENT=NeuralAgents/dagger_agent.py
CONFIG=benchmark/scene${SCEN}.json
CARLA_WORKERS=1
#kill $(pgrep Carla)
#kill $(pgrep ray)
#kill $(pgrep mosquitto)
#./scripts/launch_carla.sh ${CUDA_VISIBLE_DEVICES} ${CARLA_WORKERS} 2001 &
#sleep 2
for NUMRUN in 0 1 2
do
for BGTRAFFIC in 0 15 30 45 #0 15 30 45
do
for SEED in 0 1 2
do
RUN=${SCEN}-nonshare-pt-dagger-run${NUMRUN}
AGENTCONFIG=wandb/${RUN}/files/config.yaml
OUTPUTDIR=${DATAFOLDER}/eval_${RUN}_bgtraffic${BGTRAFFIC}_seed${SEED}/
kill $(pgrep Carla)
#kill $(pgrep ray)
#kill $(pgrep mosquitto)
python3 parallel_evaluation.py \
--agent $AGENT \
--agentConfig $AGENTCONFIG \
--reloadWorld \
--port 2001 \
--trafficManagerPort 3123 \
--mqttport 4884 \
--bgtraffic $BGTRAFFIC \
--num-workers $CARLA_WORKERS \
--file \
--emualte \
--hud \
--benchmark_config $CONFIG \
--num_checkpoint $CHECKPOINTITER \
--beta 0.0 \
--passive_collider \
--outputdir $OUTPUTDIR \
--resample-config 'fixed' \
--seed $SEED \
--cuda_visible_devices $CUDA_VISIBLE_DEVICES
done
done
done
fi