- First, clone the repo:
git clone --recursive git@github.com:UT-Austin-RPL/Coopernaut.git
Next, please follow the instructions below to setup Coopernaut.
The easiest way to do this is through conda:
conda env create -n autocast python=3.7
Install the following under the autocast
conda environment
conda activate autocast
- Install PyTorch:
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
- Install pip dependencies:
pip3 install paho-mqtt scipy pygame py-trees==0.8.3 networkx==2.2 xmlschema numpy shapely imageio ray tqdm numba pandas scikit-image scikit-learn opencv-python h5py
- Install mosquitto:
conda install -c hargup/label/pypi mosquitto
- Install torch-scatter and torch-sparse:
pip install torch-scatter==2.0.5 -f https://data.pyg.org/whl/torch-1.7.1+cu110.html
pip install torch-sparse==0.6.10 -f https://data.pyg.org/whl/torch-1.7.1+cu110.html
pip install torch-geometric==1.7.2
- Install open3d:
pip install open3d[None]==0.13.0
- Install MinkowskiEngine:
conda install openblas-devel -c anaconda
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine@f81ae66b33b883cd08ee4f64d08cf633608b118 -v --no-deps --install-option="--blas_include_dirs=${CONDA_PREFIX}/include" --install-option="--blas=openblas"
- Install logging tools
pip install wandb tensorboard torchsummary
- Install setuptools
conda install setuptools
- Download CARLA 0.9.11
- Install the python egg using
easy_install
insidePythonAPI/carla/dist
of the CARLA repo.
Configure the following environment variables:
export CARLA_ROOT=[LINK TO YOUR CARLA FOLDER]
export SCENARIO_RUNNER_ROOT=[LINK TO AUTOCASTSIM]/srunner
export PYTHONPATH=${CARLA_ROOT}/PythonAPI:${CARLA_ROOT}/PythonAPI/carla:[LINK TO AUTOCASTSIM]