-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathread_results.py
77 lines (62 loc) · 2.77 KB
/
read_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import json
import pandas as pd
import fire
def main(
root_result_path = 'results',
raw_dataset='tulu_300k',
base_model = "meta-llama/Meta-Llama-3.1-8B",
rating_model='mistralai/Mistral-7B-Instruct-v0.3',
baseline_tag = 'ds2_10k',
):
all_results = {}
baseline_tags=[baseline_tag] #baselines
eval_dataset_lists = ['mmlu', 'truthfulqa', 'gsm', 'bbh', 'tydiqa']
# Load results from JSON files
for tag in baseline_tags:
baseline_results = {}
for eval_dataset in eval_dataset_lists:
path = root_result_path + f'/{rating_model}/{raw_dataset}/{eval_dataset}/{base_model}/{tag}/metrics.json'
try:
with open(path, 'r') as f:
json_file = json.load(f)
baseline_results[eval_dataset] = json_file
except FileNotFoundError:
print(f"Failed to find the file at {path}")
baseline_results[eval_dataset] = None
all_results[tag] = baseline_results
# Extract relevant metrics and store in a DataFrame
cur_results = {}
for tag in baseline_tags:
baseline_result = []
for eval_dataset in eval_dataset_lists:
if all_results[tag][eval_dataset] is None:
value = 0
else:
if eval_dataset == 'mmlu':
value = round(all_results[tag][eval_dataset]['average_acc'] * 100, 1)
elif eval_dataset == 'bbh':
value = round(all_results[tag][eval_dataset]['average_exact_match']* 100, 1)
elif eval_dataset == 'tydiqa':
value = round(all_results[tag][eval_dataset]['average']['f1'], 1)
elif eval_dataset == 'gsm':
value = round(all_results[tag][eval_dataset]['exact_match']* 100, 1)
elif eval_dataset == 'truthfulqa':
value = round(all_results[tag][eval_dataset]["truth-info acc"]* 100, 1)
# value = round(all_results[tag][eval_dataset]["MC2"]* 100, 1)
else:
print("unknown eval dat·aset!")
baseline_result.append(value)
cur_results[tag] = baseline_result
# Convert cur_results to pandas DataFrame
df_results = pd.DataFrame.from_dict(cur_results, orient='index', columns=eval_dataset_lists)
# Calculate the average accuracy for each baseline
df_results['average acc'] = df_results.mean(axis=1).round(1)
# Ensure full display of the DataFrame
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
pd.set_option('display.max_colwidth', None)
print(df_results)
if __name__ == '__main__':
fire.Fire(main)